Abstract
Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes.
Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.
Keywords: Retinoblastoma, RB, p130, p53, tumor suppressor gene, microbubbles, ultrasound, systemic targeted viral gene delivery, radiation, external beam radiation, apoptosis induction, prostate cancer.
Current Gene Therapy
Title:Microbubble-Assisted p53, RB, and p130 Gene Transfer in Combination with Radiation Therapy in Prostate Cancer
Volume: 13 Issue: 3
Author(s): Rounak Nande, Adelaide Greco, Michael S. Gossman, Jeffrey P. Lopez, Luigi Claudio, Marco Salvatore, Arturo Brunetti, James Denvir, Candace M. Howard and Pier Paolo Claudio
Affiliation:
Keywords: Retinoblastoma, RB, p130, p53, tumor suppressor gene, microbubbles, ultrasound, systemic targeted viral gene delivery, radiation, external beam radiation, apoptosis induction, prostate cancer.
Abstract: Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes.
Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.
Export Options
About this article
Cite this article as:
Nande Rounak, Greco Adelaide, Gossman Michael S., Lopez Jeffrey P., Claudio Luigi, Salvatore Marco, Brunetti Arturo, Denvir James, Howard Candace M. and Claudio Pier Paolo, Microbubble-Assisted p53, RB, and p130 Gene Transfer in Combination with Radiation Therapy in Prostate Cancer, Current Gene Therapy 2013; 13 (3) . https://dx.doi.org/10.2174/1566523211313030001
DOI https://dx.doi.org/10.2174/1566523211313030001 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Protein Tyrosine Phosphatases, New Targets for Cancer Therapy
Current Cancer Drug Targets Synthesis of Compounds as Melatonin Agonists and Antagonists
Mini-Reviews in Medicinal Chemistry Molecule of the Month
Current Topics in Medicinal Chemistry Improved Candidate Biomarker Detection Based on Mass Spectrometry Data Using the Hilbert-Huang Transform
Protein & Peptide Letters Molecular Chaperone ORP150 in ER Stress–related Diseases
Current Pharmaceutical Design Anti-Tumour Effects of Bisphosphonates - What have we Learned from In Vivo Models?
Current Cancer Drug Targets Effects of Tea Polyphenols and their Polymers on MAPK Signaling Pathways in Cancer Research
Mini-Reviews in Medicinal Chemistry A New Era of Immunotherapy in Prostate Cancer
Current Molecular Pharmacology A Functional Proteomic Approach to the Identification and Characterization of Protein Composition in Wheat Leaf
Current Proteomics Neuroimmune Interactions and Psychologycal Stress Induced by Cohabitation with a Sick Partner: A Review
Current Pharmaceutical Design Overcoming Endocrine Resistance in Breast Cancer
Current Cancer Drug Targets Regulation of Death and Growth Signals at the Plasma Membrane by Sphingomyelin Synthesis: Implications for Hematological Malignancies
Recent Patents on Anti-Cancer Drug Discovery Synthesis and Screening of Pro-apoptotic and Angio-inhibitory Activity of Novel Benzisoxazole Derivatives both In Vitro and In Vivo
Anti-Cancer Agents in Medicinal Chemistry Osteoblast Differentiation and Control by Vitamin D and Vitamin D Metabolites
Current Pharmaceutical Design Hypothalamic Glucose Sensing and Glycaemic Disease
Current Diabetes Reviews Omega-3 Polyunsaturated Fatty Acids and Cancer
Anti-Cancer Agents in Medicinal Chemistry Anticancer Drug Design Using Scaffolds of β-Lactams, Sulfonamides, Quinoline, Quinoxaline and Natural Products. Drugs Advances in Clinical Trials
Current Medicinal Chemistry S-Layer Proteins as Key Components of a Versatile Molecular Construction Kit for Biomedical Nanotechnology
Mini-Reviews in Medicinal Chemistry Targeting Hsp90 in Non-Cancerous Maladies
Current Topics in Medicinal Chemistry Predicating Candidate Cancer-Associated Genes in the Human Signaling Network Using Centrality
Current Bioinformatics