[2]
Fitzmaurice, C. Regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015 a systematic analysis for the global burden of disease study. JAMA Oncol., 2017, 3(4), 524-548.
[3]
Park, S.; Magar, T.B.T.; Kahayan, T.M.; Lee, H.J.; Bist, G.; Shrestha, A.; Lee, E.S.; Kwon, Y. Rational design, synthesis, and evaluation of novel 2,4-chloro- and hydroxy-substituted topoisomerase I and II dual inhibitor. Eur. J. Med. Chem., 2017, 127, 318-333.
[4]
Thurston, D.E. Chemistry and Pharmacology of Anticancer Drugs.1st ed.; CRC, Taylor & Francis, Boca Raton,; , 2006.
[5]
Matesanz, A.I.; Souza, P. α-N-heterocyclic thiosemicarbazone derivative as potential antitumor agents: A structure-activity relationships approach. Mini Rev. Med. Chem., 2009, 9(12), 1389-1396.
[6]
Hamre, D.; Bernstein, J.; Donovick, R. Activity of p-aminobenzaldehyde 3-thiosemicarbazone on vaccinia virus in the chick embryo and in the mouse. Proc. Soc. Exp. Biol. Med., 1950, 73, 275-278.
[7]
Heiner, G.G.; Fatima, N.; Russell, P.K.; Haase, A.T.; Ahmad, N.; Mohammed, N.; Thomas, D.B.; Mack, T.M.; Khan, M.M.; Knatterud, G.L.; Anthony, R.L.; McCrumb, F.R., Jr Field trials of methisazone as a prophylactic agent against smallpox. Am. J. Epidemiol., 1971, 94(5), 435-449.
[8]
Shipman, C., Jr; Smith, S.H.; Drach, J.C.; Klayman, D.L. Antiviral activity of 2-acetylpyridine thiosemicarbazones against Herpes Simplex virus. Antimicrob. Agents Chemother., 1981, 19(4), 682-685.
[9]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivative. Bioorg. Med. Chem. Lett., 2005, 15, 4451-4455.
[10]
Dobek, A.S.; Klayman, D.L.; Dickson, E.T.; Scovill, J.P.; Tramont, E.C. Inhibition of clinically significant bacterial organisms in vitro by 2-acetylpyridine thiosemicarbazones. Antimicrob. Agents Chemother., 1980, 18(1), 27-36.
[11]
Kolocouris, A.; Dimas, K.; Pannecouque, C.; Witvrouw, M.; Foscolos, G.B.; Stamatiou, G.; Fytas, G. Zoidis; G.; Kolocouris, N.; Andrei, G.; Snoeck, R.; De Clerq, E. New 2-(1-adamantylcarbonyl)- pyridine and 1-acetyladamantane thiosemicarbazones-thiocarbono-hydrazones: Cell growth inhibitory, antiviral and antimicrobial activity evaluation. Bioorg. Med. Chem. Lett., 2002, 12(5), 723-727.
[12]
Zhu, Y.J.; Song, K.K.; Li, Z.C.; Pan, Z.Z.; Guo, Y.J.; Zhou, J.J.; Wang, Q.; Liu, B.; Chen, Q.X. Antityrosinase and antimicrobial activities of trans-cinnamaldehyde thiosemicarbazone. J. Agric. Food Chem., 2009, 57, 5518-5523.
[13]
Domagk, G.; Behnisch, R.; Mietzsch, F.; Schimidt, H. Über eine neue ĝeĝen tuberkelbakterien in vitro wirksame verbindungsklasse. Naturwissenchaften, 1946, 33, 315-319.
[14]
Pavan, F.R.; Maia, P.I. da S.; Leite, S.R.A.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q.F. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[15]
Wilson, H.R.; Revankar, G.R.; Tolman, R.L. In vitro and in vivo activity of certain thiosemicarbazones against Trypanosoma cruzi. J. Med. Chem., 1974, 17(7), 760-761.
[16]
Vieites, M.; Otero, L.; Santos, D.; Olea-Azar, C.; Norambuena, E.; Aguirre, G.; Cerecetto, H.; González, M.; Kemmerling, U.; Morello, A.; Maya, J.D.; Gambino, D. Platinum-based complexes of bioactive 3-(5-nitrofuryl)acrolein thiosemicarbazones showing anti-Trypanosoma cruzi activity. J. Inorg. Biochem., 2009, 103(3), 411-418.
[17]
Klayman, D.L.; Bartosevich, J.F.; Griffin, T.S.; Mason, C.J.; Scovill, J.P. 2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents. J. Med. Chem., 1979, 22(7), 855-862.
[18]
Khanye, S.D.; Gut, J.; Rosenthal, P.J.; Chibale, K.; Smith, G.S. Synthesis and in vitro antimalarial and antitubercular activity of gold(III) complexes containing thiosemicarbazone ligands. J. Organomet. Chem., 2011, 696, 3296-3396.
[19]
Benns, B.G.; Gingras, B.A.; Bayley, C.H. Antifungal activity of some thiosemicarbazones and their copper complexes. Appl. Microbiol., 1960, 8, 353-356.
[20]
Opletalova, V.; Kalinowski, D.S.; Vejsova, M.; Kunes, J.; Pour, M.; Jampflek, J.; Buchta, V.; Richardson, D.R. Identification and characterization of thiosemicarbazones with antifungal and antitumor effects: Cellular iron chelation mediating cytotoxic activity. Chem. Res. Toxicol., 2008, 21, 1878-1889.
[21]
Turk, S.R.; Shipman, C., Jr; Drach, J.C. Structure-activity relationships among α-(N)-heterocyclic acyl thiosemicarbazones and related compounds as inhibitors of Herpes simplex virus type 1-specified ribonucleoside diphosphate reductase. J. Gen. Virol., 1986, 67, 1625-1632.
[22]
Pervez, H.; Chohan, Z.H.; Ramzan, M.; Nasim, F.U.; Khan, K.M. Synthesis and biological evaluation of some new N4-substituted isatin-3-thiosemicarbazones. J. Enzyme Inhib. Med. Chem., 2009, 24, 437-446.
[23]
Chen, L.H.; Hu, Y.H.; Song, W.; Song, K.K.; Liu, X.; Jia, Y.L.; Zhuang, J.X.; Chen, Q.X. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: Novel tyrosinase inhibitors. J. Agric. Food Chem., 2012, 60, 1542-1547.
[24]
Soares, M.A.; Almeida, M.A.; Marins-Goulart, C.; Chaves, O.A.; Echevarria, A.; de Oliveira, M.C.C. Thiosemicarbazones as inhibitors of tyrosine enzyme. Bioorg. Med. Chem. Lett., 2017, 27(15), 3546-3550.
[25]
Brockman, R.W.; Thomson, J.R.; Bell, M.J.; Skipper, H.E. Observations on the antileukemic activity of pyridine-2-carboxaldehyde thiosemicarbazone and thiocarbohydrazone. Cancer Res., 1956, 16, 167-170.
[26]
Blanz, E.J., Jr; French, F.A. The carcinostatic activity of 5-hydroxy-2-formylpyridine thiosemicarbazone. Cancer Res., 1968, 28(12), 2419-2422.
[27]
Hu, W.; Zhou, W.; Xia, C.; Wen, X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2006, 16, 2213-2218.
[28]
Mackenzie, M.J.; Saltman, D.; Hirte, H.; Low, J.; Johnson, C.; Pond, G.; Moore, M.J. A phase II study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma - A trial of the princess Margaret hospital phase II consortium. Invest. New Drugs, 2007, 25, 553-558.
[29]
Ma, B.; Goh, B.C.; Tan, E.H.; Lam, K.C.; Soo, R.; Leong, S.S.; Wang, L.Z.; Mo, F.; Chan, A.T.C.; Zee, B.; Mok, T. A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapineβ) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Invest. New Drugs, 2008, 26, 169-173.
[30]
Kolesar, J.M.; Schelman, W.R.; Geiger, P.G.; Holen, K.D.; Traynor, A.M.; Alberti, D.B.; Thomas, J.P.; Chitambar, C.R.; Wilding, G.; Antholine, W.E. Electron paramagnetic resonance study of peripheral blood mononuclear cells from patients with refractory solid tumors treated with Triapineβ. J. Inorg. Biochem., 2008, 102, 693-698.
[31]
Dilovic, I.; Rubcic, M.; Vrdoljak, V.; Pavelic, S.K.; Kralj, M.; Piantanida, I.; Cindric, M. Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structural properties, DNA interactions and antiproliferative activity. Bioorg. Med. Chem., 2008, 16, 5189-5198.
[32]
Nutting, C.M.; van Herpen, C.M.L.; Miah, A.B.; Bhide, S.A.; Machiels, J.P.; Buter, J.; Kelly, C.; de Raucourt, D.; Harrington, K.J. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann. Oncol., 2009, 20, 1275-1279.
[33]
Richardson, D.R.; Kalinowski, D.S.; Richardson, V.; Sharpe, P.C.; Lovejoy, D.B.; Islam, M.; Bernhardt, P.V. 2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: Redox activity, iron complexation and characterization of their antitumor activity. J. Med. Chem., 2009, 52, 1459-1470.
[34]
Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem., 2009, 52, 5271-5294.
[35]
Kalinowski, D.S.; Quach, P.; Richardson, D.R. Thiosemicarbazones: The new wave in cancer treatment. Future Med. Chem., 2009, 1, 1143-1151.
