Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Current Pharmaceutical Aspects of Synthetic Quinoline Derivatives

Author(s): Rukhsana Tabassum*, Muhammad Ashfaq* and Hiroyuki Oku

Volume 21, Issue 10, 2021

Published on: 14 December, 2020

Page: [1152 - 1172] Pages: 21

DOI: 10.2174/1389557520999201214234735

Price: $65

Abstract

Quinoline derivatives are considered broad-spectrum pharmacological compounds that exhibit a wide range of biological activities. Integration of quinoline moiety can improve its physical and chemical properties and also pharmacological behavior. Due to its wide range of pharmaceutical applications, it is a very popular compound to design new drugs for the treatment of multiple diseases like cancer, dengue fever, malaria, tuberculosis, fungal infections, AIDS, Alzheimer’s disease and diabetes. In this review, our major focus is to pay attention to the biological activities of quinoline compounds in the treatment of these diseases such as anti-viral, anti-cancer, anti-malarial, antibacterial, anti-fungal, anti-tubercular and anti-diabetic.

Keywords: Quinoline derivatives, heterocyclic, biologically active, pharmaceutical, broad spectrum, inhibition.

Graphical Abstract

[1]
Zarghi, A.; Ghodsi, R. Design, synthesis, and biological evaluation of ketoprofen analogs as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860.
[http://dx.doi.org/10.1016/j.bmc.2010.06.094] [PMID: 20650641]
[2]
Hosseinzadeh, H.; Mazaheri, F.; Ghodsi, R. Pharmacological effects of a synthetic quinoline, a hybrid of tomoxiprole and naproxen, against acute pain and inflammation in mice: A behavioral and docking study. Iran. J. Basic Med. Sci., 2017, 20(4), 446-450.
[PMID: 28804615]
[3]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[4]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[5]
Hu, Y-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[6]
Fan, Y-L.; Cheng, X-W.; Wu, J-B.; Liu, M.; Zhang, F-Z.; Xu, Z.; Feng, L-S. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. Eur. J. Med. Chem., 2018, 146, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.039] [PMID: 29360043]
[7]
Kumar, A.; Srivastava, K.; Kumar, S.R.; Siddiqi, M.I.; Puri, S.K.; Sexana, J.K.; Chauhan, P.M.S. 4-anilinoquinoline triazines: A novel class of hybrid antimalarial agents. Eur. J. Med. Chem., 2011, 46(2), 676-690.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.003] [PMID: 21194812]
[8]
Gryzło, B.; Kulig, K. Quinoline –– a promising fragment in the search for new antimalarials. Mini Rev. Med. Chem., 2014, 14(4), 332-344.
[http://dx.doi.org/10.2174/1389557514666140220123226] [PMID: 24552268]
[9]
Gaurav, A.; Singh, R. Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential. Med. Chem. Res., 2014, 23, 5008-5030.
[http://dx.doi.org/10.1007/s00044-014-1048-3]
[10]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[11]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[12]
Sharma, P.C.; Chaudhary, M.; Sharma, A.; Piplani, M.; Rajak, H.; Prakash, O. Insight view on possible role of fluoroquinolones in cancer therapy. Curr. Top. Med. Chem., 2013, 13(16), 2076-2096.
[http://dx.doi.org/10.2174/15680266113139990133] [PMID: 23895089]
[13]
Liu, J.C.; Narva, S.; Zhou, K.; Zhang, W. A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors. Mini Rev. Med. Chem., 2019, 19(18), 1517-1530.
[http://dx.doi.org/10.2174/1389557519666190312152358] [PMID: 30864519]
[14]
Sharma, V.; Mehta, D.K.; Das, R. Synthetic methods of quinoline derivatives as potent anticancer agents. Mini Rev. Med. Chem., 2017, 17(16), 1557-1572.
[http://dx.doi.org/10.2174/1389557517666170510104954] [PMID: 28494729]
[15]
Patil, S.A.; Patil, S.A.; Patil, R.; Hashizume, R. Imidazoquinolines: Recent developments in anticancer activity. Mini Rev. Med. Chem., 2016, 16(4), 309-322.
[http://dx.doi.org/10.2174/1389557516666151217122758] [PMID: 26675675]
[16]
Ebisu, H.; Nishikawa, M.; Tanaka, M.; Okazoe, T.; Morizawa, Y.; Shinyama, H.; Nakamura, N. Pharmacologic profiles of GA0113, a novel quinoline derivative angiotensin II AT1-receptor antagonist. J. Cardiovasc. Pharmacol., 1999, 34(4), 526-532.
[http://dx.doi.org/10.1097/00005344-199910000-00008] [PMID: 10511127]
[17]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[18]
Chen, Y-L.; Fang, K-C.; Sheu, J-Y.; Hsu, S-L.; Tzeng, C-C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[19]
Zhang, G-F.; Zhang, S.; Pan, B.; Liu, X.; Feng, L-S. 4-Quinolone derivatives and their activities against gram positive pathogens. Eur. J. Med. Chem., 2018, 143, 710-723.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.082] [PMID: 29220792]
[20]
Prasad, A.S.G.; Rao, T.B.; Rambabu, D.; Rao, M.V.B.; Pal, M. Ultrasound assisted synthesis of quinoline derivatives in the presence of SnCl2•2H2O as a precatalyst in water: Evaluation of their antibacterial activities. Mini Rev. Med. Chem., 2018, 18(10), 895-903.
[http://dx.doi.org/10.2174/1389557517666170412112619] [PMID: 28403794]
[21]
Desai, N.; Trivedi, A.; Pandit, U.; Dodiya, A.; Rao, V.K.; Desai, P. Hybrid bioactive heterocycles as potential antimicrobial agents: A review. Mini Rev. Med. Chem., 2016, 16(18), 1500-1526.
[http://dx.doi.org/10.2174/1389557516666160609075620] [PMID: 27292782]
[22]
Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J. Med. Chem., 1994, 37(14), 2129-2137.
