Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review

Author(s): Pouran Makhdoumi, Hooshyar Hossini*, Ghulam Md Ashraf * and Mojtaba Limoee

Volume 17, Issue 3, 2019

Page: [201 - 213] Pages: 13

DOI: 10.2174/1570159X16666180803164238

Price: $65

Abstract

Aniline exposure leads to neuron and spleen toxicity specifically and makes diverse neurological effects and sarcoma that is defined by splenomegaly, hyperplasia, and fibrosis and tumors formation at the end. However, the molecular mechanism(s) of aniline-induced spleen toxicity is not understood well, previous studies have represented that aniline exposure results in iron overload and initiation of oxidative/nitrosative disorder stress and oxidative damage to proteins, lipids and DNA subsequently, in the spleen. Elevated expression of cyclins, cyclin-dependent kinases (CDKs) and phosphorylation of pRB protein along with increases in A, B and CDK1 as a cell cycle regulatory proteins cyclins, and reduce in CDK inhibitors (p21 and p27) could be critical in cell cycle regulation, which contributes to tumorigenic response after aniline exposure. Aniline-induced splenic toxicity is correlated to oxidative DNA damage and initiation of DNA glycosylases expression (OGG1, NEIL1/2, NTH1, APE1 and PNK) for removal of oxidative DNA lesions in rat. Oxidative stress causes transcriptional up-regulation of fibrogenic/inflammatory factors (cytokines, IL- 1, IL-6 and TNF-α) via induction of nuclear factor-kappa B, AP-1 and redox-sensitive transcription factors, in aniline treated-rats. The upstream signalling events as phosphorylation of IκB kinases (IKKα and IKKβ) and mitogen-activated protein kinases (MAPKs) could potentially be the causes of activation of NF-κB and AP-1. All of these events could initiate a fibrogenic and/or tumorigenic response in the spleen. The spleen toxicity of aniline is studied more and the different mechanisms are suggested. This review summarizes those events following aniline exposure that induce spleen toxicity and neurotoxicity.

Keywords: Aniline, oxidative stress, neurotoxicity, spleen toxicity, neurology, pharmacology.

Graphical Abstract

[1]
Bellussi, G.; Bohnet, M.; Bus, J.; Drauz, K.; Faulhammer, H.; Greim, H.; Jäckel, K.; Karst, U.; Klaffke, W.; Kleemann, A. Ullmann’s Encyclopedia of Industrial Chemistry; Weinheim, Germany)( Wiley-VCH Verlag GmbH & Co. KGaA, 2000
[2]
Modick, H.; Weiss, T.; Dierkes, G.; Brüning, T.; Koch, H.M. Ubiquitous presence of paracetamol in human urine: sources and implications. Reproduction, 2014, 147(4), R105-R117.
[http://dx.doi.org/dx. doi.org/10.1530/REP-13-0527] [PMID: 24451225]
[3]
Khan, M.F.; Kannan, S.; Wang, J. Activation of transcription factor AP-1 and mitogen-activated protein kinases in aniline-induced splenic toxicity. Toxicol. Appl. Pharmacol., 2006, 210(1-2), 86-93.
[http://dx.doi.org/10.1016/j.taap.2005.08.006] [PMID: 16169568]
[4]
Pauluhn, J. Subacute inhalation toxicity of aniline in rats: analysis of time-dependence and concentration-dependence of hematotoxic and splenic effects. Toxicol. Sci., 2004, 81(1), 198-215.
[http://dx.doi.org/dx. doi.org/10.1093/toxsci/kfh187] [PMID: 15187235]
[5]
Steiniger, B.; Barth, P. Microanatomy and function of the spleen; Adv. Anal. Embryol. Cell., 1999, 151(iii-ix), 1-101.
[6]
Chatterjee, C. Human Physiology; Medical allied Agency, 2000, Vol. 2.
[7]
Khairnar, U.; Upaganlawar, A.; Upasani, C. Ameliorative effect of chronic supplementation of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Scientifica (Cairo), 2016, 2016, 1-9.
[8]
Wang, J.; Wang, G.; Ansari, G.A.; Khan, M.F. Activation of oxidative stress-responsive signaling pathways in early splenotoxic response of aniline. Toxicol. Appl. Pharmacol., 2008, 230(2), 227-234.
[http://dx.doi.org/10.1016/j.taap.2008.02.022] [PMID: 18420242]
[9]
Khan, M.F.; Wu, X.; Boor, P.J.; Ansari, G.A. Oxidative modification of lipids and proteins in aniline-induced splenic toxicity. Toxicol. Sci., 1999, 48(1), 134-140.