[36]
da Silva, A.P.; Martini, M.V.; de Oliveira, C.M.A.; Cunha, S.; de Carvalho, J.E.; Ruiz, A.L.T.G.; da Silva, C.C. Antitumor activity of (-)-α-bisabolol-based thiosemicarbazones against human tumor cell lines. Eur. J. Med. Chem., 2010, 45, 2987-2993.
[37]
Lessa, J.A.; Mendes, I.C.; da Silva, P.R.O.; Soares, M.A.; Dos Santos, R.G.; Speziali, N.L.; Romeiro, N.C.; Barreiro, E.J.; Beraldo, H. 2-Acetylpyridine thiosemicarbazones: Cytotoxic activity in nanomolar doses against malignant gliomas. Eur. J. Med. Chem., 2010, 45, 5671-5677.
[38]
Traynor, A.M.; Lee, J.W.; Bayer, G.K.; Tate, J.M.; Thomas, S.P.; Mazurczak, M.; Graham, D.L.; Kolesar, J.M.; Schiller, J.H.A. A phase II trial of triapine (NSC# 663249) and gemcitabine as second line treatment of advanced non-small cell lung cancer: Eastern Cooperative Oncology Group Study 1503. Invest. New Drugs, 2010, 28, 91-97.
[39]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Novel chelators for cancer treatment: Where are we now? Antioxid. Redox Signal., 2013, 18, 973-1006.
[40]
Stefani, C.; Jansson, P.J.; Gutierrez, E.; Bernhardt, P.V.; Richardson, D.R.; Kalinowski, D.S. Alkyl substituted 2′-benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic activity: Novel ligands that limit methemoglobin formation. J. Med. Chem., 2013, 56, 357-370.
[41]
Zeidner, J.F.; Karp, J.E.; Blackford, A.L.; Smith, B.D.; Gojo, I.; Gore, S.D.; Levis, M.J.; Carraway, H.E.; Greer, J.M.; Ivy, S.P.; Pratz, K.W.; McDevitt, M.A. A phase II trial of sequential ribonucleotide reductase inhibition in aggressive myeloproliferative neoplasms. Haematologica, 2014, 99, 672-678.
[42]
Sartorelli, A.C.; Booth, B.A. Inhibition of the growth of sarcoma 180 ascites cells by combinations of inhibitors of nucleic acid biosynthesis and the cupric chelate of kethoxal bis-(thiosemicarbazone). Cancer Res., 1967, 27, 1614-1619.
[43]
Sartorelli, A.C.; Agrawal, K.C.; Moore, E.C. Mechanism of inhibition of ribonucleoside diphosphate reductase by α-(N)-heterocyclic aldehyde thiosemicarbazones. Biochem. Pharmacol., 1971, 20, 3119-3123.
[44]
Antholine, W.; Knight, J.; Whelan, H.; Petering, D.H. Studies of the reaction of 2-formylpyridine thiosemicarbazone and its iron and copper complexes with biological systems. Mol. Pharmacol., 1977, 13, 89-98.
[45]
French, F.A.; Blanz, E.J., Jr The carcinostatic activity of α-(N)-heterocyclic carboxaldehyde thiosemicarbazones. I. Isoquinoline-1-carboxaldehyde thiosemicarbazone. Cancer Res., 1965, 25, 1454-1458.
[46]
French, F.A.; Blanz, E.J., Jr The carcinostatic activity of thiosemicarbazones of formyl heteroaromatic compounds. III. Primary correlation. J. Med. Chem., 1966, 9, 585-589.
[47]
Klayman, D.L.; Scovill, J.P.; Bartosevich, J.F.; Bruce, J. 2-Acetylpyridine thiosemicarbazones. 5. 1-[l-(2-pyridyl)ethyl]-3-thiosemicarbazides as potential antimalarial agents. J. Med. Chem., 1983, 26, 35-39.
[48]
Ferrari, M.B.; Capacchi, S.; Pelosi, G.; Reffo, G.; Tarasconi, P.; Albertini, R.; Pinelli, S.; Lunghi, P. Synthesis, structural characterization and biological activity of helicin thiosemicarbazone monohydrate and a copper(II) complex of salicylaldehyde thiosemicarbazone. Inorg. Chim. Acta, 1999, 286, 134-141.
[49]
French, F.A.; Blanz, E.J., Jr; DoAmaral, J.R.; French, D.A. Carcinostatic activity of thiosemicarbazones of formyl heteroaromatic compounds. vii. 2-formylpyridine derivatives bearing additional ring substituents. J. Med. Chem., 1970, 13(6), 1124-1130.
[50]
Creasey, W.A.; Agrawal, K.C.; Capizzi, R.L.; Stinson, K.K.; Sartorelli, A.C. Studies on the antineoplastic activity and metabolism of α-(N)-heterocyclic carboxaldehyde thiosemicarbazones in dogs and mice. Cancer Res., 1972, 32, 565-572.
[51]
Krakoff, I.H.; Etcubanas, E.; Tan, C.; Mayer, K.; Bethune, V.; Burchenal, J.H. Clinical trial of 5-hydroxypicolinaldehyde thiosemicarbazone (5-HP; NSC-107392), with special reference to its iron chelating properties. Cancer Chemother. Rep., 1974, 58, 207-212.
[52]
De Conti, R.C.; Toftness, B.R.; Agrawal, K.C.; Tomchick, R.; Mead, J.A.; Bertino, J.R.; Sartorelli, A.C.; Creasey, W.A. Clinical and pharmacological studies with 5-hydroxy-2-formylpyridine thiosemicarbazone. Cancer Res., 1972, 32, 1455-1462.
[53]
Bhatta, M.R.; Adhikari, S.; Lamichhane, J.; Yadav, P.N. Synthesis, characterization and antineoplastic activity of zinc complex of 3-hydroxy-2-formylpyridine N(4)-ethylthiosemicarbazone. J. Nepal Chem. Soc., 2013, 31, 43-49.
[54]
Mehta, P.K.; Joshi, B.; Yadav, P.N. Platinum(II) complex of 5-hydroxypyridine-2-carbaldehyde N(4)-ethylthiosemicarbazone: Synthesis, characterization and antineoplastic activity. J. Bangladesh Chem. Soc., 2015, 27, 132-138.
[55]
Liu, M.C.; Lin, T.S.; Sartorelli, A.C. Synthesis and antitumor activity of amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone. J. Med. Chem., 1992, 35(20), 3672-3677.
[56]
Finch, R.A.; Liu, M.C.; Cory, A.H.; Cory, J.G.; Sartorelli, A.C. Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP): An inhibitor of ribonucleotide reductase with antineoplastic activity. Adv. Enzyme Regul., 1999, 39, 3-12.
[57]
Finch, R.A.; Liu, M.; Grill, S.P.; Rose, W.C.; Loomis, R.; Vasquez, K.M.; Cheng, Y.; Sartorelli, A.C. Triapine (3-Aminopyridine-2-carboxaldehyde-thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem. Pharmacol., 2000, 59, 983-991.
[58]
Chaston, T.B.; Lovejoy, D.B.; Watts, R.N.; Richardson, D.R. Examination of the antiproliferative activity of iron chelators: Multiple cellular targets and the different mechanism of action of Triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin. Cancer Res., 2003, 9, 402-414.
[59]
Shao, J.; Zhou, B.; Chu, B.; Yen, Y. Ribonucleotide reductase inhibitors and future drug design. Curr. Cancer Drug Targets, 2006, 6, 409-431.
[60]
Sartorelli, A.C.; Agrawal, K.C. Development of α-(N)-heterocyclic carboxaldehyde thiosemicarbazones with clinical potential as antineoplastic agents, In: Cancer Chemotherapy; ACS Symposium Series; American Chemical Society: Washington, DC. , 1976.
[61]
Agrawal, K.C.; Sartorelli, A.C. Potential antitumor agents. II. Effects of modifications in the side chain of 1-formylisoquinoline thiosemicarbazone. J. Med. Chem., 1969, 12(5), 771-774.
[62]
Richardson, D.R. Iron chelators as therapeutic agents for the treatment of cancer. Crit. Rev. Oncol. Hematol., 2002, 42, 267-281.
[63]
Spingarn, N.E.; Sartorelli, A.C. Synthesis and evaluation of the thiosemicarbazone, dithiocarbazonate, and 2′-pyrazinylhydrazone of pyrazinecarboxaldehyde as agents for the treatment of iron overload. J. Med. Chem., 1979, 22, 1314-1316.
[64]
Easmon, J.; Heinish, G.; Holzer, W.; Rosenwirth, B. Novel thiosemicarbazones derived from formyl- and acyldiazines: Synthesis, effects on cell proliferation, and synergism with antiviral agents. J. Med. Chem., 1992, 35, 3288-3296.
[65]
Becker, E.; Richardson, D.R. Development of novel aroylhydrazone ligands for iron chelation therapy: 2-pyridylcarboxaldehyde isonicotinoyl hydrazone analogs. J. Lab. Clin. Med., 1999, 134, 510-521.
[66]
Richardson, D.R. The controversial role of deferiprone in the treatment of thalassemia. J. Lab. Clin. Med., 2001, 137(5), 324-329.
[67]
Lovejoy, D.B.; Richardson, D.R. Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate high anti-proliferative activity that is selective for tumor cells. Blood, 2002, 100, 666-676.
[68]
Ocean, A.J.; Christos, P.; Sparano, J.A.; Matulich, D.; Kaubish, A.; Siegel, A.; Sung, M.; Ward, M.M.; Hamel, N.; Espinoza-Delgado, I.; Yen, Y.; Lane, M.E. Phase II trial of the ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone plus gemcitabine in patients with advanced biliary tract cancer. Cancer Chemother. Pharmacol., 2010, 68(2), 379-388.