[http://dx.doi.org/10.1021/jm00040a003] [PMID: 8035419]
[23]
Xu, Z.; Gao, C.; Ren, Q-C.; Song, X-F.; Feng, L-S.; Lv, Z-S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2017, 139, 429-440.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[24]
Fan, Y-L.; Wu, J-B.; Cheng, X-W.; Zhang, F-Z.; Feng, L-S. Fluoroquinolone derivatives and their anti-tubercular activities. Eur. J. Med. Chem., 2018, 146, 554-563.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.080] [PMID: 29407980]
[25]
Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z-S.; Feng, L-S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28, 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[26]
Keri, R.S.; Patil, S.A. Quinoline: A promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[27]
Joshi, S.D.; More, U.A.; Parkale, D.; Aminabhavi, T.M.; Gadad, A.K.; Nadagouda, M.N.; Jawarkar, R. Design, synthesis of quinolinyl Schiff bases and azetidinones as enoyl ACP-reductase inhibitors. Med. Chem. Res., 2015, 24, 3892-3911.
[http://dx.doi.org/10.1007/s00044-015-1432-7]
[28]
Patel, R.V.; Keum, Y.S.; Park, S.W. Nitroimidazoles, quinolones and oxazolidinones as fluorine bearing antitubercular clinical candidates. Mini Rev. Med. Chem., 2015, 15(14), 1174-1186.
[http://dx.doi.org/10.2174/1389557515666150709121153] [PMID: 26156417]
[29]
Zhang, L.; Kumar, K.V.; Geng, R-X.; Zhou, C-H. Design and biological evaluation of novel quinolone-based metronidazole derivatives as potent Cu(2+) mediated DNA-targeting antibacterial agents. Bioorg. Med. Chem. Lett., 2015, 25(17), 3699-3705.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.041] [PMID: 26149183]
[30]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[31]
Anusionwu, C.G.; Aderibigbe, B.A.; Mbianda, X.Y. Hybrid molecules development: A versatile landscape for the control of antifungal drug resistance: A review. Mini Rev. Med. Chem., 2019, 19(6), 450-464.
[http://dx.doi.org/10.2174/1389557519666181210162003] [PMID: 30526457]
[32]
Subhedar, D.D.; Shaikh, M.H.; Tupe, S.G.; Deshpande, M.V.; Khedkar, V.M.; Jha, P.C.; Shingate, B.B. Facile and solvent-free domino synthesis of new quinolidinyl-2,4- thiazolidinones: Antifungal activity and molecular docking. Mini Rev. Med. Chem., 2018, 18(7), 622-630.
[http://dx.doi.org/10.2174/1389557516666161226161152] [PMID: 28029079]
[33]
Channar, P.A.; Saeed, A.; Albericio, F.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S-Y. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of Jack bean urease; Synthesis, kinetic mechanism and molecular docking. Molecules, 2017, 22(8), 1352.
[http://dx.doi.org/10.3390/molecules22081352] [PMID: 28813027]
[34]
Wang, Z.; Hu, J.; Yang, X.; Feng, X.; Li, X.; Huang, L.; Chan, A.S.C. Design, synthesis, and evaluation of orally bioavailable quinoline-indole derivatives as innovative multitarget-directed ligands: Promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. J. Med. Chem., 2018, 61(5), 1871-1894.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01417] [PMID: 29420891]
[35]
Edmont, D.; Rocher, R.; Plisson, C.; Chenault, J. Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents. Bioorg. Med. Chem. Lett., 2000, 10(16), 1831-1834.
[http://dx.doi.org/10.1016/S0960-894X(00)00354-1] [PMID: 10969979]
[36]
Savegnago, L.; Vieira, A.I.; Seus, N.; Goldani, B.S.; Castro, M.R.; Lenardão, E.J.; Alves, D. Synthesis and antioxidant properties of novel quinoline–chalcogenium compounds. Tetrahedron Lett., 2013, 54, 40-44.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.067]
[37]
Błaszczyk, A.; Augustyniak, A.; Skolimowski, J. Ethoxyquin: An antioxidant used in animal feed. Int. J. Food Sci., 2013, 2013585931
[http://dx.doi.org/10.1155/2013/585931] [PMID: 26904606]
[38]
Oliveri, V.; Vecchio, G. Glycoconjugates of quinolines: Application in medicinal chemistry. Mini Rev. Med. Chem., 2016, 16(15), 1185-1194.
[http://dx.doi.org/10.2174/1389557516666160505115634] [PMID: 27145851]
[39]
de la Guardia, C.; Stephens, D.E.; Dang, H.T.; Quijada, M.; Larionov, O.V.; Lleonart, R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules, 2018, 23(3), 672.
[http://dx.doi.org/10.3390/molecules23030672] [PMID: 29547522]
[40]
Han, Y.; Pham, H.T.; Xu, H.; Quan, Y.; Mesplède, T. Antimalarial drugs and their metabolites are potent Zika virus inhibitors. J. Med. Virol., 2019, 91(7), 1182-1190.
[http://dx.doi.org/10.1002/jmv.25440] [PMID: 30801742]
[41]
Kos, J.; Ku, C.F.; Kapustikova, I.; Oravec, M.; Zhang, H-J.; Jampilek, J. 8-hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. Chem. Select, 2019, 4, 4582-4587.
[http://dx.doi.org/10.1002/slct.201900873]
[42]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[43]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[44]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[45]
Colson, P.; Rolain, J-M.; Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents, 2020, 55(3)105923
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[46]
Gautret, P.; Lagier, J-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J-M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[47]
Chauhan, A.; Tikoo, A. The enigma of the clandestine association between chloroquine and HIV-1 infection. HIV Med., 2015, 16(10), 585-590.
[http://dx.doi.org/10.1111/hiv.12295] [PMID: 26238012]
[48]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[49]
Keyaerts, E.; Li, S.; Vijgen, L.; Rysman, E.; Verbeeck, J.; Van Ranst, M.; Maes, P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother., 2009, 53(8), 3416-3421.
[http://dx.doi.org/10.1128/AAC.01509-08] [PMID: 19506054]
[50]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[51]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[52]
Nicastri, E.; Petrosillo, N.; Ascoli Bartoli, T.; Lepore, L.; Mondi, A.; Palmieri, F.; D’Offizi, G.; Marchioni, L.; Murachelli, S.; Ippolito, G.; Antinori, A. National Institute for the Infectious Diseases. “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect. Dis. Rep., 2020, 12(1), 8543-8543.