[http://dx.doi.org/10.1093/toxsci/48.1.134] [PMID: 10330693]
[10]
Khan, M.F.; Wu, X.; Kaphalia, B.S.; Boor, P.J.; Ansari, G.A. Nitrotyrosine formation in splenic toxicity of aniline. Toxicology, 2003, 194(1-2), 95-102.
[http://dx.doi.org/10.1016/j.tox.2003.08.008] [PMID: 14636699]
[11]
Wu, X.; Kannan, S.; Ramanujam, V.M.; Khan, M.F. Iron release and oxidative DNA damage in splenic toxicity of aniline. J. Toxicol. Environ. Health A, 2005, 68(8), 657-666.
[http://dx.doi.org/ 10.1080/15287390590921757] [PMID: 15901093]
[12]
Wang, J.; Ma, H.; Boor, P.J.; Ramanujam, V.M.; Ansari, G.A.; Khan, M.F. Up-regulation of heme oxygenase-1 in rat spleen after aniline exposure. Free Radic. Biol. Med., 2010, 48(4), 513-518.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.027] [PMID: 19969074]
[13]
Khan, M.F.; Boor, P.J.; Kaphalia, B.S.; Alcock, N.W.; Ansari, G.A. Hematopoietic toxicity of linoleic acid anilide: importance of aniline. Fundam. Appl. Toxicol., 1995, 25(2), 224-232.
[http://dx.doi.org/dx.doi. org/10.1006/faat.1995.1058] [PMID: 7665006]
[14]
Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 7915-7922.
[http://dx.doi.org/10.1073/pnas.90.17.7915] [PMID: 8367443]
[15]
Götz, M.E.; Künig, G.; Riederer, P.; Youdim, M.B. Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther., 1994, 63(1), 37-122.
[http://dx.doi.org/10.1016/0163-7258 (94)90055-8] [PMID: 7972344]
[16]
Labont, H. Introduction into the study of the antioxydants and the structures of single electrons in biology-1st part-General study. Agressologie, 1960, 1, 63-79.
[17]
Okazaki, Y.; Yamashita, K.; Sudo, M.; Tsuchitani, M.; Narama, I.; Yamaguchi, R.; Tateyama, S. Neurotoxicity induced by a single oral dose of aniline in rats. J. Vet. Med. Sci., 2001, 63(5), 539-546.
[http://dx.doi.org/10.1292/jvms.63.539] [PMID: 11411500]
[18]
Khan, M.F.; Kaphalia, B.S.; Boor, P.J.; Ansari, G.A. Subchronic toxicity of aniline hydrochloride in rats. Arch. Environ. Contam. Toxicol., 1993, 24(3), 368-374.
[http://dx.doi.org/10.1007/BF01128736] [PMID: 8470936]
[19]
Khan, M.F.; Kaphalia, B.S.; Ansari, G.A. Erythrocyte-aniline interaction leads to their accumulation and iron deposition in rat spleen. J. Toxicol. Environ. Health, 1995, 44(4), 415-421.
[http://dx.doi.org/dx.doi. org/10.1080/15287399509531970] [PMID: 7723074]
[20]
Khan, R.; Upaganlawar, A.B.; Upasani, C. Protective effects of dioscorea alata L. In aniline exposure-induced spleen toxicity in rats: a biochemical study. Toxicol. Int., 2014, 21(3), 294-299.
[http://dx.doi.org/10.4103/0971-6580.155371] [PMID: 25948969]
[21]
Khan, M.F.; Boor, P.J.; Gu, Y.; Alcock, N.W.; Ansari, G.A. Oxidative stress in the splenotoxicity of aniline. Fundam. Appl. Toxicol., 1997, 35(1), 22-30.
[http://dx.doi.org/10.1006/faat.1996.2259] [PMID: 9024670]
[22]
Stadtman, E.R.; Oliver, C.N. Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem., 1991, 266(4), 2005-2008.
[PMID: 1989966]
[23]
Murphy, M.E.; Kehrer, J.P. Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem. J., 1989, 260(2), 359-364.
[http://dx.doi.org/dx. doi.org/10.1042/bj2600359] [PMID: 2764876]
[24]
Stadtman, E.R. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic. Biol. Med., 1990, 9(4), 315-325.
[http://dx.doi.org/10.1016/0891-5849(90)90006-5] [PMID: 2283087]
[25]
Stadtman, E.R. Protein oxidation and aging. Science, 1992, 257(5074), 1220-1224.
