[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[2]
Islami, F.; Torre, L.A.; Jemal, A. Global trends of lung cancer mortality and smoking prevalence. Transl. Lung Cancer Res., 2015, 4(4), 327-338.
[3]
Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin., 2012, 62(4), 220-241.
[4]
Brock, A.; Krause, S.; Ingber, D.E. Control of cancer formation by intrinsic genetic noise and micro-environmental cues. Nat. Rev. Cancer, 2015, 15(8), 499-509.
[5]
Coburn, J.M.; Kaplan, D.L. Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery. Bioconjug. Chem., 2015, 26(7), 1212-1223.
[6]
Colgrave, M.L.; Craik, D.J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: The importance of the cyclic cystine knot. Biochemistry, 2004, 43(20), 5965-5975.
[7]
Craik, D.J.; Swedberg, J.E.; Mylne, J.S.; Cemazar, M. Cyclotides as a basis for drug design. Expert Opin. Drug Discov., 2012, 7(3), 179-194.
[8]
Puttamadappa, S.S.; Jagadish, K.; Shekhtman, A.; Camarero, J.A. Backbone dynamics of cyclotide MCoTI-I free and complexed with trypsin. Angew. Chem. Int. Ed. Engl., 2010, 49(39), 7030-7034.
[9]
Daly, N.L.; Thorstholm, L.; Greenwood, K.P.; King, G.J.; Rosengren, K.J.; Heras, B.; Martin, J.L.; Craik, D.J. Structural insights into the role of the cyclic backbone in a squash trypsin inhibitor. J. Biol. Chem., 2013, 288(50), 36141-36148.
[10]
Craik, D.J.; Mylne, J.S.; Daly, N.L. Cyclotides: Macrocyclic peptides with applications in drug design and agriculture. Cell. Mol. Life Sci., 2010, 67(1), 9-16.
[11]
Gran, L.; Sandberg, F.; Sletten, K. Oldenlandia affinis (R&S) DC: A plant containing uteroactive peptides used in african traditional medicine. J. Ethnopharmacol., 2000, 70(3), 197-203.
[12]
Huang, Y-H.; Colgrave, M.L.; Daly, N.L.; Keleshian, A.; Martinac, B.; Craik, D.J. The biological activity of the prototypic cyclotide kalata B1 is modulated by the formation of multimeric pores. J. Biol. Chem., 2009, 284(31), 20699-20707.
[13]
Gerlach, S.L.; Rathinakumar, R.; Chakravarty, G.; Göransson, U.; Wimley, W.C.; Darwin, S.P.; Mondal, D. Anticancer and chemosensitizing abilities of cycloviolacin 02 from viola odorata and psyle cyclotides from psychotria leptothyrsa. Biopolymers, 2010, 94(5), 617-625.
[14]
Pinto, M.F.S.; Silva, O.N.; Viana, J.C.; Porto, W.F.; Migliolo, L.; Da Cunha, N.B.; Gomes, N.; Fensterseifer, I.C.M.; Colgrave, M.L.; Craik, D.J. Characterization of a bioactive acyclotide from palicourea rigida. J. Nat. Prod., 2016, 79(11), 2767-2773.
[15]
Troeira, H.S.; Huang, Y-H.; Chaousis, S.; Wang, C.K.; Craik, D.J. Anticancer and toxic properties of cyclotides are dependent on phosphatidylethanolamine phospholipid targeting. ChemBioChem, 2014, 15(13), 1956-1965.
[16]
Huang, Y-H.; Henriques, S.T.; Wang, C.K.; Thorstholm, L.; Daly, N.L.; Kaas, Q.; Craik, D.J. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Sci. Rep., 2015, 5, 12974.
[17]
Ji, Y.; Majumder, S.; Millard, M.; Borra, R.; Bi, T.; Elnagar, A.Y.; Neamati, N.; Shekhtman, A.; Camarero, J.A. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. J. Am. Chem. Soc., 2013, 135(31), 11623-11633.
[18]
Gerlach, S.L.; Burman, R.; Bohlin, L.; Mondal, D.; Göransson, U. Isolation, characterization, and bioactivity of cyclotides from the micronesian plant Psychotria leptothyrsa. J. Nat. Prod., 2010, 73(7), 1207-1213.