[http://dx.doi.org/10.4081/idr.2020.8543] [PMID: 32218915]
[53]
Li, F.; Lee, E.M.; Sun, X.; Wang, D.; Tang, H.; Zhou, G-C. Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. Eur. J. Med. Chem., 2020, •••187111925
[http://dx.doi.org/10.1016/j.ejmech.2019.111925] [PMID: 31838328]
[54]
Fauci, A.S. An HIV vaccine is essential for ending the HIV/AIDS pandemic. JAMA, 2017, 318(16), 1535-1536.
[http://dx.doi.org/10.1001/jama.2017.13505] [PMID: 29052689]
[55]
Pham, Q.D.; Wilson, D.P.; Law, M.G.; Kelleher, A.D.; Zhang, L. Global burden of transmitted HIV drug resistance and HIV-exposure categories: A systematic review and meta-analysis. AIDS, 2014, 28(18), 2751-2762.
[http://dx.doi.org/10.1097/QAD.0000000000000494] [PMID: 25493601]
[56]
Overacker, R.D.; Banerjee, S.; Neuhaus, G.F.; Milicevic Sephton, S.; Herrmann, A.; Strother, J.A.; Brack-Werner, R.; Blakemore, P.R.; Loesgen, S. Biological evaluation of molecules of the azaBINOL class as antiviral agents: Inhibition of HIV-1 RNase H activity by 7-isopropoxy-8-(naphth-1-yl)quinoline. Bioorg. Med. Chem., 2019, 27(16), 3595-3604.
[http://dx.doi.org/10.1016/j.bmc.2019.06.044] [PMID: 31285097]
[57]
Salata, C.; Calistri, A.; Alvisi, G.; Celestino, M.; Parolin, C.; Palù, G. Ebola virus entry: From molecular characterization to drug discovery. Viruses, 2019, 11(3), 274.
[http://dx.doi.org/10.3390/v11030274] [PMID: 30893774]
[58]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38, 775-828.
[59]
He, C.; Preiss, L.; Wang, B.; Fu, L.; Wen, H.; Zhang, X.; Cui, H.; Meier, T.; Yin, D. Structural simplification of bedaquiline: The discovery of 3-(4-(N,N-dimethylaminomethyl)phenyl)quinoline-derived antitubercular lead compounds. ChemMedChem, 2017, 12(2), 106-119.
[http://dx.doi.org/10.1002/cmdc.201600441] [PMID: 27792278]
[60]
Cui, Q.; Cheng, H.; Xiong, R.; Zhang, G.; Du, R.; Anantpadma, M.; Davey, R.A.; Rong, L. Identification of diaryl-quinoline compounds as entry inhibitors of Ebola virus. Viruses, 2018, 10(12), 678.
[http://dx.doi.org/10.3390/v10120678] [PMID: 30513600]
[61]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.W.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[62]
Zhang, G-H.; Xue, W-B.; An, Y-F.; Yuan, J-M.; Qin, J-K.; Pan, C-X.; Su, G-F. Distinct novel quinazolinone exhibits selective inhibition in MGC-803 cancer cells by dictating mutant p53 function. Eur. J. Med. Chem., 2015, 95, 377-387.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.053] [PMID: 25828929]
[63]
Yugandhar, D.; Nayak, V.L.; Archana, S.; Shekar, K.C.; Srivastava, A.K. Design, synthesis and anticancer properties of novel oxa/azaspiro[4,5]trienones as potent apoptosis inducers through mitochondrial disruption. Eur. J. Med. Chem., 2015, 101, 348-357.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.050] [PMID: 26163220]
[64]
Tseng, C-H.; Tzeng, C-C.; Hsu, C-Y.; Cheng, C-M.; Yang, C-N.; Chen, Y-L. Discovery of 3-phenylquinolinylchalcone derivatives as potent and selective anticancer agents against breast cancers. Eur. J. Med. Chem., 2015, 97, 306-319.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.054] [PMID: 26005780]
[65]
Zhang, J.; Jiang, X.; Jiang, Y.; Guo, M.; Zhang, S.; Li, J.; He, J.; Liu, J.; Wang, J.; Ouyang, L. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur. J. Med. Chem., 2016, 108, 495-504.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.016] [PMID: 26717201]
[66]
Zhang, G-H.; Yuan, J-M.; Qian, G.; Gu, C-X.; Wei, K.; Mo, D-L.; Qin, J-K.; Peng, Y.; Zhou, Z-P.; Pan, C-X.; Su, G-F. Phthalazino[1,2-b]quinazolinones as p53 activators: Cell cycle arrest, apoptotic response and Bak-Bcl-xl complex reorganization in Bladder cancer cells. J. Med. Chem., 2017, 60(16), 6853-6866.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01769] [PMID: 28745887]
[67]
Shrestha, J.P.; Subedi, Y.P.; Chen, L.; Chang, C-W.T. A mode of action study of cationic anthraquinone analogs: A new class of highly potent anticancer agents. MedChemComm, 2015, 6, 2012-2022.
[http://dx.doi.org/10.1039/C5MD00314H]
[68]
Huo, C.; Chen, F.; Quan, Z.; Dong, J.; Wang, Y. Cobalt-catalyzed aerobic oxidative Povarov reaction of tertiary anilines with dihydrofuran for the synthesis of hexahydrofuroquinolines. Tetrahedron Lett., 2016, 57, 5127-5131.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.031]
[69]
Gatto, B.; Capranico, G.; Palumbo, M. Drugs acting on DNA topoisomerases: Recent advances and future perspectives. Curr. Pharm. Des., 1999, 5(3), 195-215.
[PMID: 10066890]
[70]
Rescifina, A.; Zagni, C.; Varrica, M.G.; Pistarà, V.; Corsaro, A. Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. Eur. J. Med. Chem., 2014, 74, 95-115.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.029] [PMID: 24448420]
[71]
Calvillo-Páez, V.; Sotelo-Mundo, R.R.; Leyva-Peralta, M.; Gálvez-Ruiz, J.C.; Corona-Martínez, D.; Moreno-Corral, R.; Escobar-Picos, R.; Höpfl, H.; Juárez-Sánchez, O.; Lara, K.O. Synthesis, spectroscopic, physicochemical and structural characterization of tetrandrine-based macrocycles functionalized with acridine and anthracene groups: DNA binding and anti-proliferative activity. Chem. Biol. Interact., 2018, 286, 34-44.