[http://dx.doi.org/10.1126/science.1355616] [PMID: 1355616]
[26]
Khan, M.F.; Wu, X.; Alcock, N.W.; Boor, P.J.; Ansari, G.A. Iron exacerbates aniline-associated splenic toxicity. J. Toxicol. Environ. Health A, 1999, 57(3), 173-184.
[http://dx.doi.org/10.1080/009841099157746] [PMID: 10376884]
[27]
Khan, M.F.; Wu, X.; Ansari, G.A.; Boor, P.J. Malondialdehyde-protein adducts in the spleens of aniline-treated rats: immunochemical detection and localization. J. Toxicol. Environ. Health A, 2003, 66(1), 93-102.
[http://dx.doi.org/10.1080/15287390306464] [PMID: 12587293]
[28]
Khan, M.F.; Wu, X.; Ansari, G.A. Contribution of nitrosobenzene to splenic toxicity of aniline. J. Toxicol. Environ. Health A, 2000, 60(4), 263-273.
[http://dx.doi.org/10.1080/00984100050027815] [PMID: 10914691]
[29]
Linpisarn, S.; Satoh, K.; Mikami, T.; Orimo, H.; Shinjo, S.; Yoshino, Y. Effects of iron on lipid peroxidation. Int. J. Hematol., 1991, 54(3), 181-188.
[PMID: 1747452]
[30]
Minotti, G. Sources and role of iron in lipid peroxidation. Chem. Res. Toxicol., 1993, 6(2), 134-146.
[http://dx.doi.org/10.1021/tx00032a001] [PMID: 8477003]
[31]
Cerutti, P.A. Prooxidant states and tumor promotion. Science, 1985, 227(4685), 375-381.
[http://dx.doi.org/10.1126/science. 2981433] [PMID: 2981433]
[32]
Mahmoodi, H.; Hadley, M.; Chang, Y-X.; Draper, H.H. Increased formation and degradation of malondialdehyde-modified proteins under conditions of peroxidative stress. Lipids, 1995, 30(10), 963-966.
[http://dx.doi.org/10.1007/BF02537490] [PMID: 8538386]
[33]
Stone, K.; Ksebati, M.B.; Marnett, L.J. Investigation of the adducts formed by reaction of malondialdehyde with adenosine. Chem. Res. Toxicol., 1990, 3(1), 33-38.
[http://dx.doi.org/10.1021/tx00013a006] [PMID: 2131822]
[34]
Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4003-4008.
[http://dx.doi.org/dx.doi. org/10.1073/pnas.0307446101] [PMID: 15020765]
[35]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[36]
Abello, N.; Kerstjens, H.A.; Postma, D.S.; Bischoff, R. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J. Proteome Res., 2009, 8(7), 3222-3238.
[http://dx.doi.org/10.1021/pr900039c] [PMID: 19415921]
[37]
Monteiro, H.P.; Arai, R.J.; Travassos, L.R. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling., Antioxidants &. Redox Signaling, 2008, 10, 843-890.
[http://dx.doi.org/dx.doi. org/10.1089/ars.2007.1853]
[38]
Dalle-Donne, I.; Scaloni, A.; Giustarini, D.; Cavarra, E.; Tell, G.; Lungarella, G.; Colombo, R.; Rossi, R.; Milzani, A. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom. Rev., 2005, 24(1), 55-99.
[http://dx.doi.org/10.1002/mas.20006] [PMID: 15389864]
[39]
Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem., 2006, 52(4), 601-623.
[http://dx.doi.org/10.1373/clinchem.2005. 061408] [PMID: 16484333]
[40]
Miyagi, M.; Sakaguchi, H.; Darrow, R.M.; Yan, L.; West, K.A.; Aulak, K.S.; Stuehr, D.J.; Hollyfield, J.G.; Organisciak, D.T.; Crabb, J.W. Evidence that light modulates protein nitration in rat retina. Mol. Cell. Proteomics, 2002, 1(4), 293-303.
[http://dx.doi.org/dx.doi. org/10.1074/mcp.M100034-MCP200] [PMID: 12096111]
[41]
Fan, X.; Wang, J.; Soman, K.V.; Ansari, G.A.; Khan, M.F. Aniline-induced nitrosative stress in rat spleen: proteomic identification of nitrated proteins. Toxicol. Appl. Pharmacol., 2011, 255(1), 103-112.
[http://dx.doi.org/10.1016/j.taap.2011.06.005] [PMID: 21708182]
[42]
Chiu, J.; Dawes, I.W. Redox control of cell proliferation. Trends Cell Biol., 2012, 22(11), 592-601.
[http://dx.doi.org/10.1016/j.tcb.2012.08.002] [PMID: 22951073]
[43]
Kakehashi, A.; Wei, M.; Fukushima, S.; Wanibuchi, H. Oxidative stress in the carcinogenicity of chemical carcinogens. Cancers (Basel), 2013, 5(4), 1332-1354.
[http://dx.doi.org/10.3390/cancers 5041332] [PMID: 24202448]
[44]
Park, D-H.; Shin, J.W.; Park, S-K.; Seo, J-N.; Li, L.; Jang, J-J.; Lee, M-J. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat. Toxicol. Lett., 2009, 191(2-3), 321-326.
[http://dx.doi.org/10.1016/j.toxlet.2009.09.016] [PMID: 19822196]
[45]
Murray, A.W. Recycling the cell cycle: cyclins revisited. Cell, 2004, 116(2), 221-234.
[http://dx.doi.org/10.1016/S0092-8674(03) 01080-8] [PMID: 14744433]
[46]
Chulu, J.L.; Liu, H.J. Recent patents on cell cycle regulatory proteins. Recent Pat. Biotechnol., 2009, 3(1), 1-9.
[http://dx.doi.org/ 10.2174/187220809787172614] [PMID: 19149717]
[47]
Pardee, A.B. G1 events and regulation of cell proliferation. Science, 1989, 246(4930), 603-608.
[48]
Malumbres, M.; Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer, 2001, 1(3), 222-231.
[http://dx.doi.org/10.1038/35106065] [PMID: 11902577]
[49]
Lundberg, A.S.; Weinberg, R.A. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol., 1998, 18(2), 753-761.
[http://dx.doi.org/10.1128/MCB.18.2.753] [PMID: 9447971]
[50]
Lundberg, A.S.; Weinberg, R.A. Control of the cell cycle and apoptosis. Eur. J. Cancer, 1999, 35(4), 531-539.
[http://dx.doi.org/10. 1016/S0959-8049(99)00046-5] [PMID: 10492624]
[51]
Sherr, C.J.; Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev., 1999, 13(12), 1501-1512.
[http://dx.doi.org/10.1101/gad.13.12.1501] [PMID: 10385618]
[52]
Sherr, C.J. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res., 2000, 60(14), 3689-3695.
[PMID: 10919634]
[53]
Harbour, J.W.; Luo, R.X.; Dei Santi, A.; Postigo, A.A.; Dean, D.C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 1999, 98(6), 859-869.
[http://dx.doi.org/10.1016/S0092-8674(00)81519-6] [PMID: 10499802]
[54]
Stuart-Harris, R.; Caldas, C.; Pinder, S.E.; Pharoah, P. Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast, 2008, 17(4), 323-334.
[http://dx.doi.org/10.1016/j.breast.2008.02.002] [PMID: 18455396]
[55]
Wang, J.; Wang, G.; Ma, H.; Khan, M.F. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen. Toxicol. Appl. Pharmacol., 2011, 250(2), 213-220.
[http://dx.doi.org/10.1016/j.taap.2010.10.026] [PMID: 21070798]
[56]
Korkolopoulou, P.; Givalos, N.; Saetta, A.; Goudopoulou, A.; Gakiopoulou, H.; Thymara, I.; Thomas-Tsagli, E.; Patsouris, E. Minichromosome maintenance proteins 2 and 5 expression in muscle-invasive urothelial cancer: a multivariate survival study including proliferation markers and cell cycle regulators. Hum. Pathol., 2005, 36(8), 899-907.
[http://dx.doi.org/10.1016/j.humpath.2005. 06.008] [PMID: 16112007]
[57]
Lei, M. The MCM complex: its role in DNA replication and implications for cancer therapy. Curr. Cancer Drug Targets, 2005, 5(5), 365-380.
[http://dx.doi.org/10.2174/1568009054629654] [PMID: 16101384]
[58]
Menon, S.G.; Goswami, P.C. A redox cycle within the cell cycle: ring in the old with the new. Oncogene, 2007, 26(8), 1101-1109.
[http://dx.doi.org/10.1038/sj.onc.1209895] [PMID: 16924237]
[59]
Sicinska, E.; Aifantis, I.; Le Cam, L.; Swat, W.; Borowski, C.; Yu, Q.; Ferrando, A.A.; Levin, S.D.; Geng, Y.; von Boehmer, H.; Sicinski, P. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell, 2003, 4(6), 451-461.
[http://dx.doi.org/ dx.doi.org/10.1016/S1535-6108(03)00301-5] [PMID: 14706337]
[60]
Stark, G.R.; Taylor, W.R. Control of the G2/M transition. Mol. Biotechnol., 2006, 32(3), 227-248.