[69]
Wadler, S.; Makower, D.; Clairmont, C.; Lambert, P.; Fehn, K.; Sznol, M. Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, administered by 96-hour intravenous continuous infusion. J. Clin. Oncol., 2004, 22, 1553-1563.
[70]
Kunos, C.A.; Radivoyevitch, T.; Waggoner, S.; Debernardo, R.; Zanotti, K.; Resnick, K.; Fusco, N. Adams, Redline, R.R.; Faulhaber, P.; Dowlati, A. Radiochemotherapy plus 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in advanced-stage cervical and vaginal cancers. Gynecol. Oncol., 2013, 130, 75-80.
[71]
Kunos, C.A.; Waggoner, S.; von Gruenigen, V.; Eldermire, E.; Pink, J.; Dowlati, A.; Kinsella, T.J. Phase I trial of pelvic radiation, weekly cisplatin, and 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) for locally advanced cervical cancer. Clin. Cancer Res., 2010, 16, 1298-1306.
[72]
Odenike, O.M.; Larson, R.A.; Gajria, D.; Dolan, M.E.; Delaney, S.M.; Karrison, T.G.; Ratain, M.J.; Stock, W. Phase I study of the ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde-thiosemicarbazone (3-AP) in combination with high dose cytarabine in patients with advanced myeloid leukemia. Invest. New Drugs, 2008, 26(3), 233-239.
[73]
Yen, Y.; Margolin, K.; Doroshow, J.; Fishman, M.; Johnson, B.; Clairmont, C.; Sullivan, D.; Sznol, M. A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother. Pharmacol., 2004, 54, 331-342.
[74]
Yuan, J.; Lovejoy, D.B.; Richardson, D.R. Novel di-2-pyridyl-derived iron chelators with marked and selective antitumor activity: In vitro and in vivo assessment. Blood, 2004, 104, 1450-1458.
[75]
Kalinowski, D.S.; Richardson, D.R. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev., 2005, 57, 547-583.
[76]
Whitnall, M.; Howard, J.; Ponka, P.; Richardson, D.R. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc. Natl. Acad. Sci. USA, 2006, 103, 14901-14906.
[77]
Lovejoy, D.B.; Sharp, D.M.; Seebacher, N.; Obeidy, P.; Prichard, T.; Stefani, C.; Basha, M.T.; Sharpe, P.C.; Jansson, P.J.; Kalinowski, D.S.; Bernhardt, P.V.; Richardson, D.R. Novel second-generation di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstrate potent activity against lung cancer xenografts after oral and intravenous administration in vivo. J. Med. Chem., 2012, 55, 7230-7244.
[78]
Kovacevic, Z.; Chikhani, S.; Lovejoy, D.B.; Richardson, D.R. Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: A new strategy for the treatment of pancreatic cancer. Mol. Pharmacol., 2011, 80, 598-609.
[79]
Kalinowski, D.S.; Yu, Y.; Sharpe, P.C.; Islam, M.; Liao, Y.T.; Lovejoy, D.B.; Kumar, N.; Bernhardt, P.V.; Richardson, D.R. Design, synthesis, and characterization of novel iron chelators: Structure-activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. J. Med. Chem., 2007, 50, 3716-3729.
[80]
Kalinowski, D.S.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Design, synthesis, and characterization of new iron chelators with anti-proliferative activity: Structure-activity relationships of novel thiohydrazone analogues. J. Med. Chem., 2007, 50, 6212-6225.
[81]
Yu, Y.; Rahmanto, Y.S.; Richardson, D.R. Bp44mT: An orally-active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy. Br. J. Pharmacol., 2012, 165, 148-166.
[82]
Stariat, J.; Kovarikova, P.; Klimes, J.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R. HPLC methods for determination of two novel thiosemicarbazone anti-cancer drugs (N4mT and Dp44mT) in plasma and their application to in vitro plasma stability of these agents. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(3), 316-322.
[83]
Richardson, D.R.; Sharpe, P.C.; Lovejoy, D.B.; Senaratne, D.; Kalinowski, D.S.; Islam, M.; Bernhardt, P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem., 2006, 49, 6510-6521.
[84]
Iakovidou, Z.; Papageorgiou, A.; Demertzis, M.A.; Mioglou, E.; Mourelatos, D.; Kotsis, A.; Yadav, P.N.; Kovala-Demertzi, D. Platinum(II) and palladium(II) complexes with 2-acetylpyridine thiosemicarbazone: Cytogenetic and antineoplastic effects. Anticancer Drugs, 2001, 12, 65-70.
[85]
Demertzi, D.K.; Alexandratos, A.; Papageorgiou, A.; Yadav, P.N.; Dalezis, P.; Demertzis, M.A. Synthesis, characterization, crystal structures, in vitro and in vivo antitumor activity of palladium(II) and zinc(II) complexes with 2-formyl and 2-acetylpyridine N(4)-1-(2-pyridyl)-piperazinyl thiosemicarbazone. Polyhedron, 2008, 27, 2731-2738.
[86]
Demertzi, D.K.; Yadav, P.N.; Demertzis, M.A.; Coluccia, M. Synthesis, crystal structure, spectral properties and cytotoxic activity of platinum(II) complexes of 2-acetyl pyridine and pyridine-2-carbaldehyde N(4)-ethyl-thiosemicarbazones. J. Inorg. Biochem., 2000, 78, 347-354.
[87]
Demertzi, D.K.; Demertzis, M.A.; Filiou, E.; Pantazaki, A.A.; Yadav, P.N.; Miller, J.R.; Zheng, Y.; Kyriakidis, D.A. Platinum(II) and palladium(II) complexes with 2-acetylpyridine 4N-ethyl thiosemicarbazone able to overcome the cis-platin resistance. Structure, antibacterial activity and DNA strand breakage. Biometals, 2003, 16, 411-418.
[88]
Demertzi, D.K.; Yadav, P.N.; Wiecek, J. Skoulika, S.; Varadinova, T.; Demertzis, M.A. Zinc(II) complexes derived from pyridine-2-carbaldehyde thiosemicarbazone and (1E)-1-pyridin-2-ylethan-1-one thiosemicarbazone: Synthesis, crystal structures and antiproliferative activity of zinc(II) complexes. J. Inorg. Biochem., 2006, 100, 1558-1567.
[89]
Serda, M.; Kalinowski, D.S.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Szurko, A.; Ratuszna, A.; Pantarat, N.; Kovacevic, Z.; Merlot, A.M.; Richardson, D.R.; Polanski, J. Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy. Bioorg. Med. Chem. Lett., 2012, 22, 5527-5531.
[90]
Buss, J.L.; Greene, B.T.; Turner, J.; Torti, F.M.; Torti, S.V. Iron chelators in cancer chemotherapy. Curr. Top. Med. Chem., 2004, 4(15), 1623-1635.
[91]
Li, Q.Y.; Zu, Y.G.; Shi, R.Z.; Yao, L.P. Review camptothecin: Current perspectives. Curr. Med. Chem., 2006, 13(17), 2021-2039.
[92]
West, D.X.; Ives, J.S.; Krejci, J.; Salberg, M.M.; Zumbahlen, T.L.; Bain, G.A.; Liberta, A.E.; Valdes-Martınez, J.; Hernandez-Ortega, S.; Toscano, R.A. Copper(II) complexes of 2-benzoylpyridine 4N-substituted thiosemicarbazones. Polyhedron, 1995, 14(15-16), 2189-2200.
[93]
Liberta, A.E.; West, D.X. Antifungal and antitumor activity of heterocyclic thiosemicarbazones and their metal complexes: Current status. Biometals, 1992, 5, 121-126.
[94]
West, D.X.; Ooms, C.E.; Saleda, J.S.; Gebremedhin, H.; Liberta, A.E. Copper(II) and nickel(II) complexes of 2-formylpyridine 3-piperidinyl-, 3-hexamethyleneiminyl- and 3-azabicyclo[3.2.2] nonylthiosemicarbazones. Trans. Met. Chem. , 1994, 19(5), 553-558.
[95]
Miller, M.C.; Stineman, C.N.; Vance, J.R.; West, D.X.; Hall, I.H. The cytotoxicity of copper(II) complexes of 2-acetylpyridyl-4N-substituted thiosemicarbazones. Anticancer Res., 1998, 18, 4131-4139.
[96]
Milunovic, M.N.M.; Enyedy, E.A.; Nagy, N.V.; Kiss, T.; Trondl, R.; Jakupec, M.A.; Keppler, B.K.; Krachler, R.; Novitchi, G.; Arion, V.B. L- and D-proline thiosemicarbazone conjugates: Coordination behavior in solution and the effect of copper(II) coordination on their antiproliferative activity. Inorg. Chem., 2012, 51, 9309-9321.
[97]
Matesanz, A.I.; Joie, C.; Souza, P. Chemistry, antiproliferative activity and low nephrotoxicity of 3,5-diacetyl-1,2,4-triazol bis(4Nthiosemicarbazone) ligands and their platinum(II) complexes. Dalton Trans.,, 2010, 30, 7059-7065.
[98]
Enyedy, E.A.; Nagy, N.V.; Zsigo, E.; Kowol, C.R.; Arion, V.B.; Keppler, B.K.; Kiss, T. Comparative solution equilibrium study of the interactions of copper(II), iron(II) and zinc(II) with Triapine (3-aminopyridine-2-carbaldehyde thiosemicarbazone) and related ligands. Eur. J. Inorg. Chem., 2010, 11, 1717-1728.
[99]
Enyedy, E.A.; Bognar, G.M.; Nagy, N.V.; Jakusch, T.; Kiss, T.; Gambino, D. Solution speciation of potential anticancer metal complexes of salicylaldehyde semicarbazone and its bromo derivative. Polyhedron, 2014, 67, 242-252.
[100]
Rudnev, A.V.; Foteeva, L.S.; Kowol, C.; Berger, R.; Jakupec, M.A.; Arion, V.B.; Timerbaev, A.R.; Keppler, B.K. Preclinical characterization of anticancer gallium(III) complexes: Solubility, stability, lipophilicity and binding to serum proteins. J. Inorg. Biochem., 2006, 100, 1819-1826.
[101]
Kowol, C.; Trondl, R.; Heffeter, P.; Arion, V.; Jakupec, M.; Roller, A.; Galanski, M.; Berger, W.; Keppler, B.K. Impact of metal coordination on cytotoxicity of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine) and novel insights into terminal dimethylation. J. Med. Chem., 2009, 52, 5032-5043.
[102]
West, D.X.; Swearingen, J.K.; Valdes-Martinez, J.; Hernandez-Ortega, S.; El-Sawaf, A.K.; van Meurs, F.; Castineiras, A.; Garcia, I.; Bermejo, E. Spectral and structural studies of iron(III), cobalt(II,III) and nickel(II) complexes of 2-pyridineformamide N(4)-methylthiosemicarbazone. Polyhedron, 1999, 18, 2919-2929.
[103]
Castineiras, A.; Garcia, I.; Bermejo, E.; West, D.X. Structures of 2-pyridineformamide thiosemicarbazone and its complexes with cadmium halides. Polyhedron, 2000, 19, 1873-1880.
[104]
Castineiras, A.; Garcia, I.; Bermejo, E.; West, D.X. Structural and spectral studies of 2-pyridineformamide thiosemicarbazone and its complexes prepared with zinc halides. Z. Naturforsch, 2000, 55b, 511-518.
[105]
Ketcham, K.A.; Swearingen, J.K.; Castineiras, A.; Garcia, I.; Bermejo, E.; West, D.X. Iron(III), cobalt(II, III), copper(II) and zinc(II) complexes of 2-pyridineformamide 3-piperidylthio-semicarbazone. Polyhedron, 2001, 20, 3265-3273.
[106]
Bermejo, E.; Castineiras, A.; Fostiak, I.M.; Garcia-Santos, I.; Swearingen, J.K.; West, D.X. Spectral and structural studies of Zn and Cd complexes of 2-pyridineformamide N(4)-ethylthiose-micarbazone. Polyhedron, 2004, 23, 2303-2313.
[107]
Bermejo, E.; Castineiras, A.; Garcia-Santos, I.; West, D.X. Structural and coordinative variability in zinc(II), cadmium(II), and mercury(II) complexes of 2-pyridineformamide 3-hexamethyl-eneiminyl thiosemicarbazone. Z. Anorg. Allg. Chem., 2004, 630, 1096-1009.
[108]
Mendes, I.C.; Moreira, J.P.; Ardisson, J.D.; Dos Santos, R.G.; da Silva, P.R.O.; Garcia, I.; Castiñeiras, A.; Beraldo, H. Organotin(IV) complexes of 2-pyridineformamide derived thiosemicarbazones: Antimicrobial and cytotoxic effects. Eur. J. Med. Chem., 2008, 43, 1454-1461.
[109]
Shakya, B.; Yadav, P.N.; Ueda, J.Y.; Awale, S. Discovery of 2-pyridineformamide thiosemicarbazones as potent antiausterity agents. Bioorg. Med. Chem. Lett., 2014, 24, 458-461.
[110]
Shakya, B.; Shahi, N.; Ahmad, F.; Pokhrel, Y.R.; Yadav, P.N. 2-Pyridineformamide N(4)-ring incorporated thiosemicarbazones inhibit MCF-7 cells by inhibiting JNK pathway. Bioorg. Med. Chem. Lett., 2019, 29, 1677-1681.
[111]
Graminha, A.E.; Vilhena, F.S.; Batista, A.A.; Louro, S.R.W.; Ziolli, R.L.; Teixeira, L.R.; Beraldo, H. 2-Pyridinoformamide-derived thiosemicarbazones and their iron(III) complexes: Potential antineoplastic activity. Polyhedron, 2008, 27, 547-551.
[112]
Mendes, I.C.; Soares, M.A.; Dos Santos, R.G.; Pinheiro, C.; Beraldo, H. Gallium (III) complexes of 2-pyridineformamide thiosemicarbazones: Cytotoxic activity against malignant glioblastoma. Eur. J. Med. Chem., 2009, 44, 1870-1877.
[113]
Shakya, B.; Adhikari, S.; Lamichhane, J.; Yadav, P.N. Synthesis of N'-(4-Methylpiperazine-1-carbonothioyl)picolino-hydrazonamide as an antineoplastic agent. J. Nepal Chem. Soc., 2013, 32, 11-18.
[114]
Ali, A.Q.; Teoh, S.G.; Eltayeb, N.E.; Ahamed, M.B.K.; Majid, A.M.S.A. Synthesis of copper(II) complexes of isatin thiosemicarbazone derivatives: In vitro anti-cancer, DNA binding, and cleavage activities. Polyhedron, 2014, 74, 6-15.
[115]
Ali, A.Q.; Teoh, S.G.; Salhhin, A.; Eltayeb, N.E.; Ahamed, M.B.K.; Majid, A.M.S.A. Synthesis of platinum(II) complexes of isatin thiosemicarbazones derivatives: In vitro anti-cancer and deoxyribose nucleic acid binding activities. Inorg. Chim. Acta, 2014, 416, 235-244.
[116]
Mathiyan, M.; Surendran, S.; Nattamai, S.P.B.; Anandaram, S. Synthesis and crystal structure of new monometallic and bimetallic copper(II) complexes with N-substituted isatin thiosemicarbazone ligands: Effects of the complexes on DNA/protein-binding property, DNA cleavage study and in vitro anticancer activity. Polyhedron, 2016, 118, 103-117.
[117]
West, D.X.; Liberta, A.E. Thiosemicarbazone complexes of copper(II): Structural and biological studies. Coord. Chem. Rev., 1993, 123, 49-71.
[118]
Beraldo, H.; Gambino, D. The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Rev. Med. Chem., 2004, 4(1), 31-39.
[119]
Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev., 2010, 30(4), 708-749.
[120]
Wang, J.; Yin, D.; Xie, C.; Zheng, T.; Liang, Y.; Hong, X.; Lu, Z.; Song, X.; Song, R.; Yang, H.; Sun, B.; Bhatta, N.; Meng, X.; Pan, S.; Jiang, H.; Liu, L. The iron chelator Dp44mT inhibits hepatocellular carcinoma metastasis via N-myc downstream-regulated gene 2 (NDRG2)/gp130/STAT3 pathway. Oncotarget, 2014, 5, 8478-8491.
[121]
Le, N.T.; Richardson, D.R. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim. Biophys. Acta, 2002, 1603, 31-46.
[122]
Lieu, P.T.; Heiskala, M.; Peterson, P.A.; Yang, Y. The roles of iron in health and disease. Mol. Aspects Med., 2001, 22, 1-87.
[123]
Torti, S.V.; Torti, F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer, 2013, 13, 342-355.
[124]
Kalinowski, D.S.; Richardson, D.R. Future of toxicology-iron chelators and differing modes of action and toxicity: The changing face of iron chelation therapy. Chem. Res. Toxicol., 2007, 20, 715-720.
[125]
Richardson, D.R.; Kalinowski, D.S.; Lau, S.; Jansson, P.J.; Lovejoy, D.B. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim. Biophys. Acta, 2009, 1790, 702-717.
[126]
Richardson, D.R.; Tran, E.H.; Ponka, P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood, 1995, 86, 4295-4306.
[127]
Richardson, D.R. The therapeutic potential of iron chelators. Expert Opin. Investig. Drugs, 1999, 8, 2141-2158.
[128]
Richardson, D.R.; Baker, E. The uptake of iron and transferrin by the human malignant melanoma cell. Biochim. Biophys. Acta, 1990, 1053, 1-12.
[129]
Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med., 1999, 341, 1986-1995.
[130]
Anderson, G.J.; Vulpe, C.D. Mammalian iron transport. Cell. Mol. Life Sci., 2009, 66, 3241-3261.
[131]
Dunn, L.L.; Rahmanto, Y.S.; Richardson, D.R. Iron uptake and metabolism in the new millennium. Trends Cell Biol., 2007, 17, 93-100.
[132]
Zhang, C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 2014, 5, 750-760.
[133]
Lill, R.; Hoffmann, B.; Molik, S.; Pierik, A.J.; Rietzschel, N.; Stehling, O.; Uzarska, M.A.; Webert, H.; Wilbrecht, C.; Muhlenhoff, U. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta, 2012, 1823, 1491-1508.
[134]
Zhao, N.; Gao, J.; Enns, C.A.; Knutson, M.D. ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J. Biol. Chem., 285, 2010, 32141-32150
[135]
Zhang, F.; Tao, Y.; Zhang, Z.; Guo, X.; An, P.; Shen, Y.; Wu, Q.; Yu, Y.; Wang, F. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica, 2012, 97, 1826-1835.
[136]
Pantopoulos, K.; Porwal, S.K.; Tartakoff, A.; Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry, 2012, 51, 5705-5724.
[137]
Gkouvatsos, K.; Papanikolaou, G.; Pantopoulos, K. Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta, 2012, 1820, 188-202.
[138]
Zhang, C.; Liu, G.; Huang, M. Ribonucleotide reductase metallocofactor: Assembly, maintenance and inhibition. Front. Biol. (Beijing), 2014, 9, 104-113.
[139]
Larrick, J.W.; Cresswell, P. Modulation of cell surface iron transferrin receptors by cellular density and state of activation. J. Supramol. Struct., 1979, 11, 579-586.
[140]
Sutherland, R.; Delia, D.; Schneider, C.; Newman, R.; Kemshead, J.; Greaves, M. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc. Natl. Acad. Sci. USA, 1981, 78, 4515-4519.
[141]
Trinder, D.; Zak, O.; Aisen, P. Transferrin receptor-independent uptake of diferric transferrin by human hepatoma cells with antisense inhibition of receptor expression. Hepatology, 1996, 23, 1512-1520.
[142]
Richardson, D.; Baker, E. Two mechanisms of iron uptake from transferrin by melanoma cells. The effect of desferrioxamine and ferric ammonium citrate. J. Biol. Chem., 1992, 267, 13972-13979.
[143]
Chaston, T.B.; Richardson, D.R. Iron chelators for the treatment of iron overload disease: Relationship between structure, redox activity, and toxicity. Am. J. Hematol., 2003, 73, 200-210.
[144]
Lippert, B., Ed.; Cisplatin: Chemistry and biochemistry of a leading anticancer drug; Weinheim: Wiley-VCH: New York,. , 1999.
[145]
Louie, A.Y.; Meade, T.J. Metal complexes as enzyme inhibitors. Chem. Rev., 1999, 99, 2711-2734.
[146]
French, F.A.; Blanz, E.J., Jr; Shaddix, S.C.; Brockman, R.W. α-(N)-Formylheteroaromatic thiosemicarbazone - Inhibition of tumor-derived ribonucleoside diphosphate reductase and correlation with in vivo antitumor activity. J. Med. Chem., 1974, 17(2), 172-181.
[147]
Brockman, R.W.; Sidwell, R.W.; Arnett, G.; Shaddix, S. Heterocyclic thiosemicarbazones: Correlation between structure, inhibition of ribonucleotide reductase, and inhibition of DNA viruses. Proc. Soc. Exp. Biol. Med., 1970, 133, 609-614.
[148]
Sartorelli, A.C.; Agrawal, K.C.; Tsiftsoglou, A.S.; Moore, E.C. Characterization of the biochemical mechanism of action of α-(N)-heterocyclic carboxaldehyde thiosemicarbazones. Adv. Enzyme Regul., 1976, 15, 117-139.
[149]
Goan, Y.G.; Zhou, B.; Hu, E.; Mi, S.; Yen, Y. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res., 1999, 59(17), 4204-4207.
[150]
Potsch, S.; Drechsler, H.; Liermann, B.; Graslund, A.; Lassmann, G. p-Alkoxyphenols, a new class of inhibitors of mammalian R2 ribonucleotide reductase: Possible candidates for antimelanotic drugs. Mol. Pharmacol., 1994, 45, 792-796.
[151]
Holland, K.P.; Elford, H.L.; Bracchi, V.; Annis, C.G.; Schuster, S.M.; Chakrabarti, D. Antimalarial activities of polyhydroxyphenyl and hydroxamic acid derivatives. Antimicrob. Agents Chemother., 1998, 42, 2456-2458.
[152]
Bianchi, V.; Borella, S.; Calderazzo, F.; Ferraro, P.; Chieco, B.L.; Reichard, P. Inhibition of ribonucleotide reductase by 2′-substituted deoxycytidine analogs: Possible application in AIDS treatment. Proc. Natl. Acad. Sci. USA, 1994, 91, 8403-8407.
[153]
Jordan, A.; Torrents, E.; Sala, I.; Hellman, U.; Gibert, I.; Reichard, P. Ribonucleotide reduction in Pseudomonas species: Simultaneous presence of active enzymes from different classes. J. Bacteriol., 1999, 181, 3974-3980.
[154]
Weber, G. Biochemical strategy of cancer cells and the design of chemotherapy: G.H.A. Clowes Memorial Lecture1. Cancer Res., 1983, 43, 3466-3492.
[155]
Guarino, E.; Salguero, I.; Kearsey, S.E. Cellular regulation of ribonucleotide reductase in eukaryotes. Semin. Cell Dev. Biol., 2014, 30, 97-103.
[156]
Aye, Y.; Li, M.; Long, M.J.; Weiss, R.S. Ribonucleotide reductase and cancer: Biological mechanisms and targeted therapies. Oncogene, 2015, 34, 2011-2021.
[157]
Eklund, H.; Uhlin, U.; Farnegardh, M.; Logan, D.T.; Nordlund, P. Structure and function of the radical enzyme ribonucleotide reductase. Prog. Biophys. Mol. Biol., 2001, 77(3), 177-268.
[158]
Tanaka, H.; Arakawa, H.; Yamaguchi, T.; Shiraishi, K.; Fukuda, S.; Matsui, K.; Takei, Y.; Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 2000, 404, 42-49.
[159]
Shao, J.; Zhou, B.; Zhu, L.; Bilio, A.J.; Su, L.; Yuan, Y.C.; Ren, S.; Lien, E.J.; Shih, J.; Yen, Y. Determination of the potency and subunit-selectivity of ribonucleotide reductase inhibitors with a recombinant-holoenzyme-based in vitro assay. Biochem. Pharmacol., 2005, 69(4), 627-634.
[160]
Xue, L.; Zhou, B.; Liu, X.; Qiu, W.; Jin, Z.; Yen, Y. Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res., 2003, 63, 980-986.
[162]
Shao, J.; Zhou, B.; Di Bilio, J.; Zhu, L.; Wang, T.; Qi, C.; Shih, J.; Yen, Y. A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol. Cancer Ther., 2006, 5, 586-592.
[163]
Thelander, L.; Reichard, P. Reduction of ribonucleotides. Annu. Rev. Biochem., 1979, 48, 133-158.
[164]
Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemsitry, 5th ed; W. H. Freeman and Company, 2008.
[165]
Natarajan, S.; Mathews, R. Modeling and proposed mechanism of two radical scavengers through docking to curtail the action of ribonucleotide reductase. J. Biophys. Str. Biol., 2011, 3(2), 38-48.
[166]
Antholine, W.E.; Knight, J.M.; Petering, D.H. Inhibition of tumor cell transplantability by iron and copper complexes of 5-substituted 2-formylpyridine thiosemicarbazones. J. Med. Chem., 1976, 19, 339-341.
[167]
Yu, Y.; Rahmanto, Y.S.; Hawkins, C.L.; Richardson, D.R. The potent and novel thiosemicarbazone chelators di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone affect crucial thiol systems required for ribonucleotide reductase activity. Mol. Pharmacol., 2011, 79(6), 921-931.
[168]
Stubbe, J. Ribonucleotide reductases: Amazing and confusing. J. Biol. Chem., 1990, 265, 5329-5332.
[169]
Mao, S.S.; Holler, T.P.; Yu, G.X.; Bollinger, J.M.; Booker, S.; Johnston, M.I.; Stubbe, J. A model for the role of multiple cysteine residues involved in ribonucleotide reduction: Amazing and still confusing. Biochemistry, 1992, 31(40), 9733-9743.
[170]
Stubbe, J.; van der Donk, W.A. Protein radicals in enzyme catalysis. Chem. Rev., 1998, 98(2), 705-762.
[171]
Kolberg, M.; Strand, K.R.; Graff, P.; Andersson, K.K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta, 2004, 1699, 1-34.
[172]
Thelander, L.; Graslund, A. Mechanism of inhibition of mammalian ribonucleotide reductase by the iron chelate of 1-formylisoquinoline thiosemicarbazone. Destruction of the tyrosine free radical of the enzyme in an oxygen-requiring reaction. J. Biol. Chem., 1983, 258, 4063-4066.
[173]
Trossini, G.H.G.; Guido, R.V.C.; Oliva, G.; Ferreira, E.I.; Andricopulo, A.D. Quantitative structure-activity relationships for a series of inhibitors of cruzain from Trypanosoma cruzi: Molecular modeling, CoMFA and CoMSIA studies. J. Mol. Graph. Model., 2009, 28, 3-11.
[174]
Pelosi, G. Thiosemicarbazone metal complexes: From structure to activity. The Open Crystall. J.,, 2010, 3, 16-28.
[175]
Weinberg, E.D. The role of iron in cancer. Eur. J. Cancer Prev., 1996, 5, 19-36.
[176]
D’Autreaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8, 813-824.
[177]
Liu, Z.D.; Hider, R.C. Design of iron chelators with therapeutic application. Coord. Chem. Rev., 2002, 232, 151-171.
[178]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3, 205-214.
[179]
Fenton, H.J.H. On a new reaction of tartaric acid. Chem. News, 1876, 33, 190-190.
[180]
Wardman, P.; Candeias, L.P. Fenton chemistry: An introduction. Radiat. Res., 1996, 145, 523-531.
[181]
Liochev, S.I. The mechanism of “Fenton-like” reactions and their importance for biological systems. A biologist’s view. Met. Ions Biol. Syst., 1999, 36, 1-39.
[182]
Papanikolaou, G.; Pantopoulos, K. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol., 2005, 202, 199-211.
[183]
Andrews, N.C. Iron homeostasis: Insights from genetics and animal models. Nat. Rev. Genet., 2000, 1, 208-217.
[184]
Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat., 2004, 7, 97-110.
[185]
Ghaffari, S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid. Redox Signal., 2008, 10, 1923-1940.
[186]
Torti, S.V.; Torti, F.M. Ironing out cancer. Cancer Res., 2011, 71, 1511-1514.
[187]
West, D.X.; Padhye, S.B.; Sonawane, P.B. Structural and physical correlations in the biological properties of transition metal heterocyclic thiosemicarbazone and S-alkyldithiocarbazate complexes. Struct. Bonding, Springer, 1991, 76, 1-50.
[188]
Jansson, P.J.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Novel thiosemicarbazones of the ApT and DpT series and their copper complexes: Identification of pronounced redox activity and characterization of their antitumor activity. J. Med. Chem., 2010, 53, 5759-5769.
[189]
Buss, J.L.; Neuzil, J.; Ponka, P. Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs. Arch. Biochem. Biophys., 2004, 421, 1-9.
[190]
Basu, S.; Majumder, S.; Chatterjee, S.; Ganguly, A.; Efferth, T.; Choudhuri, S.K. Detection and characterization of a glutathione conjugate of a novel copper complex. In Vivo, 2009, 23, 401-408.
[191]
Majumder, S.; Dutta, P.; Mookerjee, A.; Choudhuri, S.K. The role of a novel copper complex in overcoming doxorubicin resistance in Ehrlich ascites carcinoma cells in vivo. Chem. Biol. Interact., 2006, 159, 90-103.
[192]
Saryan, L.A.; Mailer, K.; Krishnamurti, C.; Antholine, W.; Petering, D.H. Interaction of 2-formylpyridine thiosemicarbazonato copper(II) with Ehrlich ascites tumor cells. Biochem. Pharmacol., 1981, 30, 1595-1604.
[193]
Byrnes, R.W.; Antholine, W.E.; Petering, D.H. Oxidation-reduction reactions in Ehrlich cells treated with copper-neocuproine. Free Radic. Biol. Med., 1992, 13, 469-478.
[194]
Liu, Y.; Fiskum, G.; Schubert, D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem., 2002, 80, 780-787.
[195]
Tsang, S.Y.; Tam, S.C.; Bremner, I.; Burkitt, M.J. Research communication copper-1,10-phenanthroline induces inter-nucleosomal DNA fragmentation in HepG2 cells, resulting from direct oxidation by the hydroxyl radical. Biochem. J., 1996, 317, 13-16.
[196]
Byrnes, R.W.; Mohan, M.; Antholine, W.E.; Xu, R.X.; Petering, D.H. Oxidative stress induced by a copper-thiosemicarbazone complex. Biochemistry, 1990, 29, 7046-7053.
[197]
Antholine, W.E.; Taketa, F. Effects of 2-formylpyridine monothiosemicarbazonato copper II on red cell components. J. Inorg. Biochem., 1984, 20, 69-78.
[198]
Khan, M.F.; Ohno, Y.; Takanaka, A. Effect of tetrakismu-3,5-diisopropylsalicylatodiaquodicopper(II) on the status of reduced glutathione in freshly isolated hepatocytes. Arch. Toxicol., 1992, 66, 587-591.
[199]
Majumder, S.; Panda, G.S.; Choudhuri, S.K. Synthesis, characterization and biological properties of a novel copper complex. Eur. J. Med. Chem., 2003, 38, 893-898.
[200]
McCann, M.; Geraghty, M.; Devereux, M.; O’Shea, D.; Mason, J.; O’Sullivan, L. Insights into the mode of action of the anti-Candida activity of 1,10-phenanthroline and its metal chelates. Met. Based Drugs, 2000, 7, 185-193.
[201]
Narasimhan, J.; Antholine, W.E.; Chitambar, C.R.; Petering, D.H. Inhibition of iron uptake in HL60 cells by 2-formylpyridine monothiosemicarbazonato Cu(II). Arch. Biochem. Biophys., 1991, 289, 393-398.
[202]
Kowol, C.R.; Heffeter, P.; Miklos, W.; Gille, L.; Trondl, R.; Cappelacci, L.; Berger, W.; Keppler, B.K. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds. J. Biol. Inorg. Chem., 2012, 17, 409-423.
[203]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144, 646-674.
[204]
Fang, B.A.; Kovacevic, Z.; Park, K.C.; Kalinowski, D.S.; Jansson, P.J.; Lane, D.J.; Sahni, S.; Richardson, D.R. Molecular functions of the iron-regulated metastasis suppressor, Ndrg1, and its potential as a molecular target for cancer therapy. Biochim. Biophys. Acta, 2014, 1845, 1-19.
[205]
Sun, J.; Zhang, D.; Bae, D.H.; Sahni, S.; Jansson, P.; Zheng, Y.; Zhao, Q.; Yue, F.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis, 2013, 34, 1943-1954.
[206]
Kovacevic, Z.; Fu, D.; Richardson, D.R. The iron-regulated metastasis suppressor, Ndrg-1: Identification of novel molecular targets. Biochim. Biophys. Acta, 2008, 1783, 1981-1992.
[207]
Chen, Z.; Zhang, D.; Yue, F.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. The iron chelators Dp44mT and DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (Ndrg1). J. Biol. Chem., 2012, 287, 17016-17028.
[208]
Bandyopadhyay, S.; Pai, S.K.; Gross, S.C.; Hirota, S.; Hosobe, S.; Miura, K.; Saito, K.; Commes, T.; Hayashi, S.; Watabe, M.; Watabe, K. The Drg-1 gene suppresses tumor metastasis in prostate cancer. Cancer Res., 2003, 63, 1731-1736.
[209]
Guan, R.J.; Ford, H.L.; Fu, Y.; Li, Y.; Shaw, L.M.; Pardee, A.B. Drg-1 as a differentiation related, putative metastatic suppressor gene in human colon cancer. Cancer Res., 2000, 60, 749-755.
[210]
Bandyopadhyay, S.; Pai, S.K.; Hirota, S.; Hosobe, S.; Tsukada, T.; Miura, K.; Takano, Y.; Saito, K.; Commes, T.; Piquemal, D.; Watabe, M.; Gross, S.; Wang, Y.; Huggenvik, J.; Watabe, K. PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res., 2004, 64, 7655-7660.
[211]
Lachat, P.; Shaw, P.; Gebhard, S.; van Belzen, N.; Chaubert, P.; Bosman, F.T. Expression of Ndrg1, a differentiation-related gene, in human tissues. Histochem. Cell Biol., 2002, 118(5), 399-408.
[212]
Angst, E.; Dawson, D.W.; Stroka, D.; Gloor, B.; Park, J.; Candinas, D.; Reber, H.A.; Hines, O.J.; Eibl, G. N-myc downstream regulated gene-1 expression correlates with reduced pancreatic cancer growth and increased apoptosis in vitro and in vivo. Surgery, 2011, 149, 614-624.
[213]
Maruyama, Y.; Ono, M.; Kawahara, A.; Yokoyama, T.; Basaki, Y.; Kage, M.; Aoyagi, S.; Kinoshita, H.; Kuwano, M. Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/Ndrg1/Drg-1 through modulation of angiogenesis. Cancer Res., 2006, 66, 6233-6242.
[214]
Bandyopadhyay, S.; Pai, S.K.; Hirota, S.; Hosobe, S.; Takano, Y.; Saito, K.; Piquemal, D.; Commes, T.; Watabe, M.; Gross, S.C.; Wang, Y.; Ran, S.; Watabe, K. Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene, 2004, 23, 5675-5681.
[215]
Zhao, G.; Chen, J.; Deng, Y.; Gao, F.; Zhu, J.; Feng, Z.; Lv, X.; Zhao, Z. Identification of Ndrg1-regulated genes associated with invasive potential in cervical and ovarian cancer cells. Biochem. Biophys. Res. Commun., 2011, 408, 154-159.
[216]
Le, N.T.; Richardson, D.R. Iron chelators with high antiproliferative activity upregulate the expression of a growth inhibitory and metastasis suppressor gene: A link between iron metabolism and proliferation. Blood, 2004, 104, 2967-2975.
[217]
Lane, D.J.; Saletta, F.; Rahmanto, Y.S.; Kovacevic, Z.; Richardson, D.R. N-myc downstream regulated 1 (Ndrg1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion. PLoS One, 2013, 8e57273
[218]
Kadayat, T.M.; Park, C.; Jun, K.Y.; Magar, T.B.T.; Bist, G.; Yoo, H.Y.; Kwon, Y.; Lee, E.S. Hydroxylated 2,4-diphenyl indenopyridine derivatives as a selective non-intercalative topoisomerase IIα catalytic inhibitor. Eur. J. Med. Chem., 2015, 90, 302-314.
[219]
Kadayat, T.M.; Park, C.; Jun, K.Y.; Magar, T.B.T.; Bist, G.; Yoo, H.Y.; Kwon, Y.; Lee, E.S. Design and synthesis of novel 2,4-diaryl-5H-indeno[1,2-b]pyridine derivatives, and their evaluation of topoisomerase inhibitory activity and cytotoxicity. Bioorg. Med. Chem., 2015, 23, 160-173.
[220]
Bisceglie, F.; Musiari, A.; Pinelli, S.; Alinovi, R.; Menozzi, I.; Polverini, E.; Tarasconi, P.; Tavone, M.; Pelosi, G. Quinoline-2-carboxaldehyde thiosemicarbazones and their Cu(II) and Ni(II) complexes as topoisomerase IIα inhibitors. J. Inorg. Biochem., 2015, 152, 10-19.
[221]
Tabassum, S.; Asim, A.; Khan, R.A.; Arjmand, F.; Rajakumar, D.; Balaji, P.; Akbarsha, M.A. A multifunctional molecular entity Cu(II)-Sn(IV) heterobimetallic complex as a potential cancer chemotherapeutic agent: DNA binding/cleavage, SOD mimetic, topoisomerase iα inhibitory and in vitro cytotoxic activities. RSC Advances, 2015, 5, 47439-47450.
[222]
Shen, Y.; Chen, W.; Zhao, B.; Hao, H.; Li, Z.; Lu, C.; Shen, Y. CS1 is a novel topoisomerase IIα inhibitor with favorable drug resistance profiles. Biochem. Biophys. Res. Commun., 2014, 453, 302-308.
[223]
Majumdar, P.; Bathula, C.; Basu, S.M.; Das, S.K.; Agarwal, R.; Hati, S.; Singh, A.; Sen, S.; Das, B.B. Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. Eur. J. Med. Chem., 2015, 102, 540-551.
[224]
Tabassum, S.; Zaki, M.; Afzal, M.; Arjmand, F. Synthesis and characterization of Cu (II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα: In vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. Eur. J. Med. Chem., 2014, 74, 509-523.
[225]
Zhang, J.P.; Huang, J.; Liu, C.; Lu, X.F.; Wu, B.X.; Zhao, L.; Lu, N.; Guo, Q.L.; Li, Z.Y.; Jiang, C. Discovery of a series of pyridopyrimidine derivatives as potential topoisomerase I inhibitors. Chin. Chem. Lett., 2014, 25, 1025-1028.
[226]
Islam, M.S.; Park, S.; Song, C.; Kadi, A.A.; Kwon, Y.; Rahman, A.F.M.M. Fluorescein hydrazones: A series of novel non-intercalative topoisomerase IIα catalytic inhibitors induce G1 arrest and apoptosis in breast and colon cancer cells. Eur. J. Med. Chem., 2017, 125, 49-67.
[227]
Yu, L.M.; Zhang, X.R.; Li, X.B.; Yang, Y.; Wei, H.Y.; He, X.X.; Gu, L.Q.; Huang, Z.S.; Pommier, Y.; An, L.K. Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors. Eur. J. Med. Chem., 2015, 101, 525-533.
[228]
Li, Z.X.; Li, J.; Li, Y.; You, K.; Xu, H.; Wang, J. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell. Biochem. Biophys. Res. Commun., 2015, 464, 548-553.
[229]
Chew, S.T.; Lo, K.M.; Lee, S.K.; Heng, M.P.; Teoh, W.Y.; Sim, K.S.; Tan, K.W. Copper complexes with phosphonium containing hydrazone ligand: Topoisomerase inhibition and cytotoxicity study. Eur. J. Med. Chem., 2014, 76, 397-407.
[230]
Wambang, N.; Schifano-Faux, N.; Aillerie, A.; Baldeyrou, B.; Jacquet, C.; Bal-Mahieu, C.; Bousquet, T.; Pellegrini, S.; Ndifon, P.T.; Meignan, S.; Goossens, J.F.; Lansiaux, A.; Pélinski, L. Synthesis and biological activity of ferrocenyl indeno[1,2-c] isoquinolines as topoisomerase II inhibitors. Bioorg. Med. Chem., 2016, 24, 651-660.
[231]
Karki, R.; Song, C.; Kadayat, T.M.; Magar, T.B.T.; Bist, G.; Shrestha, A.; Na, Y.; Kwon, Y.; Lee, E.S. Topoisomerase I and II inhibitory activity, cytotoxicity, and structure--activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines. Bioorg. Med. Chem., 2015, 23, 3638-3654.
[232]
Nguyen, T.X.; Abdelmalak, M.; Marchand, C.; Agama, K.; Pommier, Y.; Cushman, M. Synthesis and biological evaluation of nitrated 7-, 8-, 9-, and 10-hydroxyindenoisoquinolines as potential dual topoisomerase I (top1)−tyrosyl-DNA phosphodiesterase I (TDP1) inhibitors. J. Med. Chem., 2015, 58(7), 3188-3208.
[233]
Khadka, D.B.; Woo, H.; Yang, S.H.; Zhao, C.; Jin, Y.; Le, T.N.; Kwon, Y.; Cho, W.J. Modification of 3-arylisoquinolines into 3,4-diarylisoquinolines and assessment of their cytotoxicity and topoisomerase inhibition. Eur. J. Med. Chem., 2015, 92, 583-607.
[234]
Yao, B.L.; Mai, Y.W.; Chen, S.B.; Xie, H.T.; Yao, P.F.; Ou, T.M.; Tan, J.H.; Wang, H.G.; Li, D.; Huang, S.L.; Gu, L.Q.; Huang, Z.S. Design, synthesis and biological evaluation of novel 7-alkylamino substituted benzo[α]phenazin derivatives as dual topoisomerase I/II inhibitors. Eur. J. Med. Chem., 2015, 92, 540-553.
[235]
Ucuncuoglu, N.; Andricioaei, I.; Sari, L. Insights from simulations into the mechanism of human topoisomerase I: Explanation for a seeming controversy in experiments. J. Mol. Graph. Model., 2013, 44, 286-296.
[236]
Lin, H.F.; Huang, H.L.; Liao, J.F.; Shen, C.C.; Huang, R.L. Dicentrine analogue-induced G2/M arrest and apoptosis through inhibition of topoisomerase II activity in human cancer cells. Planta Med., 2015, 81, 830-837.
[238]
Chan, M.K.; Fadzil, N.A.; Chew, A.L.; Khoo, B.Y. New molecular biologist perspective and insight: DNA topoisomerases production by recombinant DNA technology for medical laboratory application and pharmaceutical industry. Electron. J. Biotechnol., 2013, 16, 1-10.
[239]
Nateewattana, J.; Dutta, S.; Reabroi, S.; Saeeng, R.; Kasemsook, S.; Chairoungdua, A.; Weerachayaphorn, J.; Wongkham, S.; Piyachaturawat, P. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase II alpha inhibition. Eur. J. Pharmacol., 2014, 723, 148-155.
[240]
Khadka, D.B.; Tran, G.H.; Shin, S.; Nguyen, H.T.M.; Cao, H.T.; Zhao, C.; Jin, Y.; Van, H.T.M.; Chau, M.V.; Kwon, Y.; Le, T.N.; Cho, W.J. Substituted 2-arylquinazolinones: Design, synthesis, and evaluation of cytotoxicity and inhibition of topoisomerases. Eur. J. Med. Chem., 2015, 103, 69-79.
[241]
Wang, J.C. DNA topoisomerases. Annu. Rev. Biochem., 1996, 65, 635-692.
[242]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17, 421-433.
[243]
Schoeffler, A.J.; Berger, J.M. DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys., 2008, 41, 41-101.
[244]
Beck, W.T.; Danks, M.K.; Wolverton, J.S.; Chen, M.; Granzen, B.; Kim, R.; Suttle, D.P. Resistance of mammalian tumor cells to inhibitors of DNA topoisomerase II. Adv. Pharmacol., 1994, 29B, 145-169.
[245]
Hochhauser, D.; Harris, A.L. The Role of topoisomerase IIα and β in drug resistance. Cancer Treat. Rev., 1993, 19(2), 181-194.
[246]
Hwang, J.; Hwong, C.L. Cellular regulation of mammalian DNA topoisomerase. Adv. Pharmacol., 1994, 29A, 167-189.
[247]
Woessner, R.D.; Mattern, M.R.; Mirabelli, C.K.; Johnson, R.K.; Drake, F.H. Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ., 1991, 2(4), 209-214.
[248]
Azarova, A.M.; Lyu, Y.L.; Lin, C.P.; Tsai, Y.C.; Lau, J.Y.; Wang, J.C.; Liu, L.F. Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc. Natl. Acad. Sci. USA, 2007, 104, 11014-11019.
[249]
Toyoda, E.; Kagaya, S.; Cowell, I.G.; Kurosawa, A.; Kamoshita, K.; Nishikawa, K.; Iiizumi, S.; Koyama, H.; Austin, C.A.; Adachi, N. NK314, a topoisomerase II inhibitor that specifically targets the α isoform. J. Biol. Chem., 2008, 283(35), 23711-23720.
[250]
Chen, W.; Qiu, J.; Shen, Y. Topoisomerase IIα, rather than IIβ, is a promising target in development of anti-cancer drugs. Drug D. Ther., 2012, 6(5), 230-237.
[251]
Chaston, T.B.; Richardson, D.R. Interactions of the pyridine-2-carboxaldehyde isonicotinoyl hydrazone class of chelators with iron and DNA: Implications for toxicity in the treatment of iron overload disease. J. Biol. Inorg. Chem., 2003, 8, 427-438.
[252]
Burgess, D.J.; Doles, J.; Zender, L.; Xue, W.; Ma, B.; McCombie, W.R.; Hannon, G.J.; Lowe, S.W.; Hemann, M.T. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105, 9053-9058.