[http://dx.doi.org/10.1016/j.cbi.2018.02.013] [PMID: 29476729]
[72]
Duskova, K.; Sierra, S.; Fernández, M-J.; Gude, L.; Lorente, A. Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants. Bioorg. Med. Chem., 2012, 20(24), 7112-7118.
[http://dx.doi.org/10.1016/j.bmc.2012.09.055] [PMID: 23142323]
[73]
Hao, G.; Sun, J.; Wei, C. Studies on interactions of carbazole derivatives with DNA, cell image, and cytotoxicity. Bioorg. Med. Chem., 2018, 26(1), 285-294.
[http://dx.doi.org/10.1016/j.bmc.2017.11.044] [PMID: 29229224]
[74]
Ho, S-H.S.; Sim, M-Y.; Yee, W-L.S.; Yang, T.; Yuen, S-P.J.; Go, M-L. Antiproliferative, DNA intercalation and redox cycling activities of dioxonaphtho[2,3-d]imidazolium analogs of YM155: A structure-activity relationship study. Eur. J. Med. Chem., 2015, 104, 42-56.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.026] [PMID: 26433618]
[75]
Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 155, 117-134.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574]
[76]
Okuma, K.; Koga, T.; Ozaki, S.; Suzuki, Y.; Horigami, K.; Nagahora, N.; Shioji, K.; Fukuda, M.; Deshimaru, M. One-pot synthesis of dibenzo[b,h][1,6]naphthyridines from 2-acetylaminobenzaldehyde: Application to a fluorescent DNA-binding compound. Chem. Commun. (Camb.), 2014, 50(98), 15525-15528.
[http://dx.doi.org/10.1039/C4CC07807A] [PMID: 25354542]
[77]
Zhang, Y.; Zhang, Y.; Yang, W.; Bian, L. Fluorescent reversible regulation based on photoinduced electron transfer from DNA to quantum dots and intercalation binding of DNA intercalator to DNA. Talanta, 2018, 188, 7-16.
[http://dx.doi.org/10.1016/j.talanta.2018.05.034] [PMID: 30029434]
[78]
Zhang, Z.; Xiao, X.; Su, T.; Wu, J.; Ren, J.; Zhu, J.; Zhang, X.; Cao, R.; Du, R. Synthesis, structure-activity relationships and preliminary mechanism of action of novel water-soluble 4-quinolone-3-carboxamides as antiproliferative agents. Eur. J. Med. Chem., 2017, 140, 239-251.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.017] [PMID: 28942112]
[79]
Su, T.; Zhu, J.; Sun, R.; Zhang, H.; Huang, Q.; Zhang, X.; Du, R.; Qiu, L.; Cao, R. Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 178, 154-167.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.088] [PMID: 31181480]
[80]
Li, S.; Hu, L.; Li, J.; Zhu, J.; Zeng, F.; Huang, Q.; Qiu, L.; Du, R.; Cao, R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 162, 666-678.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.048] [PMID: 30496987]
[81]
Ribeiro, A.G.; Almeida, S.M.V.; de Oliveira, J.F.; Souza, T.R.C.L.; Santos, K.L.D.; Albuquerque, A.P.B.; Nogueira, M.C.B.L.; Junior, L.B., ; Moura, R.O.; da Silva, A.C.; Pereira, V.R.A.; Castro, M.C.A.B.; Lima, M.D.C.A. Novel 4-quinolinethiosemicarbazone derivatives: Synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur. J. Med. Chem., 2019, 182, 111, 592..
[http://dx.doi.org/10.1016/j.ejmech.2019.111592] [PMID: 31421632]
[82]
Jafari, F.; Baghayi, H.; Lavaee, P.; Hadizadeh, F.; Soltani, F.; Moallemzadeh, H.; Mirzaei, S.; Aboutorabzadeh, S.M.; Ghodsi, R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur. J. Med. Chem., 2019, 164, 292-303.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.060] [PMID: 30599418]
[83]
Mrozek-Wilczkiewicz, A.; Malarz, K.; Rejmund, M.; Polanski, J.; Musiol, R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur. J. Med. Chem., 2019, 171, 180-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.027] [PMID: 30921758]
[84]
Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[85]
Xiong, Y-X.; Huang, Z-S.; Tan, J-H. Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur. J. Med. Chem., 2015, 97, 538-551.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.021] [PMID: 25466923]
[86]
Le Gresley, A.; Gudivaka, V.; Carrington, S.; Sinclair, A.; Brown, J.E. Synthesis, analysis and biological evaluation of novel indolquinonecryptolepine analogues as potential anti-tumour agents. Org. Biomol. Chem., 2016, 14(11), 3069-3079.
[http://dx.doi.org/10.1039/C5OB02408K] [PMID: 26893255]
[87]
Zeng, D-Y.; Kuang, G-T.; Wang, S-K.; Peng, W.; Lin, S-L.; Zhang, Q.; Su, X-X.; Hu, M-H.; Wang, H.; Tan, J-H.; Huang, Z-S.; Gu, L-Q.; Ou, T-M. Discovery of novel 11-triazole substituted benzofuro[3,2-b]quinolone derivatives as c-myc G-quadruplex specific stabilizers via click chemistry. J. Med. Chem., 2017, 60(13), 5407-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00016] [PMID: 28514170]
[88]
Yuan, J-M.; Wei, K.; Zhang, G-H.; Chen, N-Y.; Wei, X-W.; Pan, C-X.; Mo, D-L.; Su, G-F. Cryptolepine and aromathecin based mimics as potent G-quadruplex-binding, DNA-cleavage and anticancer agents: Design, synthesis and DNA targeting-induced apoptosis. Eur. J. Med. Chem., 2019, 169, 144-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.072] [PMID: 30875505]
[89]
Jiang, D. 4-Quinolone derivatives and their activities against gram-negative pathogens. J. Heterocycl. Chem., 2018, 55, 2003-2018.
