Abstract
Epigenetics pertains to heritable alterations in gene expression that do not involve modification of the underlying genomic DNA sequence. Historically, the study of epigenetic mechanisms has focused on DNA methylation and histone modifications, but the concept of epigenetics has been more recently extended to include microRNAs as well. Epigenetic patterning is modified by environmental exposures and may be a mechanistic link between environmental risk factors and the development of disease. Epigenetic dysregulation has been associated with a variety of human diseases, including cancer, neurological disorders, and autoimmune diseases. In this review, we consider the role of epigenetics in common ocular diseases, with a particular focus on DNA methylation and microRNAs. DNA methylation is a critical regulator of gene expression in the eye and is necessary for the proper development and postmitotic survival of retinal neurons. Aberrant methylation patterns have been associated with age-related macular degeneration, susceptibility to oxidative stress, cataract, pterygium, and retinoblastoma. Changes in histone modifications have also been observed in experimental models of diabetic retinopathy and glaucoma. The expression levels of specific microRNAs have also been found to be altered in the context of ocular inflammation, retinal degeneration, pathological angiogenesis, diabetic retinopathy, and ocular neoplasms. Although the complete spectrum of epigenetic modifications remains to be more fully explored, it is clear that epigenetic dysregulation is an important contributor to common ocular diseases and may be a relevant therapeutic target.
Keywords: Age-related macular generation, Cataract, Diabetic retinopathy, Epigenetics, DNA methylation, microRNA.
Current Genomics
Title:Epigenetics in Ocular Diseases
Volume: 14 Issue: 3
Author(s): Melissa M. Liu, Chi-Chao Chan and Jingsheng Tuo
Affiliation:
Keywords: Age-related macular generation, Cataract, Diabetic retinopathy, Epigenetics, DNA methylation, microRNA.
Abstract: Epigenetics pertains to heritable alterations in gene expression that do not involve modification of the underlying genomic DNA sequence. Historically, the study of epigenetic mechanisms has focused on DNA methylation and histone modifications, but the concept of epigenetics has been more recently extended to include microRNAs as well. Epigenetic patterning is modified by environmental exposures and may be a mechanistic link between environmental risk factors and the development of disease. Epigenetic dysregulation has been associated with a variety of human diseases, including cancer, neurological disorders, and autoimmune diseases. In this review, we consider the role of epigenetics in common ocular diseases, with a particular focus on DNA methylation and microRNAs. DNA methylation is a critical regulator of gene expression in the eye and is necessary for the proper development and postmitotic survival of retinal neurons. Aberrant methylation patterns have been associated with age-related macular degeneration, susceptibility to oxidative stress, cataract, pterygium, and retinoblastoma. Changes in histone modifications have also been observed in experimental models of diabetic retinopathy and glaucoma. The expression levels of specific microRNAs have also been found to be altered in the context of ocular inflammation, retinal degeneration, pathological angiogenesis, diabetic retinopathy, and ocular neoplasms. Although the complete spectrum of epigenetic modifications remains to be more fully explored, it is clear that epigenetic dysregulation is an important contributor to common ocular diseases and may be a relevant therapeutic target.
Export Options
About this article
Cite this article as:
M. Liu Melissa, Chan Chi-Chao and Tuo Jingsheng, Epigenetics in Ocular Diseases, Current Genomics 2013; 14 (3) . https://dx.doi.org/10.2174/1389202911314030002
DOI https://dx.doi.org/10.2174/1389202911314030002 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Combinations of Plant Polyphenols & Anti-Cancer Molecules: A Novel Treatment Strategy for Cancer Chemotherapy
Anti-Cancer Agents in Medicinal Chemistry The Cancer Hygiene Hypothesis: From Theory to Therapeutic Helminths
Current Cancer Therapy Reviews The Immunoregulatory Protein Human B7H3 is a Tumor-Associated Antigen that Regulates Tumor Cell Migration and Invasion
Current Cancer Drug Targets Genome-Wide Integrated Analyses of Androgen Receptor Signaling in Prostate Cancer Based on High-Throughput Technology
Current Drug Targets Therapeutically Targeting MicroRNAs in Liver Cancer
Current Pharmaceutical Design An Update on the Other Telomerase Inhibitors: Non-G-Quadruplex Interactive Agent, Non-Antisense, Non-Reverse Transcriptase Telomerase Inhibitors
Medicinal Chemistry Reviews - Online (Discontinued) The Human L1 Element: A Potential Biomarker in Cancer Prognosis, Current Status and Future Directions
Current Molecular Medicine Cancer and Stem Cells
Current Cancer Therapy Reviews Bridging Indigenous Knowledge and Scientific Evidence for Pharmacological Studies of <i>Phaleria macrocarpa</i>: A Systematic Review
The Natural Products Journal Direct Evidence on the Immune-Mediated Spontaneous Regression of Human Cancer: An Incentive for Pharmaceutical Companies to Develop a Novel Anti-Cancer Vaccine
Current Pharmaceutical Design Targeting Sarcomas: Novel Biological Agents and Future Perspectives
Current Drug Targets Integrated, Molecular Engineering Approaches to Develop Prostate Cancer Gene Therapy
Current Gene Therapy Understanding FOXO, New Views on Old Transcription Factors
Current Cancer Drug Targets Inhibition of RET Activated Pathways: Novel Strategies for Therapeutic Intervention in Human Cancers
Current Pharmaceutical Design Anti-Vasopermeability Effects of PEDF in Retinal-Renal Disorders
Current Molecular Medicine Assessment of Bishosphonate Activity In Vitro
Current Pharmaceutical Design Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease
Current Medicinal Chemistry Genomic Sequencing of Key Genes in Mouse Pancreatic Cancer Cells
Current Molecular Medicine Gankyrin Oncoprotein: Structure, Function, and Involvement in Cancer
Current Chemical Biology Genes and Proteins Governing the Cellular Sensitivity to HSP90 Inhibitors: A Mechanistic Perspective
Current Cancer Drug Targets