[253]
Huang, H.; Chen, Q.; Ku, X.; Meng, L.; Lin, L.; Wang, X.; Zhu, C.; Wang, Y.; Chen, Z.; Li, M.; Jiang, H.; Chen, K.; Ding, J.; Liu, H. A series of α-heterocyclic carboxaldehyde thiosemicarbazones inhibit topoisomerase IIα catalytic activity. J. Med. Chem., 2010, 53, 3048-3064.
[254]
Rao, V.A.; Klein, S.R.; Agama, K.K.; Toyoda, E.; Adachi, N.; Pommier, Y.; Shacter, E.B. The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIα in breast cancer cells. Cancer Res., 2009, 69, 948-957.
[255]
Zeglis, B.M.; Divilov, V.; Lewis, J.S. Role of metalation in the topoisomerase IIα inhibition and antiproliferation activity of a series of α-heterocyclic-N4-substituted thiosemicarbazones and their Cu(II) complexes. J. Med. Chem., 2011, 54, 2391-2398.
[256]
Shukla, S.; Srivastava, R.S.; Shrivastava, S.K.; Sodhi, A.; Kumar, P. Synthesis, characterization and antiproliferative activity of 1,2-naphthoquinone and its derivatives. Appl. Biochem. Biotechnol., 2012, 167, 1430-1435.
[257]
Wei, L.; Easmon, J.; Nagi, R.K.; Muegge, B.D.; Meyer, L.A.; Lewis, J.S. 64Cu azabicyclo[3.2.2]nonane thiosemicarbazone complexes: Radiopharmaceuticals for PET of topoisomerase II expression in tumors. J. Nucl. Med., 2006, 47, 2034-2041.
[258]
Hileti, D.; Panayiotidis, P.; Hoffbrand, A.V. Iron chelators induce apoptosis in proliferating cells. Br. J. Haematol., 1995, 89, 181-187.
[259]
Greene, B.T.; Thorburn, J.; Willingham, M.C.; Thorburn, A.; Planalp, R.P.; Brechbiel, M.W.; Jennings-Gee, J.; Wilkinson, J.; Torti, F.M.; Torti, S.V. Activation of caspase pathways during iron chelator-mediated apoptosis. J. Biol. Chem.277, 2002, 25568-25575.
[260]
Lim, M.L.R.; Lum, M.G.; Hansen, T.M.; Roucou, X.; Nagley, P. On the release of cytochrome c from mitochondria during cell death signaling. J. Biomed. Sci., 2002, 9, 488-506.
[261]
Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res.256, 2000, 42-49.
[262]
Ul-Haq, R.U.; Wereley, J.P.; Chitambar, C.R. Induction of apoptosis by iron deprivation in human leukemic CCRF-CEM cells. Exp. Hematol., 1995, 23, 428-432.
[263]
Schwartz, P.E. Current diagnosis and treatment modalities for ovarian cancer. Cancer Treat. Res., 2002, 107, 99-118.
[264]
Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science, 2004, 305, 626-629.
[265]
Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis - the p53 network. J. Cell Sci., 2003, 116, 4077-4085.
[266]
Wyllie, A.H.; Kerr, J.F.; Cumie, A.R. Cell death: The significance of apoptosis. Int. Rev. Cytol., 1980, 68, 251-306.
[267]
Cain, K.; Bratton, S.B.; Cohen, G.M. The Apaf-1 apoptosome: A large caspase-activating complex. Biochimie, 2002, 84, 203-214.
[268]
Alvero, A.B.; Chen, W.; Sartorelli, A.C.; Schwartz, P.; Rutherford, T.; Mor, G. Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) induces apoptosis in ovarian cancer cells. J. Soc. Gynecol. Investig., 2006, 13, 145-152.
[269]
Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J., 1997, 326, 1-16.
[270]
Bender, C.E.; Fitzgerald, P.; Tait, S.W.G.; Liambi, F.; McStay, G.P.; Tupper, D.O.; Pellettieri, J.; Alvarado, A.S.; Salvesen, G.S.; Green, D.R. Mitochondrial pathway of apoptosis is ancestral in metazoans. PNAS, 2012, 109, 4904-4909.
[271]
Kluck, R.M.; Bossy-Wetzel, E.; Green, D.R.; Newmeyer, D.D. The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science, 1997, 275, 1132-1136.
[272]
Jurgensmeier, J.M.; Xie, Z.; Deveraux, Q.; Ellerby, L.; Bredesen, D.; Reed, J.C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA, 1998, 95, 4997-5002.
[273]
Jemmerson, R.; LaPlante, B.; Treeful, A. Release of intact, monomeric cytochrome c from apoptotic and necrotic cells. Cell Death Differ., 2002, 9, 538-548.
[274]
Noulsri, E.; Richardson, D.R.; Lerdwana, S.; Fucharoen, S.; Yamagishi, T.; Kalinowski, D.S.; Pattanapanyasat, K. Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells. Am. J. Hematol., 2009, 84, 170-176.
[275]
Cardone, M.H.; Roy, N.; Stennicke, H.R.; Salvesen, G.S.; Franke, T.F.; Stanbridge, E.; Frisch, S.; Reed, J.C. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998, 282, 1318-1321.
[276]
Gardai, S.J.; Hildeman, D.A.; Frankel, S.K.; Whitlock, B.B.; Frasch, S.C.; Borregaard, N.; Marrack, P.; Bratton, D.L.; Henson, P.M. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J. Biol. Chem., 2004, 279(20), 21085-21095.
[277]
Dixon, K.M.; Lui, G.Y.; Kovacevic, Z.; Zhang, D.; Yao, M.; Chen, Z.; Dong, Q.; Assinder, S.J.; Richardson, D.R. Dp44mT targets the AKT, TGF-beta and ERK pathways via the metastasis suppressor Ndrg1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer, 2013, 108, 409-419.
[278]
Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q.P.; Padhye, S.; Sarkar, F.H. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J. Med. Chem., 2006, 49(24), 7242-7246.
[280]
Brodie, C.; Siriwardana, G.; Lucas, J.; Schleicher, R.; Terada, N.; Szepesi, A.; Gelfand, E.; Seligman, P. Neuroblastoma sensitivity to growth inhibition by desferrioxamine: Evidence for a block in G1 phase of the cell cycle. Cancer Res., 1993, 53, 3968-3975.
[281]
Yu, Y.; Kovacevic, Z.; Richardson, D.R. Tuning cell cycle regulation with an iron key. Cell Cycle, 2007, 6, 1982-1994.
[282]
Yu, Y.; Wong, J.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R. Chelators at the cancer coalface: Desferrioxamine to Triapine and beyond. Clin. Cancer Res., 2006, 12, 6876-6883.
[283]
Simonart, T.; Degraef, C.; Andrei, G.; Mosselmans, R.; Hermans, P.; van Vooren, J.P.; Noel, J.C.; Boehart, J.R.; Snowck, R.; Heenen, M. Iron chelators inhibit the growth and induce the apoptosis of Kaposi’s sarcoma cells and of their putative endothelial precursors. J. Invest. Dermatol., 2000, 115, 893-900.
[284]
Steele, V.E.; Wyatt, G.P.; Kellof, G.J.; Elmore, E. Differential growth response to exogenous calcium in normal and carcinogen-exposed primary human keratinocyte cell cultures. Anticancer Res., 1998, 6A, 4067-4070.
[285]
Baldini, M.; Belicchi-Ferrari, M.; Bisceglie, F.; Capacchi, S.; Pelosi, G.; Tarasconi, P. Zinc complexes with cyclic derivatives of α-ketoglutaric acid thiosemicarbazone: Synthesis, X-ray structures and DNA interactions. J. Inorg. Biochem., 2005, 99, 1504-1513.
[286]
Baldini, M.; Belicchi-Ferrari, M.; Bisceglie, F.; Dall’Aglio, P.P.; Pelosi, G.; Pinelli, S.; Tarasconi, P. Copper(II) complexes with substituted thiosemicarbazones of α-ketoglutaric acid: Synthesis, X-ray structures, DNA binding studies, and nuclease and biological activity. Inorg. Chem., 2004, 43(22), 7170-7179.
[287]
Castino, R.; Fiorentino, I.; Cagnin, M.; Giovia, A.; Isidoro, C. Chelation of lysosomal iron protects dopaminergic SHSY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicol. Sci., 2011, 123, 523-541.
[288]
Kurz, T.; Brunk, U.T. Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form. Autophagy, 2009, 5, 93-95.
[289]
Gutierrez, E.; Richardson, D.R.; Jansson, P.J. The anti-cancer agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes pro-survival autophagy by two mechanisms: Persistent induction of autophagosome synthesis and impairment of lysosomal integrity. J. Biol. Chem., 2014, 289(48), 33568-33589.
[290]
Lovejoy, D.B.; Jansson, P.J.; Brunk, U.T.; Wong, J.; Ponka, P.; Richardson, D.R. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res., 2011, 71, 5871-5880.
[291]
Yu, X.; Blanden, A.; Tsang, A.T.; Zaman, S.; Liu, Y.; Gilleran, J.; Bencivenga, A.F.; Kimball, S.D.; Loh, S.N.; Carpizo, D.R. Thiosemicarbazones functioning as zinc metallochaperones to reactive mutant p53. Mol. Pharmacol., 2017, 91(6), 567-575.
[292]
Hientz, K.; Mohr, A.; Guha, D.B.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget, 2017, 8(5), 8921-8946.
[293]
Kogan, S.; Carpizo, D.R. Zinc metallochaperones as mutant p53 reactivators: A new paradigm in cancer therapeutics. Cancers, 2018, 10, 166-178.