[19]
Thakral, N.K.; Ray, A.R.; Bar-Shalom, D.; Eriksson, A.H.; Majumdar, D.K. The quest for targeted delivery in colon cancer: Mucoadhesive valdecoxib microspheres. Int. J. Nanomedicine, 2011, 6, 1057-1068.
[20]
Henriques, S.T.; Craik, D.J. Cyclotides as templates in drug design. Drug Discov. Today, 2010, 15(1-2), 57-64.
[21]
Pinto, M.F.S.; Fensterseifer, I.C.M.; Migliolo, L.; Sousa, D.A.; de Capdville, G.; Arboleda-Valencia, J.W.; Colgrave, M.L.; Craik, D.J.; Magalhães, B.S.; Dias, S.C. Identification and structural characterization of novel cyclotide with activity against an insect pest of sugar cane. J. Biol. Chem., 2012, 287(1), 134-147.
[22]
Jennings, C.V.; Rosengren, K.J.; Daly, N.L.; Plan, M.; Stevens, J.; Scanlon, M.J.; Waine, C.; Norman, D.G.; Anderson, M.A.; Craik, D.J. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do möbius strips exist in nature? Biochemistry, 2005, 44(3), 851-860.
[23]
Saúde, A.C.M.; Ombredane, A.S.; Silva, O.N.; Barbosa, J.A.R.G.; Moreno, S.E.; Araujo, A.C.G.; Falcão, R.; Silva, L.P.; Dias, S.C.; Franco, O.L. Clavanin bacterial sepsis control using a novel methacrylate nanocarrier. Int. J. Nanomedicine, 2014, 9(1), 5055-5069.
[24]
Mahmoudi, M. Debugging nano-bio interfaces: Systematic strategies to accelerate clinical translation of nanotechnologies. Trends Biotechnol., 2018, 36(8), 755-769.
[25]
Momenzadeh, S.; Sadeghi, A.; Vatandoust, N.; Salehi, R. Evaluation of in vivo transfection efficiency of eudragit coated nanoparticles of chitosan-DNA: A PH-sensitive system prepared for oral DNA delivery. Iran. Red Crescent Med. J., 2015, 17(4), e16761.
[26]
Mulcahy, L.A.; Pink, R.C.; Carter, D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 2014, 3.
[27]
Benet, L.Z.; Cummins, C.L.; Wu, C.Y. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int. J. Pharm., 2004, 277(1-2), 3-9.
[28]
Silva, O.N.; Fensterseifer, I.C.M.; Rodrigues, E.A.; Holanda, H.H.S.; Novaes, N.R.F.; Cunha, J.P.A.; Rezende, T.M.B.; Magalhães, K.G.; Moreno, S.E.; Jerônimo, M.S.; Bocca, A.L.; Franco, O.L. Clavanin A improves outcome of complications from different bacterial infections. Antimicrob. Agents Chemother., 2015, 59(3)
[29]
Greish, K. Enhanced Permeability and Retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[30]
Yadav, K.S.; Jacob, S.; Sachdeva, G.; Chuttani, K.; Mishra, A.K.; Sawant, K.K. Long circulating PEGylated PLGA nanoparticles of cytarabine for targeting leukemia. J. Microencapsul., 2011, 28(8), 729-742.
[31]
Li, S-D.; Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm., 2008, 5(4), 496-504.
[32]
Panyam, J.; Williams, D.; Dash, A.; Leslie-Pelecky, D.; Labhasetwar, V. Solid-State solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci., 2004, 93(7), 1804-1814.
[33]
Barry, D.G.; Daly, N.L.; Clark, R.J.; Sando, L.; Craik, D.J. Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity. Biochemistry, 2003, 42(22), 6688-6695.
[34]
Garcia, A.E.; Osapay, G.; Tran, P.A.; Yuan, J.; Selsted, M.E. Isolation, synthesis, and antimicrobial activities of naturally occurring theta-defensin isoforms from baboon leukocytes. Infect. Immun., 2008, 76(12), 5883-5891.
[35]
Chan, L.Y.; Craik, D.J.; Daly, N.L. Dual-Targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy. Sci. Rep., 2016, 6, 35347.
[36]
Malagón, D.; Botterill, B.; Gray, D.J.; Lovas, E.; Duke, M.; Gray, C.; Kopp, S.R.; Knott, L.M.; McManus, D.P.; Daly, N.L. Anthelminthic activity of the cyclotides (Kalata B1 and B2) against schistosome parasites. Biopolymers, 2013, 100(5), 461-470.
[37]
Craik, D.J. Circling the enemy: Cyclic proteins in plant defence. Trends Plant Sci., 2009, 14(6), 328-335.
[38]
Paharia, A.; Yadav, A.K.; Rai, G.; Jain, S.K.; Pancholi, S.S.; Agrawal, G.P. Eudragit-Coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech, 2007, 8(1), 12.
[39]
Mirhosseini, H.; Tan, C.P.; Hamid, N.S.A.; Yusof, S. Effect of arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and ph of orange beverage emulsion. Collo. Sur. A Physio. chem. Eng. Asp., 2008, 315(1-3), 47-56.
[40]
Sajja, H.K.; East, M.P.; Mao, H.; Wang, Y.A.; Nie, S.; Yang, L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol., 2009, 6(1), 43-51.
[41]
El-Kamel, A.H.; Sokar, M.S.; Al Gamal, S.S.; Naggar, V.F. Preparation and evaluation of ketoprofen floating oral delivery system. Int. J. Pharm., 2001, 220(1-2), 13-21.
[42]
Yadav, S.K.; Mishra, S.; Mishra, B. Eudragit-based nanosuspension of poorly water-soluble drug: Formulation and In vitro-in vivo evaluation. AAPS PharmSciTech, 2012, 13(4), 1031-1044.
[43]
Salvador-Morales, C.; Zhang, L.; Langer, R.; Farokhzad, O.C. Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 2009, 30(12), 2231-2240.
[44]
Moustafine, R.I.; Zaharov, I.M.; Kemenova, V.A. Physicochemical characterization and drug release properties of eudragit E PO/Eudragit L 100-55 interpolyelectrolyte complexes. Eur. J. Pharm. Biopharm., 2006, 63(1), 26-36.
[45]
Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int. J. Nanomedicine, 2011, 6, 2429-2435.
[46]
She, X.; Chen, L.; Velleman, L.; Li, C.; Zhu, H.; He, C.; Wang, T.; Shigdar, S.; Duan, W.; Kong, L. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by eudragit for targeted drug delivery. J. Colloid Interface Sci., 2015, 445, 151-160.
[47]
Fontana, M.C.; Beckenkamp, A.; Buffon, A.; Beck, R.C.R. Controlled release of raloxifene by nanoencapsulation: Effect on In vitro antiproliferative activity of human breast cancer cells. Int. J. Nanomedicine, 2014, 9, 2979-2991.
[48]
Sun, H.; Liu, D.; Li, Y.; Tang, X.; Cong, Y. Preparation and In vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR. Int. J. Nanomedicine, 2014, 9, 1709-1716.
[49]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[50]
Liu, F.; Lizio, R.; Meier, C.; Petereit, H-U.; Blakey, P.; Basit, A.W. A novel concept in enteric coating: A double-coating system providing rapid drug release in the proximal small intestine. J. Control. Release, 2009, 133(2), 119-124.
[51]
Liechty, W.B.; Peppas, N.A. Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur. J. Pharm. Biopharm., 2012, 80(2), 241-246.
[52]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[53]
Akhgari, A.; Tavakol, A. Prediction of Optimum combination of eudragit RS/eudragit RL/ethyl cellulose polymeric free films based on experimental design for using as a coating system for sustained release theophylline pellets. Adv. Pharm. Bull., 2016, 6(2), 219-225.
[54]
Lindholm, P.; Göransson, U.; Johansson, S.; Claeson, P.; Gullbo, J.; Larsson, R.; Bohlin, L.; Backlund, A. Cyclotides: A novel type of cytotoxic agents. Mol. Cancer Ther., 2002, 1(6), 365-369.
[55]
Tang, J.; Wang, C.K.; Pan, X.; Yan, H.; Zeng, G.; Xu, W.; He, W.; Daly, N.L.; Craik, D.J.; Tan, N. Isolation and characterization of cytotoxic cyclotides from viola Tticolor. Peptides, 2010, 31(8), 1434-1440.
[56]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.