[http://dx.doi.org/10.1002/jhet.3244]
[90]
Patel, D.B.; Patel, K.D.; Prajapati, N.P.; Patel, K.R.; Rajani, D.P.; Rajani, S.D.; Shah, N.S.; Zala, D.D.; Patel, H.D. Design, synthesis, and biological and in silico study of fluorine-containing quinoline hybrid thiosemicarbazide analogues. J. Heterocycl. Chem., 2019, 56, 2235-2252.
[http://dx.doi.org/10.1002/jhet.3617]
[91]
Faidallah, H.M.; Girgis, A.S.; Tiwari, A.D.; Honkanadavar, H.H.; Thomas, S.J.; Samir, A.; Kalmouch, A.; Alamry, K.A.; Khan, K.A.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Asiri, A.M.; Panda, S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur. J. Med. Chem., 2018, 143, 1524-1534.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.042] [PMID: 29126731]
[92]
Teng, P.; Li, C.; Peng, Z.; Anne Marie, V.; Nimmagadda, A.; Su, M.; Li, Y.; Sun, X.; Cai, J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem., 2018, 26(12), 3573-3579.
[http://dx.doi.org/10.1016/j.bmc.2018.05.031] [PMID: 29858158]
[93]
Sharma, P.C.; Jain, A.; Yar, M.S.; Pahwa, R.; Singh, J.; Chanalia, P. Novel fluoroquinolone derivatives bearing N-thiomide linkage with 6-substituted-2-aminobenzothiazoles: Synthesis and antibacterial evaluation. Arab. J. Chem., 2017, 10, S568-S575.
[http://dx.doi.org/10.1016/j.arabjc.2012.11.002]
[94]
Alagumuthu, M.; Arumugam, S. Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; an approach to developing potent DNA gyrase inhibitors/antibacterial agents. Bioorg. Med. Chem., 2017, 25(4), 1448-1455.
[http://dx.doi.org/10.1016/j.bmc.2017.01.007] [PMID: 28094220]
[95]
Umamatheswari, S.; Sankar, C. Synthesis, identification and in vitro biological evaluation of some novel quinoline incorporated 1,3-thiazinan-4-one derivatives. Bioorg. Med. Chem. Lett., 2017, 27(3), 695-699.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.038] [PMID: 28065567]
[96]
Ansumana, R.; Keitell, S.; Roberts, G.M.T.; Ntoumi, F.; Petersen, E.; Ippolito, G.; Zumla, A. Impact of infectious disease epidemics on tuberculosis diagnostic, management, and prevention services: Experiences and lessons from the 2014-2015 Ebola virus disease outbreak in West Africa. Int. J. Infect. Dis., 2017, 56, 101-104.
[http://dx.doi.org/10.1016/j.ijid.2016.10.010] [PMID: 27818362]
[97]
Baghdadi, S. Situational analysis of tuberculosis control programs in the Eastern Mediterranean region: Gaps and solutions. Int. J. Mycobacteriol., 2016, 5(Suppl. 1), S14.
[http://dx.doi.org/10.1016/j.ijmyco.2016.10.002] [PMID: 28043511]
[98]
Jagielski, T.; Minias, A.; van Ingen, J.; Rastogi, N.; Brzostek, A.; Żaczek, A.; Dziadek, J. Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin. Microbiol. Rev., 2016, 29(2), 239-290.
[http://dx.doi.org/10.1128/CMR.00055-15] [PMID: 26912567]
[99]
Karim, K. Tuberculosis and infection control. Br. J. Nurs., 2011, 20(17), 1128-, 1130-1133.
[http://dx.doi.org/10.12968/bjon.2011.20.17.1128] [PMID: 22067583]
[100]
Zuniga, E.S.; Early, J.; Parish, T. The future for early-stage tuberculosis drug discovery. Future Microbiol., 2015, 10(2), 217-229.
[http://dx.doi.org/10.2217/fmb.14.125] [PMID: 25689534]
[101]
Tomioka, H. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Curr. Pharm. Des., 2014, 20(27), 4305-4306.
[http://dx.doi.org/10.2174/1381612819666131118203915] [PMID: 24245755]
[102]
Cox, E.; Laessig, K. FDA approval of bedaquiline--the benefit-risk balance for drug-resistant tuberculosis. N. Engl. J. Med., 2014, 371(8), 689-691.
[http://dx.doi.org/10.1056/NEJMp1314385] [PMID: 25140952]
[103]
Bélard, S.; Heuvelings, C.C.; Janssen, S.; Grobusch, M.P. Bedaquiline for the treatment of drug-resistant tuberculosis. Expert Rev. Anti Infect. Ther., 2015, 13(5), 535-553.
[http://dx.doi.org/10.1586/14787210.2015.1021785] [PMID: 25797824]
[104]
Dheda, K.; Cox, H.; Esmail, A.; Wasserman, S.; Chang, K.C.; Lange, C. Recent controversies about MDR and XDR-TB: Global implementation of the WHO shorter MDR-TB regimen and bedaquiline for all with MDR-TB? Respirology, 2018, 23(1), 36-45.
[http://dx.doi.org/10.1111/resp.13143] [PMID: 28850767]
[105]
Surineni, G.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Design and synthesis of novel carbazole tethered pyrrole derivatives as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2015, 25(3), 485-491.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.040] [PMID: 25559743]
[106]
Pulipati, L.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Synthesis and antitubercular evaluation of novel dibenzo[b,d]thiophene tethered imidazo[1,2-a]pyridine-3-carboxamides. Bioorg. Med. Chem. Lett., 2016, 26(13), 3135-3140.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.088] [PMID: 27184765]
[107]
Surineni, G.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Rational design, synthesis and evaluation of novel-substituted 1,2,3-triazolylmethyl carbazoles as potent inhibitors of Mycobacterium tuberculosis. Med. Chem. Res., 2015, 24, 1298-1309.
[http://dx.doi.org/10.1007/s00044-014-1210-y]
[108]
Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3(7), 432-442.
[http://dx.doi.org/10.1016/S1473-3099(03)00671-6] [PMID: 12837348]
[109]
Marvadi, S.K.; Krishna, V.S.; Sriram, D.; Kantevari, S. Synthesis of novel morpholine, thiomorpholine and N-substituted piperazine coupled 2-(thiophen-2-yl)dihydroquinolines as potent inhibitors of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2019, 164, 171-178.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.043] [PMID: 30594675]
[110]
Shruthi, T.G.; Eswaran, S.; Shivarudraiah, P.; Narayanan, S.; Subramanian, S. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Bioorg. Med. Chem. Lett., 2019, 29(1), 97-102.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.002] [PMID: 30448235]
[111]
Ramprasad, J.; Kumar Sthalam, V.; Linga Murthy Thampunuri, R.; Bhukya, S.; Ummanni, R.; Balasubramanian, S.; Pabbaraja, S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2019, 29(20)126671
[http://dx.doi.org/10.1016/j.bmcl.2019.126671] [PMID: 31526604]
[112]
Marvadi, S.K.; Krishna, V.S.; Sriram, D.; Kantevari, S. Synthesis and evaluation of novel substituted 1,2,3-triazolyldihydroquinolines as promising antitubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(4), 529-533.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.004] [PMID: 30638877]
[113]
Marvadi, S.K.; Krishna, V.S.; Sinegubova, E.O.; Volobueva, A.S.; Esaulkova, Y.L.; Muryleva, A.A.; Tentler, D.G.; Sriram, D.; Zarubaev, V.V.; Kantevari, S. 5-Chloro-2-thiophenyl-1,2,3-triazolylmethyldihydroquinolines as dual inhibitors of Mycobacterium tuberculosis and influenza virus: Synthesis and evaluation. Bioorg. Med. Chem. Lett., 2019, 29(18), 2664-2669.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.040] [PMID: 31375291]
[114]
Santoso, K.T.; Menorca, A.; Cheung, C-Y.; Cook, G.M.; Stocker, B.L.; Timmer, M.S.M. The synthesis and evaluation of quinolinequinones as anti-mycobacterial agents. Bioorg. Med. Chem., 2019, 27(16), 3532-3545.
[http://dx.doi.org/10.1016/j.bmc.2019.06.002] [PMID: 31262663]
[115]
Majithia, V.; Geraci, S.A. Rheumatoid arthritis: Diagnosis and management. Am. J. Med., 2007, 120(11), 936-939.
[http://dx.doi.org/10.1016/j.amjmed.2007.04.005] [PMID: 17976416]
[116]
Heintz, C.; Mair, W. You are what you host: Microbiome modulation of the aging process. Cell, 2014, 156(3), 408-411.
[http://dx.doi.org/10.1016/j.cell.2014.01.025] [PMID: 24485451]
[117]
Lockhart, S.R.; Iqbal, N.; Cleveland, A.A.; Farley, M.M.; Harrison, L.H.; Bolden, C.B.; Baughman, W.; Stein, B.; Hollick, R.; Park, B.J.; Chiller, T. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J. Clin. Microbiol., 2012, 50(11), 3435-3442.
[http://dx.doi.org/10.1128/JCM.01283-12] [PMID: 22875889]
[118]
Low, C-Y.; Rotstein, C. Emerging fungal infections in immunocompromised patients. F1000 Med. Rep., 2011, 3, 14.
[http://dx.doi.org/10.3410/M3-14] [PMID: 21876720]
[119]
Mousset, S.; Buchheidt, D.; Heinz, W.; Ruhnke, M.; Cornely, O.A.; Egerer, G.; Krüger, W.; Link, H.; Neumann, S.; Ostermann, H.; Panse, J.; Penack, O.; Rieger, C.; Schmidt-Hieber, M.; Silling, G.; Südhoff, T.; Ullmann, A.J.; Wolf, H-H.; Maschmeyer, G.; Böhme, A. Treatment of invasive fungal infections in cancer patients-updated recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann. Hematol., 2014, 93(1), 13-32.
[http://dx.doi.org/10.1007/s00277-013-1867-1] [PMID: 24026426]
[120]
Kaur, R.; Dhakad, M.S.; Goyal, R.; Bhalla, P.; Dewan, R. Spectrum of opportunistic fungal infections in HIV/AIDS patients in ertiary Care hospital in India. Can. J. Infect. Dis. Med. Microbiol., 2016, 20162373424
[http://dx.doi.org/10.1155/2016/2373424] [PMID: 27413381]
[121]
Angarone, M. Fungal infections in cancer patients. Infectious Complications in Cancer Patients; Stosor, V; Zembower, T.R., Ed.; Springer International Publishing: Cham, 2014, pp. 129-155.
[http://dx.doi.org/10.1007/978-3-319-04220-6_4]
[122]
Economides, M.P.; Ballester, L.Y.; Kumar, V.A.; Jiang, Y.; Tarrand, J.; Prieto, V.; Torres, H.A.; Kontoyiannis, D.P. Invasive mold infections of the central nervous system in patients with hematologic cancer or stem cell transplantation (2000-2016): Uncommon, with improved survival but still deadly often. J. Infect., 2017, 75(6), 572-580.
[http://dx.doi.org/10.1016/j.jinf.2017.09.011] [PMID: 28919347]
[123]
Chi, H-W.; Yang, Y-S.; Shang, S-T.; Chen, K-H.; Yeh, K-M.; Chang, F-Y.; Lin, J-C. Candida albicans versus non-albicans bloodstream infections: The comparison of risk factors and outcome. J. Microbiol. Immunol. Infect., 2011, 44(5), 369-375.
[http://dx.doi.org/10.1016/j.jmii.2010.08.010] [PMID: 21524971]
[124]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol., 2017, 7, 2173.
[http://dx.doi.org/10.3389/fmicb.2016.02173] [PMID: 28127295]
[125]
Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov., 2017, 16(9), 603-616.
[http://dx.doi.org/10.1038/nrd.2017.46] [PMID: 28496146]
[126]
Roemer, T.; Krysan, D.J. Antifungal drug development: Challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med., 2014, 4(5), 4.
[http://dx.doi.org/10.1101/cshperspect.a019703] [PMID: 24789878]
[127]
Villa, P.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Mahalingam, S.M.; Maruoka, K.; Thangamani, S. Benzimidazole tethered pyrrolo[3,4-b]quinoline with broad-spectrum activity against fungal pathogens. Bioorg. Med. Chem. Lett., 2019, 29(5), 729-733.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.006] [PMID: 30655213]
[128]
Sun, B.; Dong, Y.; Lei, K.; Wang, J.; Zhao, L.; Liu, M. Design, synthesis and biological evaluation of amide-pyridine derivatives as novel dual-target (SE, CYP51) antifungal inhibitors. Bioorg. Med. Chem., 2019, 27(12), 2427-2437.
[http://dx.doi.org/10.1016/j.bmc.2019.02.009] [PMID: 30765301]
[129]
Liu, N.; Zhong, H.; Tu, J.; Jiang, Z.; Jiang, Y.; Jiang, Y.; Jiang, Y.; Li, J.; Zhang, W.; Wang, Y.; Sheng, C. Discovery of simplified sampangine derivatives as novel fungal biofilm inhibitors. Eur. J. Med. Chem., 2018, 143, 1510-1523.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.043] [PMID: 29126739]
[130]
Shaikh, S.K.J.; Kamble, R.R.; Somagond, S.M.; Devarajegowda, H.C.; Dixit, S.R.; Joshi, S.D. Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses. Eur. J. Med. Chem., 2017, 128, 258-273.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.043] [PMID: 28192709]
[131]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10, 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[132]
Loeb, F.; Clark, W.M.; Coatney, G.R.; Coggeshall, L.T.; Dieuaide, F.R.; Dochez, A.R.; Hakansson, E.G.; Marshall, E.K., Jr; Marvel, C.S.; McCoy, O.R.; Sapero, J.J.; Sebrell, W.H.; Shannon, J.A.; Carden, G.A., Jr Activity of a new antimalarial agent, Chloroquine (SN 7618): Statement approved by the Board for Coordination of Malarial Studies. JAMA, 1946, 130, 1069-1070.
[http://dx.doi.org/10.1001/jama.1946.02870160015006]
[133]
Mushtaque, M. Shahjahan, Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: A review. Eur. J. Med. Chem., 2015, 90, 280-295.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.022] [PMID: 25461328]
[134]
Brasseur, P.; Druilhe, P.; Kouamouo, J.; Brandicourt, O.; Danis, M.; Moyou, S.R. High level of sensitivity to chloroquine of 72 Plasmodium falciparum isolates from southern Cameroon in January 1985. Am. J. Trop. Med. Hyg., 1986, 35(4), 711-716.
[http://dx.doi.org/10.4269/ajtmh.1986.35.711] [PMID: 3524286]
[135]
Bunnag, D.; Karbwang, J.; Na-Bangchang, K.; Thanavibul, A.; Chittamas, S.; Harinasuta, T. Quinine-tetracycline for multidrug resistant falciparum malaria. Southeast Asian J. Trop. Med. Public Health, 1996, 27(1), 15-18.
[PMID: 9031393]
[136]
Wells, T.N.; Hooft van Huijsduijnen, R. Ferroquine: Welcome to the next generation of antimalarials. Lancet Infect. Dis., 2015, 15(12), 1365-1366.
[http://dx.doi.org/10.1016/S1473-3099(15)00148-6] [PMID: 26342426]
[137]
Held, J.; Supan, C.; Salazar, C.L.; Tinto, H.; Bonkian, L.N.; Nahum, A.; Moulero, B.; Sié, A.; Coulibaly, B.; Sirima, S.B.; Siribie, M.; Otsyula, N.; Otieno, L.; Abdallah, A.M.; Kimutai, R.; Bouyou-Akotet, M.; Kombila, M.; Koiwai, K.; Cantalloube, C.; Din-Bell, C.; Djeriou, E.; Waitumbi, J.; Mordmüller, B.; Ter-Minassian, D.; Lell, B.; Kremsner, P.G. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: A phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis., 2015, 15(12), 1409-1419.
[http://dx.doi.org/10.1016/S1473-3099(15)00079-1] [PMID: 26342427]
[138]
Stringer, T.; Wiesner, L.; Smith, G.S. Ferroquine-derived polyamines that target resistant Plasmodium falciparum. Eur. J. Med. Chem., 2019, 179, 78-83.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.023] [PMID: 31238252]
[139]
AlFadly, E.D.; Elzahhar, P.A.; Tramarin, A.; Elkazaz, S.; Shaltout, H.; Abu-Serie, M.M.; Janockova, J.; Soukup, O.; Ghareeb, D.A.; El-Yazbi, A.F.; Rafeh, R.W.; Bakkar, N.Z.; Kobeissy, F.; Iriepa, I.; Moraleda, I.; Saudi, M.N.S.; Bartolini, M.; Belal, A.S.F. Tackling neuroinflammation and cholinergic deficit in Alzheimer’s disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur. J. Med. Chem., 2019, 167, 161-186.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.012] [PMID: 30771604]
[140]
da Silva, R.M.R.J.; Gandi, M.O.; Mendonça, J.S.; Carvalho, A.S.; Coutinho, J.P.; Aguiar, A.C.C.; Krettli, A.U.; Boechat, N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg. Med. Chem., 2019, 27(6), 1002-1008.
[http://dx.doi.org/10.1016/j.bmc.2019.01.044] [PMID: 30737133]
[141]
Rani, A.; Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Microwave-promoted facile access to 4-aminoquinoline-phthalimides: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2018, 143, 150-156.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.033] [PMID: 29174811]
[142]
Chopra, R.; Chibale, K.; Singh, K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur. J. Med. Chem., 2018, 148, 39-53.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.021] [PMID: 29454189]
[143]
Bonilla-Ramirez, L.; Rios, A.; Quiliano, M.; Ramirez-Calderon, G.; Beltrán-Hortelano, I.; Franetich, J.F.; Corcuera, L.; Bordessoulles, M.; Vettorazzi, A.; López de Cerain, A.; Aldana, I.; Mazier, D.; Pabón, A.; Galiano, S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem., 2018, 158, 68-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.063] [PMID: 30199706]
[144]
Latta, C.H.; Brothers, H.M.; Wilcock, D.M. Neuroinflammation in Alzheimer’s disease; A source of heterogeneity and target for personalized therapy. Neuroscience, 2015, 302, 103-111.
[http://dx.doi.org/10.1016/j.neuroscience.2014.09.061] [PMID: 25286385]
[145]
Arevalo-Rodriguez, I.; Smailagic, N.; Roqué, I. Figuls, M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-mental state examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev., 2015, 3CD010783
[PMID: 25740785]
[146]
Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res., 2011, 221(2), 334-340.
[http://dx.doi.org/10.1016/j.bbr.2009.12.044] [PMID: 20060018]
[147]
Dumas, J.A.; Newhouse, P.A. The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacol. Biochem. Behav., 2011, 99(2), 254-261.
[http://dx.doi.org/10.1016/j.pbb.2011.02.022] [PMID: 21382398]
[148]
Craig, L.A.; Hong, N.S.; McDonald, R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev., 2011, 35(6), 1397-1409.
[http://dx.doi.org/10.1016/j.neubiorev.2011.03.001] [PMID: 21392524]
[149]
Prati, F.; Bergamini, C.; Fato, R.; Soukup, O.; Korabecny, J.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L. Novel 8-hydroxyquinoline derivatives as multitarget compounds for the treatment of Alzheimer’s disease. ChemMedChem, 2016, 11(12), 1284-1295.
[http://dx.doi.org/10.1002/cmdc.201600014] [PMID: 26880501]
[150]
Chalupova, K.; Korabecny, J.; Bartolini, M.; Monti, B.; Lamba, D.; Caliandro, R.; Pesaresi, A.; Brazzolotto, X.; Gastellier, A-J.; Nachon, F.; Pejchal, J.; Jarosova, M.; Hepnarova, V.; Jun, D.; Hrabinova, M.; Dolezal, R.; Zdarova Karasova, J.; Mzik, M.; Kristofikova, Z.; Misik, J.; Muckova, L.; Jost, P.; Soukup, O.; Benkova, M.; Setnicka, V.; Habartova, L.; Chvojkova, M.; Kleteckova, L.; Vales, K.; Mezeiova, E.; Uliassi, E.; Valis, M.; Nepovimova, E.; Bolognesi, M.L.; Kuca, K. Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 168, 491-514.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.021] [PMID: 30851693]
[151]
Zhu, J.; Wang, L-N.; Cai, R.; Geng, S-Q.; Dong, Y-F.; Liu, Y-M. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg. Med. Chem. Lett., 2019, 29(11), 1325-1329.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.050] [PMID: 30956012]
[152]
Luo, W.; Lv, J-W.; Wang, T.; Zhang, Z-Y.; Guo, H-Y.; Song, Z-Y.; Wang, C-J.; Ma, J.; Chen, Y.P. Synthesis, in vitro and in vivo biological evaluation of novel graveolinine derivatives as potential anti-Alzheimer agents. Bioorg. Med. Chem., 2020, 28(1), 115-190.
[http://dx.doi.org/10.1016/j.bmc.2019.115190] [PMID: 31744779]
[153]
Chioua, M.; Buzzi, E.; Moraleda, I.; Iriepa, I.; Maj, M.; Wnorowski, A.; Giovannini, C.; Tramarin, A.; Portali, F.; Ismaili, L.; López-Alvarado, P.; Bolognesi, M.L.; Jóźwiak, K.; Menéndez, J.C.; Marco-Contelles, J.; Bartolini, M. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 155, 839-846.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.044] [PMID: 29958119]
[154]
Lopes, J.P.B.; Silva, L.; da Costa Franarin, G.; Antonio Ceschi, M.; Seibert Lüdtke, D.; Ferreira Dantas, R.; de Salles, C.M.C.; Paes Silva-Jr, F.; Roberto Senger, M.; Alvim Guedes, I.; Emmanuel Dardenne, L. Design, synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives. Bioorg. Med. Chem., 2018, 26(20), 5566-5577.
[http://dx.doi.org/10.1016/j.bmc.2018.10.003] [PMID: 30340901]
[155]
Rademacher, T.W.; Parekh, R.B.; Dwek, R.A. Glycobiology. Annu. Rev. Biochem., 1988, 57, 785-838.
[http://dx.doi.org/10.1146/annurev.bi.57.070188.004033] [PMID: 3052290]
[156]
Mohan, S.; Eskandari, R.; Pinto, B.M. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: A promising class of potential antidiabetic agents. Acc. Chem. Res., 2014, 47(1), 211-225.
[http://dx.doi.org/10.1021/ar400132g] [PMID: 23964564]
[157]
Maccari, R.; Ottanà, R. Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: New insights and future directions. J. Med. Chem., 2015, 58(5), 2047-2067.
[http://dx.doi.org/10.1021/jm500907a] [PMID: 25375908]
[158]
Tammali, R.; Srivastava, S.K.; Ramana, K.V. Targeting aldose reductase for the treatment of cancer. Curr. Cancer Drug Targets, 2011, 11(5), 560-571.
[http://dx.doi.org/10.2174/156800911795655958] [PMID: 21486217]
[159]
Dowarah, J.; Singh, V.P. Anti-diabetic drugs recent approaches and advancements. Bioorg. Med. Chem., 2020, 28(5)115263
[http://dx.doi.org/10.1016/j.bmc.2019.115263] [PMID: 32008883]
[160]
Taha, M.; Sultan, S.; Imran, S.; Rahim, F.; Zaman, K.; Wadood, A.; Ur Rehman, A.; Uddin, N.; Mohammed Khan, K. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem., 2019, 27(18), 4081-4088.
[http://dx.doi.org/10.1016/j.bmc.2019.07.035] [PMID: 31378594]
[161]
Crespo, I.; Giménez-Dejoz, J.; Porté, S.; Cousido-Siah, A.; Mitschler, A.; Podjarny, A.; Pratsinis, H.; Kletsas, D.; Parés, X.; Ruiz, F.X.; Metwally, K.; Farrés, J. Design, synthesis, structure-activity relationships and X-ray structural studies of novel 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as selective and potent inhibitors of human aldose reductase. Eur. J. Med. Chem., 2018, 152, 160-174.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.015] [PMID: 29705708]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy