Abstract
The mammalian intestine is not only an organ for food digestion and nutrient absorption but also an integral part of the immune and endocrine systems. The intestinal epithelium under stressful environments requires epithelial cells to rapidly elicit changes in gene expression patterns to regulate their survival, adapt to stress, and maintain epithelial homeostasis. Recently, miRNAs have emerged as a novel class of posttranscriptional gene regulators that are fundamentally involved in many aspects of intestinal epithelial differentiation, architecture, and barrier function. In this review, we highlight the critical roles of miRNAs in both the crypt-villus axis of cellular self-renewal and inflammation in the mammalian intestinal mucosa and their impact on the microbiota. We also discuss the functions of specific miRNAs within the intestine to better understand the cellular mechanisms that promote intestinal homeostasis, and the influence of dietary components in the regulation of endogenous miRNA in the study of nutrition and gene regulation in intestinal health.
Keywords: MicroRNA, intestinal epithelial cells, mucosal renewal, homeostasis, inflammation, microbiota.
Current Molecular Medicine
Title:MicroRNAs in the Intestine: Role in Renewal, Homeostasis, and Inflammation
Volume: 18 Issue: 3
Author(s): L. Zou, X. Xiong*, K. Wang and Y. Yin*
Affiliation:
- Key Laboratory for Agro-Ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125,China
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081,China
Keywords: MicroRNA, intestinal epithelial cells, mucosal renewal, homeostasis, inflammation, microbiota.
Abstract: The mammalian intestine is not only an organ for food digestion and nutrient absorption but also an integral part of the immune and endocrine systems. The intestinal epithelium under stressful environments requires epithelial cells to rapidly elicit changes in gene expression patterns to regulate their survival, adapt to stress, and maintain epithelial homeostasis. Recently, miRNAs have emerged as a novel class of posttranscriptional gene regulators that are fundamentally involved in many aspects of intestinal epithelial differentiation, architecture, and barrier function. In this review, we highlight the critical roles of miRNAs in both the crypt-villus axis of cellular self-renewal and inflammation in the mammalian intestinal mucosa and their impact on the microbiota. We also discuss the functions of specific miRNAs within the intestine to better understand the cellular mechanisms that promote intestinal homeostasis, and the influence of dietary components in the regulation of endogenous miRNA in the study of nutrition and gene regulation in intestinal health.
Export Options
About this article
Cite this article as:
Zou L. , Xiong X. *, Wang K. and Yin Y. *, MicroRNAs in the Intestine: Role in Renewal, Homeostasis, and Inflammation, Current Molecular Medicine 2018; 18 (3) . https://dx.doi.org/10.2174/1566524018666180907163638
DOI https://dx.doi.org/10.2174/1566524018666180907163638 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Ubiquitin Carboxyl Hydrolase L1 Significance for Human Diseases
Protein & Peptide Letters Long-circulating Targeted Nanoparticles for Cancer Therapy
Current Nanoscience A Novel Approach to Inhibit Heat Shock Response as Anticancer Strategy by Coumarine Compounds Containing Thiazole Skeleton
Anti-Cancer Agents in Medicinal Chemistry Predicting Targeted Polypharmacology for Drug Repositioning and Multi- Target Drug Discovery
Current Medicinal Chemistry Antioxidant, Anti-Inflammatory and Anticancer Activities of the Methanolic Extract of Thottea siliquosa: An <i>In Vitro</i> and <i>In Silico</i> Study
Recent Patents on Anti-Cancer Drug Discovery Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors
Current Cancer Drug Targets Current and Future Applications of Probiotics
Current Nutrition & Food Science Potential of Taming MicroRNA on Driver Seat to Control Mitochondrial Horses in Breast Carcinoma
MicroRNA Overview of the Role of Macrophage Migration Inhibitory Factor (MIF) in Inflammatory Bowel Disease
Current Pharmaceutical Design Assessing Drug Transport Across the Human Placental Barrier: From In Vivo and In Vitro Measurements to the Ex Vivo Perfusion Method and In silico Techniques
Current Pharmaceutical Biotechnology FEN1 Status and Its Correlation with Clinicopathologic Characteristic in Colorectal Cancer
Combinatorial Chemistry & High Throughput Screening Reactive Oxygen Species in Cancer Biology and Anticancer Therapy
Current Medicinal Chemistry Fragment-Based Optimization of Small Molecule CXCL12 Inhibitors for Antagonizing the CXCL12/CXCR4 Interaction
Current Topics in Medicinal Chemistry Antiproliferative Efficacy of Angiotensin II Receptor Blockers in Prostate Cancer
Current Cancer Drug Targets Regulation of the Urokinase Receptor (uPAR) by LDL Receptor-related Protein-1 (LRP1)
Current Pharmaceutical Design A Brief Review of circRNA Biogenesis, Detection, and Function
Current Genomics “Smart” Nanocarriers: A New Paradigm for Tumor Targeting Drug Delivery Systems
Drug Delivery Letters Cox Inhibitors as Potential Chemotherapic Drugs for Mesothelioma
Current Respiratory Medicine Reviews Micro-/Nano-Scale Biointerfaces, Mechanical Coupling and Cancer Therapy
Current Topics in Medicinal Chemistry Potential Impacts of Prebiotics and Probiotics on Cancer Prevention
Anti-Cancer Agents in Medicinal Chemistry