[http://dx.doi.org/10.1385/MB: 32:3:227] [PMID: 16632889]
[61]
Löbrich, M.; Jeggo, P.A. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat. Rev. Cancer, 2007, 7(11), 861-869.
[http://dx.doi.org/10.1038/nrc2248] [PMID: 17943134]
[62]
Iliakis, G.; Wang, Y.; Guan, J.; Wang, H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene, 2003, 22(37), 5834-5847.
[http://dx.doi.org/10.1038/sj.onc.1206682] [PMID: 12947390]
[63]
Wolgemuth, D.J.; Manterola, M.; Vasileva, A. Role of cyclins in controlling progression of mammalian spermatogenesis. Int. J. Dev. Biol., 2013, 57(2-4), 159-168.
[http://dx.doi.org/10.1387/ijdb. 130047av] [PMID: 23784826]
[64]
Wang, J.; Wang, G.; Khan, M.F. Disorder of G2-M checkpoint control in aniline-induced cell proliferation in rat spleen. PLoS One, 2015, 10(7), e0131457.
[http://dx.doi.org/10.1371/journal.pone. 0131457] [PMID: 26192324]
[65]
Bueno, M.J.; Malumbres, M. MicroRNAs and the cell cycle. Biochimica et Biophysica Acta (BBA)-. Mol. Basis Disease, 2011, 1812, 592-601.
[http://dx.doi.org/10.1016/j.bbadis.2011.02.002]
[66]
Hillman, G.G.; Singh-Gupta, V. Soy isoflavones sensitize cancer cells to radiotherapy. Free Radic. Biol. Med., 2011, 51(2), 289-298.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.039] [PMID: 21605661]
[67]
Toyokuni, S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic. Biol. Med., 1996, 20(4), 553-566.
[http://dx.doi.org/dx.doi. org/10.1016/0891-5849(95)02111-6] [PMID: 8904296]
[68]
Ferrali, M.; Signorini, C.; Sugherini, L.; Pompella, A.; Lodovici, M.; Caciotti, B.; Ciccoli, L.; Comporti, M. Release of free, redox-active iron in the liver and DNA oxidative damage following phenylhydrazine intoxication. Biochem. Pharmacol., 1997, 53(11), 1743-1751.
[http://dx.doi.org/10.1016/S0006-2952(97)82456-2] [PMID: 9264328]
[69]
Hartwig, A.; Klyszcz-Nasko, H.; Schlepegrell, R.; Beyersmann, D. Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchanges. Carcinogenesis, 1993, 14(1), 107-112.
[http://dx.doi.org/10.1093/carcin/14.1.107] [PMID: 8425256]
[70]
Feig, D.I.; Reid, T.M.; Loeb, L.A. Reactive oxygen species in tumorigenesis. Cancer Res., 1994, 54(7)(Suppl.), 1890s-1894s.
[PMID: 8137306]
[71]
Ma, H.; Wang, J.; Abdel-Rahman, S.Z.; Boor, P.J.; Khan, M.F. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline. Toxicol. Appl. Pharmacol., 2008, 233(2), 247-253.
[http://dx.doi.org/10.1016/j.taap.2008.08.010] [PMID: 18793663]
[72]
Marcon, G.; Tell, G.; Perrone, L.; Garbelli, R.; Quadrifoglio, F.; Tagliavini, F.; Giaccone, G. APE1/Ref-1 in Alzheimer’s disease: an immunohistochemical study. Neurosci. Lett., 2009, 466(3), 124-127.
[http://dx.doi.org/10.1016/j.neulet.2009.09.039] [PMID: 19782121]
[73]
Kang, J.O.; Jones, C.; Brothwell, B. Toxicity associated with iron overload found in hemochromatosis: possible mechanism in a rat model. Clin. Lab. Sci., 1998, 11(6), 350-354.
[PMID: 10345501]
[74]
Boiteux, S.; Radicella, J.P. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys., 2000, 377(1), 1-8.
[http://dx.doi.org/ 10.1006/abbi.2000.1773] [PMID: 10775435]
[75]
Liu, M.; Bandaru, V.; Bond, J.P.; Jaruga, P.; Zhao, X.; Christov, P.P.; Burrows, C.J.; Rizzo, C.J.; Dizdaroglu, M.; Wallace, S.S. The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 4925-4930.
[http://dx.doi.org/10.1073/pnas.0908307107] [PMID: 20185759]
[76]
Altieri, F.; Grillo, C.; Maceroni, M.; Chichiarelli, S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid. Redox Signal., 2008, 10, 891-938.
[http://dx.doi.org/dx.doi. org/10.1089/ars.2007.1830]
[77]
Mori, H.; Ouchida, R.; Hijikata, A.; Kitamura, H.; Ohara, O.; Li, Y.; Gao, X.; Yasui, A.; Lloyd, R.S.; Wang, J-Y. Deficiency of the oxidative damage-specific DNA glycosylase NEIL1 leads to reduced germinal center B cell expansion. DNA Repair (Amst.), 2009, 8(11), 1328-1332.
[http://dx.doi.org/10.1016/j.dnarep.2009. 08.007] [PMID: 19782007]
[78]
Hartwig, A.; Schlepegrell, R. Induction of oxidative DNA damage by ferric iron in mammalian cells. Carcinogenesis, 1995, 16(12), 3009-3013.
[http://dx.doi.org/10.1093/carcin/16.12.3009] [PMID: 8603477]
[79]
Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 2003, 17(10), 1195-1214.
[http://dx.doi.org/10.1096/fj.02-0752rev] [PMID: 12832285]
[80]
Gackowski, D.; Speina, E.; Zielinska, M.; Kowalewski, J.; Rozalski, R.; Siomek, A.; Paciorek, T.; Tudek, B.; Olinski, R. Products of oxidative DNA damage and repair as possible biomarkers of susceptibility to lung cancer. Cancer Res., 2003, 63(16), 4899-4902.
[PMID: 12941813]
[81]
Bhakat, K.K.; Mokkapati, S.K.; Boldogh, I.; Hazra, T.K.; Mitra, S. Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol. Cell. Biol., 2006, 26(5), 1654-1665.
[http://dx.doi.org/10.1128/MCB.26.5.1654-1665.2006] [PMID: 16478987]
[82]
Dou, H.; Mitra, S.; Hazra, T.K. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J. Biol. Chem., 2003, 278(50), 49679-49684.
[http://dx.doi.org/ 10.1074/jbc.M308658200] [PMID: 14522990]
[83]
Dou, H.; Theriot, C.A.; Das, A.; Hegde, M.L.; Matsumoto, Y.; Boldogh, I.; Hazra, T.K.; Bhakat, K.K.; Mitra, S. Interaction of the human DNA glycosylase NEIL1 with proliferating cell nuclear antigen. The potential for replication-associated repair of oxidized bases in mammalian genomes. J. Biol. Chem., 2008, 283(6), 3130-3140.
[http://dx.doi.org/10.1074/jbc.M709186200] [PMID: 18032376]
[84]
Hailer, M.K.; Slade, P.G.; Martin, B.D.; Rosenquist, T.A.; Sugden, K.D. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst.), 2005, 4(1), 41-50.
[http://dx.doi.org/10.1016/j.dnarep.2004.07.006] [PMID: 15533836]
[85]
Ma, H.; Wang, J.; Abdel-Rahman, S.Z.; Hazra, T.K.; Boor, P.J.; Khan, M.F. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity. Toxicol. Appl. Pharmacol., 2011, 251(1), 1-7.
[http://dx.doi.org/10.1016/j.taap.2010.12.001] [PMID: 21145906]
[86]
Ma, H.; Wang, J.; Abdel-Rahman, S.Z.; Boor, P.J.; Khan, M.F. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure. Toxicol. Appl. Pharmacol., 2013, 267(3), 276-283.
[http://dx.doi.org/10.1016/j.taap.2013.01. 005] [PMID: 23352893]
[87]
Hazra, T.K.; Das, A.; Das, S.; Choudhury, S.; Kow, Y.W.; Roy, R. Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair (Amst.), 2007, 6(4), 470-480.
[http://dx.doi.org/ 10.1016/j.dnarep.2006.10.011] [PMID: 17116430]
[88]
Goto, M.; Shinmura, K.; Igarashi, H.; Kobayashi, M.; Konno, H.; Yamada, H.; Iwaizumi, M.; Kageyama, S.; Tsuneyoshi, T.; Tsugane, S.; Sugimura, H. Altered expression of the human base excision repair gene NTH1 in gastric cancer. Carcinogenesis, 2009, 30(8), 1345-1352.
[http://dx.doi.org/10.1093/carcin/bgp108] [PMID: 19414504]
[89]
Yan, J.; Hales, B.F. Activator protein-1 (AP-1) DNA binding activity is induced by hydroxyurea in organogenesis stage mouse embryos. Toxicol. Sci., 2005, 85(2), 1013-1023.
[http://dx.doi.org/ 10.1093/toxsci/kfi148] [PMID: 15772364]
[90]
Baldwin, A.S., Jr The NF-κ B and I κ B proteins: new discoveries and insights. Annu. Rev. Immunol., 1996, 14, 649-683.
[http://dx.doi.org/dx. doi.org/10.1146/annurev.immunol.14.1.649] [PMID: 8717528]
[91]
Kapahi, P.; Takahashi, T.; Natoli, G.; Adams, S.R.; Chen, Y.; Tsien, R.Y.; Karin, M. Inhibition of NF-κ B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J. Biol. Chem., 2000, 275(46), 36062-36066.
[http://dx.doi.org/10.1074/jbc.M007204200] [PMID: 10967126]
[92]
Wang, J.; Kannan, S.; Li, H.; Khan, M.F. Cytokine gene expression and activation of NF-κ B in aniline-induced splenic toxicity. Toxicol. Appl. Pharmacol., 2005, 203(1), 36-44.
[http://dx.doi.org/dx.doi. org/10.1016/j.taap.2004.07.012] [PMID: 15694462]
[93]
Firoze Khan, M.; Wu, X.; Wang, J. Up-regulation of transforming growth factor-β 1 in the spleen of aniline-treated rats. Toxicol. Appl. Pharmacol., 2003, 187(1), 22-28.
[http://dx.doi.org/10.1016/S0041-008X(02)00041-8] [PMID: 12628581]
[94]
Postlethwaite, A.E.; Seyer, J.M. Stimulation of fibroblast chemotaxis by human recombinant tumor necrosis factor alpha (TNF-alpha) and a synthetic TNF-alpha 31-68 peptide. J. Exp. Med., 1990, 172(6), 1749-1756.
[http://dx.doi.org/10.1084/jem.172.6.1749] [PMID: 2258704]
[95]
Pennypacker, K. AP-1 transcription factors: short- and long-term modulators of gene expression in the brain. Int. Rev. Neurobiol., 1998, 42, 169-197.
[http://dx.doi.org/10.1016/S0074-7742(08)60610-8] [PMID: 9476173]
[96]
Angel, P.; Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta, 1991, 1072(2-3), 129-157.
[PMID: 1751545]
[97]
Hsu, T-C.; Young, M.R.; Cmarik, J.; Colburn, N.H. Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med., 2000, 28(9), 1338-1348.
[http://dx.doi.org/10.1016/S0891-5849(00)00220-3] [PMID: 10924853]
[98]
Hirota, K.; Matsui, M.; Iwata, S.; Nishiyama, A.; Mori, K.; Yodoi, J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. USA, 1997, 94(8), 3633-3638.
[http://dx.doi.org/10.1073/pnas.94.8.3633] [PMID: 9108029]
[99]
Shi, M.M.; Chong, I.; Godleski, J.J.; Paulauskis, J.D. Regulation of macrophage inflammatory protein-2 gene expression by oxidative stress in rat alveolar macrophages. Immunology, 1999, 97(2), 309-315.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00798.x] [PMID: 10447747]
[100]
Utsugi, M.; Dobashi, K.; Ishizuka, T.; Kawata, T.; Hisada, T.; Shimizu, Y.; Ono, A.; Mori, M. Rac1 negatively regulates lipopolysaccharide-induced IL-23 p19 expression in human macrophages and dendritic cells and NF-kappaB p65 trans activation plays a novel role. J. Immunol., 2006, 177(7), 4550-4557.
[http://dx.doi.org/10.4049/jimmunol.177.7.4550] [PMID: 16982892]
[101]
Chen, F.; Castranova, V.; Shi, X.; Demers, L.M. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem., 1999, 45(1), 7-17.
[PMID: 9895331]
[102]
Chen, Z.; Hagler, J.; Palombella, V.J.; Melandri, F.; Scherer, D.; Ballard, D.; Maniatis, T. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev., 1995, 9(13), 1586-1597.
[http://dx.doi.org/10.1101/gad.9.13.1586] [PMID: 7628694]
[103]
Akira, S.; Kishimoto, T. NF-IL6 and NF-kappa B in cytokine gene regulation. Adv. Immunol., 1997, 65, 1-46.
[http://dx.doi.org/10. 1016/S0065-2776(08)60740-3] [PMID: 9238507]
[104]
Lee, J.Y.; Yu, B.P.; Chung, H.Y. Activation mechanisms of endothelial NF-kappaB, IKK, and MAP kinase by tert-butyl hydroperoxide. Free Radic. Res., 2005, 39(4), 399-409.
[http://dx.doi.org/ 10.1080/1071576040002870] [PMID: 16028365]
[105]
Kamata, H.; Manabe, T.; Oka, S-i.; Kamata, K.; Hirata, H. Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett., 2002, 519(1-3), 231-237.
[http://dx.doi.org/10.1016/S0014-5793(02)02712-6] [PMID: 12023051]
[106]
Karin, M. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J. Biol. Chem., 1999, 274(39), 27339-27342.
[http://dx.doi.org/10.1074/jbc.274.39.27339] [PMID: 10488062]
[107]
Pestka, J.J.; Zhou, H-R.; Moon, Y.; Chung, Y.J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol. Lett., 2004, 153(1), 61-73.
[http://dx.doi.org/10.1016/j.toxlet.2004.04.023] [PMID: 15342082]
[108]
Castrillo, A.; de Las Heras, B.; Hortelano, S.; Rodríguez, B.; Villar, A.; Boscá, L. Inhibition of the nuclear factor κ B (NF-κ B) pathway by tetracyclic kaurene diterpenes in macrophages. Specific effects on NF-κ B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK. J. Biol. Chem., 2001, 276(19), 15854-15860.
[http://dx.doi.org/10.1074/jbc.M100010200] [PMID: 11278990]
[109]
Kefaloyianni, E.; Gaitanaki, C.; Beis, I. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell. Signal., 2006, 18(12), 2238-2251.
[http://dx.doi.org/10.1016/j.cellsig.2006.05.004] [PMID: 16806820]
[110]
Dai, J.; Huang, C.; Wu, J.; Yang, C.; Frenkel, K.; Huang, X. Iron-induced interleukin-6 gene expression: possible mediation through the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways. Toxicology, 2004, 203(1-3), 199-209.
[http://dx.doi.org/10.1016/j.tox.2004.06.009] [PMID: 15363595]
[111]
Weiss, G. Hazardous chemicals data book. Second edition; Park ridge, New Jersey, 1986.
[112]
Morgan, K.T.; Gross, E.A.; Lyght, O.; Bond, J.A. Morphologic and biochemical studies of a nitrobenzene-induced encephalopathy in rats. Neurotoxicology, 1985, 6(1), 105-116.
[PMID: 3873033]
[113]
Shimo T, Onodera H, Matsushima Y, Todate A, Mitsumori K, Maekawa A, Takahashi M. A 28-day repeated dose toxicity study of nitrobenzene in F344 rats; Eisei Shikenjo hokoku Bulletin of National Institute of Hygienic Sciences, 1994, 112, 71-81
[114]
Lampert, P.; O’Brien, J.; Garrett, R. Hexachlorophene encephalopathy. Acta Neuropathol., 1973, 23(4), 326-333.
[http://dx.doi.org/ 10.1007/BF00687462] [PMID: 4718199]
[115]
Rodrigo, J.; Robles, M.; Mayo, I.; Pestaña, A.; Marquet, A.; Larraga, V.; Muñoz, E. Neurotoxicity of fatty acid anilides in rabbits. Lancet, 1983, 1(8321), 414-416.
[http://dx.doi.org/10.1016/S0140-6736(83)91527-1] [PMID: 6130403]
[116]
Krinke, G. Nonneoplastic changes in the brain. Pathobiology of the aging rat , 1994, 2, 6-19.
[117]
Smith, M.E. A regional survey of myelin development: some compositional and metabolic aspects. J. Lipid Res., 1973, 14(5), 541-551.
[PMID: 4354155]
[118]
Okazaki, Y.; Yamashita, K.; Sudo, M.; Tsuchitani, M.; Narama, I.; Yamaguchi, R.; Tateyama, S. The progression and recovery of neurotoxicity induced by a single oral dose of aniline in rats. J. Toxicol. Pathol., 2001, 14, 19-19.
[http://dx.doi.org/10.1293/tox.14.19]
[119]
Smith, K.J.; Kapoor, R.; Felts, P.A. Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol., 1999, 9(1), 69-92.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00212.x] [PMID: 9989453]
[120]
Petito, C.K.; Olarte, J-P.; Roberts, B.; Nowak, T.S., Jr; Pulsinelli, W.A. Selective glial vulnerability following transient global ischemia in rat brain. J. Neuropathol. Exp. Neurol., 1998, 57(3), 231-238.
[http://dx.doi.org/10.1097/00005072-199803000-00004] [PMID: 9600215]
[121]
Graeber, M.; Blakemore, W.; Kreutzberg, G. Cellular pathology of the central nervous system. Greenfield’s Neuropathology; Arnold, 2002, pp. 123-191.
[122]
Verity, M. Toxic disorders. Greenfield’s Neuropathol., 1997, 1, 755-811.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy