Research Article

敲除激酶家族15抑制体外癌细胞增殖及其在三阴性乳腺癌中的临床意义

卷 19, 期 2, 2019

页: [147 - 155] 页: 9

弟呕挨: 10.2174/1566524019666190308122108

价格: $65

摘要

目的:乳腺癌是最常见的恶性肿瘤,也是女性死亡的主要原因。三阴性乳腺癌(TNBC)是乳腺癌的一种亚型,与其他乳腺癌亚型相比,具有明显的侵袭性,转移率更高,总体生存期更短。本研究旨在评估KIF15对三阴性乳腺癌的各种临床病理特征,生存分析和细胞增殖的影响,据我们所知尚未报道。 方法:共纳入165例三阴性乳腺癌患者,获得临床资料,进行Mann-Whitney U分析,评估KIF15表达与TNBC患者临床病理特征的相关性。通过Kaplan-Meier分析和Log-rank检验进行存活分析。通过Sign测试评估癌组织和邻近组织中KIF15的表达水平。慢病毒用于下调TNBC细胞中KIF15的表达。通过MTT,Giemsa染色和流式细胞术检测细胞增殖,集落形成能力和细胞凋亡。 结果:我们的结果显示,在165例TNBC患者中,KIF15的表达与TNBC的临床病理特征呈正相关。此外,KIF15低表达组的无病生存率高于KIF15高表达组,单因素分析显示KIF15高表达组的死亡率高于KIF低表达组(P≤0.05)。同时,与邻近组织相比,癌组织中KIF15的表达水平显着上调。在体外,KIF15的敲低显着促进细胞凋亡并抑制TNBC细胞的细胞增殖和集落形成。 结论:通过生存分析,我们发现TNBC样本中KIF15的高表达与较差的总体存活率相关,而KIF15敲低的抗肿瘤作用也在体外细胞水平上得到证实。总之,KIF15可用作TNBC的潜在诊断和治疗靶标。

关键词: TNBC,KIF15,存活分析,凋亡,增殖,癌细胞。

[1]
Cedolini C, Bertozzi S, Londero AP, et al. Type of breast cancer diagnosis, screening, and survival. Clin Breast Cancer 2014; 14(4): 235-40.
[2]
Newman LA. Disparities in breast cancer and african ancestry: A global perspective. Breast J 2015; 21(2): 133-9.
[3]
Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[4]
Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98(19): 10869-74.
[5]
Fan C, Oh DS, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006; 355(6): 560-9.
[6]
Millis SZ, Gatalica Z, Winkler J, et al. Predictive biomarker profiling of > 6000 breast cancer patients shows heterogeneity in TNBC, with treatment implications. Clin Breast Cancer 2015; 15(6): 473-81.e3.
[7]
Jiao Q, Wu A, Shao G, et al. The latest progress in research on triple negative breast cancer (TNBC): Risk factors, possible therapeutic targets and prognostic markers. J Thorac Dis 2014; 6(9): 1329-35.
[8]
Lehmann BD, Pietenpol JA, Tan AR. Triple-negative breast cancer: Molecular subtypes and new targets for therapy. Am Soc Clin Oncol Educ Book 2015; e31-9.
[9]
Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA. Subtyping of triple-negative breast cancer: Implications for therapy. Cancer 2015; 121(1): 8-16.
[10]
Nowacka-Zawisza M, Krajewska WM. Triple-negative breast cancer: Molecular characteristics and potential therapeutic approaches. Postepy Hig Med Dosw (Online) 2013; 67: 1090-7.
[11]
Jin J, Zhang W, Ji W, Yang F, Guan X. Predictive biomarkers for triple negative breast cancer treated with platinum-based chemotherapy. Cancer Biol Ther 2017; 18(6): 369-78.
[12]
Bulatov E, Sayarova R, Mingaleeva R, et al. Isatin-Schiff base-copper (II) complex induces cell death in p53-positive tumors. Cell Death Discov 2018; 4: 103.
[13]
Garmpis N, Damaskos C, Garmpi A, et al. Histone Deacetylases as new therapeutic targets in triple-negative breast cancer: Progress and promises. Cancer Genomics Proteomics 2017; 14(5): 299-313.
[14]
Khosravi-Shahi P, Cabezon-Gutierrez L, Custodio-Cabello S. Metastatic triple negative breast cancer: Optimizing treatment options, new and emerging targeted therapies. Asia Pac J Clin Oncol 2018; 14(1): 32-9.
[15]
Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 2017; 389(10087): 2430-42.
[16]
Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: Insights into structure and function. Trends Cell Biol 2005; 15(9): 467-76.
[17]
Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998; 279(5350): 519-26.
[18]
Kitajima Y, Inoue S, Yoneda K, Mori S, Yaoita H. Alteration in the arrangement of the keratin-type intermediate filaments during mitosis in cultured human keratinocytes. Eur J Cell Biol 1985; 38(2): 219-25.
[19]
Zhu C, Zhao J, Bibikova M, et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 2005; 16(7): 3187-99.
[20]
Appierto V, Tiberio P, Cavadini E, Casalini P, Cappelletti G, Formelli F. Antimitotic effect of the retinoid 4-oxo-fenretinide through inhibition of tubulin polymerization: A novel mechanism of retinoid growth-inhibitory activity. Mol Cancer Ther 2009; 8(12): 3360-8.
[21]
Liu X, Gong H, Huang K. Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci 2013; 104(6): 651-6.
[22]
Duan H, Zhang X, Wang FX, et al. KIF-2C expression is correlated with poor prognosis of operable esophageal squamous cell carcinoma male patients. Oncotarget 2016; 7(49): 80493-507.
[23]
Taniwaki M, Takano A, Ishikawa N, et al. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res 2007; 13(22 Pt 1): 6624-31.
[24]
Narayan G, Bourdon V, Chaganti S, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: Identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 2007; 46(4): 373-84.
[25]
Zou JX, Duan Z, Wang J, et al. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res 2014; 12(4): 539-49.
[26]
Wang J, Guo X, Xie C, Jiang J. KIF15 promotes pancreatic cancer proliferation via the MEK-ERK signalling pathway. Br J Cancer 2017; 117(2): 245-55.
[27]
Ramanathan R, Olex AL, Dozmorov M, Bear HD, Fernandez LJ, Takabe K. Angiopoietin pathway gene expression associated with poor breast cancer survival. Breast Cancer Res Treat 2017; 162(1): 191-8.
[28]
Zeinalian M, Emami MH, Naimi A, Salehi R, Hashemzadeh-Chaleshtori M. Immunohistochemical analysis of mismatch repair proteins in Iranian colorectal cancer patients at risk for lynch syndrome. Iran J Cancer Prev 2015; 8(1): 11-7.
[29]
Juszczak K, Kaszuba-Zwoinska J, Thor PJ. Pulsating electromagnetic field stimulation of urothelial cells induces apoptosis and diminishes necrosis: new insight to magnetic therapy in urology. J Physiol Pharmacol 2012; 63(4): 397-401.
[30]
Palma G, Frasci G, Chirico A, et al. Triple negative breast cancer: Looking for the missing link between biology and treatments. Oncotarget 2015; 6(29): 26560-74.
[31]
Gautam P, Karhinen L, Szwajda A, et al. Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Mol Cancer 2016; 15(1): 34.
[32]
Proia DA, Zhang C, Sequeira M, et al. Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer. Clin Cancer Res 2014; 20(2): 413-24.
[33]
Yu Y, Feng YM. The role of kinesin family proteins in tumorigenesis and progression: Potential biomarkers and molecular targets for cancer therapy. Cancer 2010; 116(22): 5150-60.
[34]
Amy MB, Rachel VS, Jessica ME, Adedayo AO. Breast cancer biomarkers: Risk assessment, diagnosis, prognosis, prediction of treatment efficacy and toxicity, and recurrence. Curr Pharm Des 2014; 20(30): 4879-98.
[35]
Qiao Y, Chen J, Ma C, et al. Increased KIF15 expression predicts a poor prognosis in patients with lung Adenocarcinoma. Cell Physiol Biochem 2018; 51(1): 1-10.
[36]
Zhou J, Chen WR, Yang LC, et al. KIF11 functions as an oncogene and is associated with poor outcomes from breast cancer. Cancer Res Treat 2018. [Epub ahead of print].
[http://dx.doi.org/10.4143/crt.2018.460]
[37]
Wang J, Guo X, Xie C, Jiang J. KIF15 promotes pancreatic cancer proliferation via the MEK-ERK signalling pathway. Br J Cancer 2017; 117(2): 245-55.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy