[2]
Lackland, D.T.; Weber, M.A. Global burden of cardiovascular disease and stroke: Hypertension at the core. Can. J. Cardiol., 2015, 31(5), 569-571.
[3]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[4]
Lyne, P.D. Structure-based virtual screening: An overview. Drug Discov. Today, 2002, 7(20), 1047-1055.
[5]
Xiang, L.; Xu, Y.; Zhang, Y.; Meng, X.; Wang, P. Virtual screening studies of chinese medicine Coptidis rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer’s disease. J. Mol. Struct., 2015, 1086, 207-215.
[6]
Prafulla, C.; Manish, B. 3D QSAR, pharmacophore indentification studies on series of 1-(2-ethoxyethyl)-1H-pyrazolo[4,3-d] pyrimidines as PDE5 inhibitors. J. Saudi Chem. Soc., 2015, 19, 265-273.
[7]
Shang, N.N.; Shao, Y.X.; Cai, Y.H.; Guan, M.; Huang, M.; Cui, W.; He, L.; Yu, Y.J.; Huang, L.; Li, Z.; Bu, X.Z.; Ke, H.; Luo, H.B. Discovery of 3-(4-hydroxybenzyl)-1-(thiophen-2-yl)chromeno[2,3-c]pyrrol-9(2H)-one as a phosphodiesterase-5 inhibitor and its complex crystal structure. Biochem. Pharmacol., 2014, 89(1), 86-98.
[8]
Barone, I.; Giordano, C.; Bonofiglio, D.; Andò, S.; Catalano, S. Phosphodiesterase type 5 and cancers: Progress and challenges. Oncotarget, 2017, 8(58), 99179-99202.
[9]
Konstantinos, G.; Petros, P. Phosphodiesterase-5 inhibitors: Future perspectives. Curr. Pharm. Des., 2009, 15(30), 3540-3551.
[10]
Cristina, R.T.; Cristina, D.; Eugenia, D.; Alina, N.; Gurban, A. Pharmacologic activity of phosphodiesterases and their inhibitors. Lucrari Stiintifice Medicina Veterinara, 2010, XLIII(2), 300-314.
[11]
Bobin, P.; Belacel-Ouari, M.; Bedioune, I.; Zhang, L.; Leroy, J.; Leblais, V.; Fischmeister, R.; Vandecasteele, G. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Arch. Cardiovasc. Dis., 2016, 109, 431-443.
[12]
Colombo, G.; Colombo, M.D.H.P.; Schiavon, L.L.; D’Acampora, A.J. Phosphodiesterase 5 as target for adipose tissue disorders. Nitric Oxide, 2013, 35, 186-192.
[13]
Rahimi, R.; Ghiasi, S.; Azimi, H.; Fakhari, S.; Abdollahi, M. A review of the herbal phosphodiesterase inhibitors; future perspective of new drugs. Cytokine, 2010, 49, 123-129.
[14]
Milani, E.; Nikfar, S.; Khorasani, R.; Zamani, M.J.; Abdollahi, M. Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2005, 140, 251-255.
[15]
Mashayekhi, F.; Aghahoseini, F.; Rezaie, A.; Zamani, M.J.; Khorasani, R.; Abdollahi, M. Alteration of cyclic nucleotides levels and oxidative stress in saliva of human subjects with periodontitis. J. Contemp. Dent. Pract., 2005, 6, 46-53.
[16]
Abdollahi, M.; Fooladian, F.; Emami, B.; Zafari, K.; Bahreini-Moghadam, A. Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum. Exp. Toxicol., 2003, 22, 587-592.
[17]
Domek-Łopacinska, K.; Strosznajder, J.B. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res., 2008, 1216, 68-77.
[18]
Prickaerts, J.; Sik, A.; van Staveren, W.C.; Koopmans, G.; Steinbusch, H.W.M.; van der Staay, F.J.; Vente, J.; Blokland, A. Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem. Int., 2004, 45, 915-928.
[19]
Reneerkens, O.A.; Rutten, K.; Steinbusch, H.W.; Blokland, A.; Prickaerts, J. Selective phosphodiesterase inhibitors: A promising target for cognition enhancement. Psychopharmacology, 2009, 202, 419-443.
[20]
Hamburger, M.; Hostettmann, K. Bioactivity in plants: The link between phytochemistry and medicine. Phytochemistry, 1991, 1212, 3864-3874.
[21]
Schellack, N.; Agoro, A. A review of phosphodiesterase type 5 inhibitors. S. Afr. Fam. Pract., 2014, 56(2), 96-101.
[22]
Makled, S.; Nafee, N.; Boraie, N. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int. J. Pharm., 2016, 517(1-2), 312-321.
[23]
Ghofrani, H.A.; Wiedemann, R.; Rose, F.; Olschewski, H.; Schermuly, R.T.; Weissmann, N.; Seeger, W.; Grimminger, F. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann. Intern. Med., 2002, 136(7), 515-522.
[24]
Montani, D.; Chaumais, M.C.; Savale, L.; Natali, D.; Price, L.C.; Jais, X.; Humbert, M.; Simonneau, G.; Sitbon, O. Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension. Adv. Ther., 2009, 26(9), 813-825.
[25]
Wilkens, H.; Guth, A.; Konig, J.; Forestier, N.; Cremers, B.; Hennen, B.; Bohm, M.; Sybrecht, G.W. Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation, 2001, 104(11), 1218-1222.
[26]
Alin, S.; Ronald, T.; Ioan, A.V. Effects of PDE5 inhibitors on endothelial function and cardiovascular autonomic nerve function in men. J. Men’s Health, 2011, 8(2), 109-118.
[27]
Tollefson, M.B.; Acker, B.A.; Jacobsen, E.J.; Hughes, R.O.; Walker, J.K.; Fox, D.N.A.; Palmer, M.J.; Freeman, S.K.; Yu, Y.; Bond, B.R. 1-(2-Ethoxyethyl)-1H-pyrazolo[4,3-d]pyrimidines as potent phosphodiesterase 5 (PDE5) inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(10), 3120-3124.
[28]
Haning, H.; Niewohner, U.; Schenke, T.; Lampe, T.; Hillisch, A.; Bischoff, E. Comparison of different heterocyclic scaffolds as substrate analog PDE5 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(17), 3900-3907.
[29]
Joshi, J.; Barik, T.K.; Shrivastava, N.; Dimri, M.; Ghosh, S.; Mandal, R.S.; Ramachandran, S.; Kumar, I.P. Cycloxygenase-2 (COX-2) - A potential target for screening of small molecules as radiation countermeasure agents: An in silico study. Curr. Comput. Aided Drug Des., 2013, 9, 35-45.
[30]
Ravindranath, P.A.; Forli, S.; Goodsell, D.S.; Olson, A.J.; Sanner, M.F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLOS Comput. Biol., 2015, 11(12), e1004586.
[31]
Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, I.; Zavala-Sánchez, M.A. Vasodilator compounds derived from plants and their mechanisms of action. Molecules, 2013, 18, 5814-5857.
[32]
Bai, R.R.; Wu, X.M.; Xu, J.Y. Current natural products with antihypertensive activity. Chin. J. Nat. Med., 2015, 13(10), 721-729.
[33]
Tirapelli, C.R.; Ambrosio, S.R.; de Oliveira, A.M.; Tostes, R.C. Hypotensive action of naturally occurring diterpenes: A therapeutic promise for the treatment of hypertension. Fitoterapia, 2010, 81, 690-702.
[34]
Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight and Arn.: a review. J. Tradit. Complement. Med., 2017, 7(1), 65-78.
[35]
de Souza, P.; Gasparotto, A., Jr; Crestani, S.; Stefanello, M.E.; Marques, M.C.; da Silva-Santos, J.E.; Kassuya, C.A. Hypotensive mechanism of the extracts and artemetin isolated from Achillea millefolium L. (Asteraceae) in rats. Phytomedicine, 2011, 18, 819-825.
[36]
Kamkaew, N.; Scholfield, C.N.; Ingkaninan, K.; Maneesai, P.; Parkington, H.C.; Tare, M.; Chootip, K. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J. Ethnopharmacol., 2011, 137, 790-795.
[37]
Woolfson, R.G.; Graves, J.; LaBella, F.S.; Templeton, J.F.; Poston, L. Effect of bufalin and pregnanes on vasoreactivity of human resistance arteries. Biochem. Biophys. Res. Commun., 1992, 186(1), 1-7.
[38]
Bhullar, K.S.; Lassalle-Claux, G.; Touaibia, M.; Rupasinghe, H.P. Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition. Eur. J. Pharmacol., 2014, 730, 125-132.
[39]
Li, Q.Y.; Zhu, Y.F.; Zhang, M.; Chen, L.; Zhang, Z.; Du, Y.L.; Ren, G.Q.; Tang, J.M.; Zhong, M.K.; Shi, X.J. Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway. Eur. J. Pharmacol., 2015, 751, 81-88.
[40]
Gorzalczany, S.; Moscatelli, V.; Ferraro, G. Artemisia copa aqueous extract as vasorelaxant and hypotensive agent. J. Ethnopharmacol., 2013, 148(1), 56-61.
[41]
Sarah, E.A.; Christopher, E.B. The cardiac glycoside convallatoxin inhibits the growth of colorectal cancer cells in a p53-independent manner. Mol. Genet. Metab. Rep., 2017, 13, 42-45.
[42]
Matsuda, H.; Toguchida, I.; Ninomiya, K.; Kageura, T.; Morikawa, T.; Yoshikawa, M. Effects of sesquiterpenes and amino acid-sesquiterpene conjugates from the roots of Saussurea lappa on inducible nitric oxide synthase and heat shock protein in lipopolysaccharide-activated macrophages. Bioorg. Med. Chem., 2003, 11(5), 709-715.
[43]
Ojeda, D.; Jiménez-Ferrer, E.; Zamilpa, A.; Herrera-Arellano, A.; Tortoriello, J.; Alvarez, L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J. Ethnopharmacol., 2010, 127(1), 7-10.
[44]
Nileeka, B.B.W.; Vasantha, R.H.P. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Functional Foods in Health and Disease, 2011, 1(5), 172-188.
[45]
Chen, K.K.; Elderfield, R.C. The cardiac action of the derivatives of strophanthidin and cymarin. J. Pharmacol. Exp. Ther., 1940, 70, 338-346.
[46]
Senguptaa, B.; Chakraborty, S.; Crawforda, M.; Taylor, J.M.; Blackmona, L.E.; Biswas, P.K.; Kramer, W.H. Characterization of diadzein-hemoglobin binding using optical spectroscopy and molecular dynamics simulations. Int. J. Biol. Macromol., 2012, 51(3), 250-258.
[47]
Ghisalberti, E.L. Cardiovascular activity of naturally occurring lignans. Phytomedicine, 1997, 4(2), 151-166.
[48]
Brown, B.T.; Stafford, A.; Wright, S.E. Chemical structure and pharmacological activity of some derivatives of digitoxigenin and digoxigenin. Br. J. Pharmacol. Chemother., 1962, 18, 311-324.
[49]
Akera, T.; Wiest, S.A.; Brody, T.M. Differential effect of potassium on the action of digoxin and digoxigenin in guinea-pig heart. Eur. J. Pharmacol., 1979, 57(4), 343-351.
[50]
Avila-Villarreal, G.; Hernández-Abreu, O.; Hidalgo-Figueroa, S.; Navarrete-Vázquez, G.; Escalante-Erosa, F.; Pena-Rodríguez, L.M.; Villalobos-Molina, R.; Estrada-Soto, S. Antihypertensive and vasorelaxant effects of dihydrospinochalcone-A isolated from Lonchocarpus xuul Lundell by NO production: Computational and ex vivo approaches. Phytomedicine, 2013, 20, 1241-1246.
[51]
Suzuki, A.; Yamamoto, M.; Jokura, H.; Fujii, A.; Tokimitsu, I.; Hase, T.; Saito, I. Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats. Am. J. Hypertens., 2007, 20(5), 508-513.
[52]
Vaden, S.L.; Adams, H.R. Inotropic, chronotropic and coronary vasodilator potency of forskolin. Eur. J. Pharmacol., 1985, 118(1-2), 131-137.
[53]
Yun, H.M.; Ban, J.O.; Park, K.R.; Lee, C.K.; Jeong, H.S.; Han, S.B.; Hong, J.T. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol. Ther., 2014, 142(2), 183-195.
[54]
Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res., 2018, 42(2), 123-132.
[55]
Lee, K.H.; Bae, I.Y.; Park, S.I.; Park, J.D.; Lee, H.G. Antihypertensive effect of Korean red ginseng by enrichment of ginsenoside Rg3 and arginine-fructose. J. Ginseng Res., 2016, 40(3), 237-244.
[56]
Haustein, K.O.; Markwardt, F.; Repke, K.R. Different relationships between therapeutic and toxic actions of 16-epi-gitoxin, gitoxin and ouabain on isolated cardiac preparations. Eur. J. Pharmacol., 1970, 10(1), 1-10.
[57]
Hügel, H.; Jackson, N.; May, B.; Zhang, A.L.; Xue, C.C. Polyphenol protection and treatment of hypertension. Phytomedicine, 2016, 23, 220-231.
[58]
Inchoo, M.; Chirdchupunseree, H.; Pramyothin, P.; Jianmongkol, S. Endothelium-independent effects of phyllanthin and hypophyllanthin on vascular tension. Fitoterapia, 2011, 82(8), 1231-1236.
[59]
Arora, R.B.; Arora, C.K.E. In: Pharmacology of Oriental Plants,Proceedings of the 1st International Pharmacological Meeting, Stockholm, SwedenAugust 22-25, 1961Chen, K.K., Mukerji, B. Eds.; Elsevier Science B.V: Amsterdam, . 1965, pp. 51-60.
[60]
Somova, L.I.; Shode, F.O.; Moodley, K.; Govender, Y. Cardiovascular and diuretic activity of kaurene derivatives of Xylopia aethiopica and Alepidea amatymbica. J. Ethnopharmacol., 2001, 77, 165-174.
[61]
Tay, A.; Özçelikay, A.T.; Altan, V.M. Effects of L-arginine on blood pressure and metabolic changes in fructose-hypertensive rats. Am. J. Hypertens., 2002, 15(1), 72-77.
[62]
Gracey, D.R.; Brandfonbrener, M. The effect of lanatoside C on coronary vascular resistance. Am. Heart J., 1963, 66(1), 88-94.
[63]
Lavín de Juan, L.; García Recio, V.; Jiménez López, P.; Girbés Juan, T.; Cordoba-Diaz, M.; Cordoba-Diaz, D. Pharmaceutical applications of lectins. J. Drug Deliv. Sci. Technol., 2017, 42, 126-133.
[64]
Hansen, K.; Adsersen, A.; Christensen, S.B.; Jensen, S.R.; Nyman, U.; Smiti, U.W. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine, 1996, 2(4), 319-325.
[65]
Bouaziz, A.; Khennouf, S.; Zarga, M.A.; Abdalla, S.; Baghiani, A.; Charef, N. Phytochemical analysis, hypotensive effect and antioxidant properties of Myrtus communis L. growing in Algeria. Asian Pac. J. Trop. Biomed., 2015, 5(1), 19-28.
[66]
Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84, 1036-1041.
[67]
Lopez-Carreras, N.; Castillo, J.; Muguerza, B.; Aleixandre, A. Endothelium-dependent vascular relaxing effects of different citrus and olive extracts in aorta rings from spontaneously hypertensive rats. Food Res. Int., 2015, 77(3), 484-490.
[68]
Blaustein, M.P.; Hamlyn, J.M. Signaling mechanisms that link salt retention to hypertension: Endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins. Biochim. Biophys. Acta, 2010, 1802(12), 1219-1229.
[69]
Jimmy, D.O.; Priyanka, P. Antihypertensive activity of bamboo shoot: A review. Asian J. Pharm. Clin. Res., 2015, 8(1), 46-47.
[70]
Ferreira, L.G.; Evora, P.R.B.; Capellini, V.K.; Albuquerque, A.A.; Carvalho, M.T.M.; Gomes, R.A.D.S.; Parolini, M.T.; Celotto, A.C. Effect of rosmarinic acid on the arterial blood pressure in normotensive and hypertensive rats: Role of ACE. Phytomedicine, 2018, 38, 158-165.
[71]
Ferrari, P. Rostafuroxin: An ouabain-inhibitor counteracting specific forms of hypertension. Biochim. Biophys. Acta, 2010, 1802(12), 1254-1258.
[72]
Lei, Z.H.; Jin, Z.X.; Ma, Y.L.; Tai, B.S.; Kong, Q.; Yaharaa, S.; Nohara, T. Cardiac glycosides from Erysimum cheiranthoides. Phytochemistry, 1998, 49(6), 1801-1803.
[73]
Shang, Q.; Xu, H.; Huang, L. Tanshinone IIA: A promising natural cardioprotective agent. Evid. Based Complement. Alternat. Med., 2012, 2012(7), 1-7.
[74]
Saravanakumar, M.; Raja, B. Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats. Eur. J. Pharmacol., 2011, 671(1-3), 87-94.
[75]
Singh, A.; Duggal, S.; Suttee, A.; Singh, J.; Katekhaye, S. Eclpita alba Linn. - ancient remedy with therapeutic potential. Int. J. Phytopharmacology, 2010, 1(2), 57-63.
[76]
Meenu, H.C.; Sokindra, K. Ajeet. Eclipta alba, a bunch of pharmacological possibilities- a review. Mod. Appl. Bioequiv. Availab., 2017, 2(1), 1-6.
[77]
Murali, B.; Amit, A.; Anand, M.S.; Samiulla, D.S. Estimation of wedelolactone and demethylwedelolactone in Eclipta alba Hassk. by improved chromatograhic analysis. J. Nat. Rem., 2002, 2(1), 99-201.
[78]
Sawant, S.D.; Reddy, G.L.; Dar, M.I.; Srinivas, M.; Gupta, G.; Sahu, P.K.; Mahajan, P.; Nargotra, A.; Singh, S.; Sharma, S.C.; Tikoo, M.; Singh, G.; Vishwakarma, R.A.; Syed, S.H. Discovery of novel pyrazolopyrimidinone analogs as potent inhibitors of phosphodiesterase type-5. Bioorg. Med. Chem., 2015, 23, 2121-2128.
[79]
Madeswaran, A.; Umamaheswari, M.; Asokkumar, K.; Sivashanmugam, T.; Subhadradevi, V.; Jagannath, P. Computational drug discovery of potential phosphodiesterase inhibitors using in silico studies. Asian Pac. J. Trop. Dis., 2012, 2(2), S822-S826.
[80]
Mohamad, R.M.N.; Mohd, A.S.; Abu Bakar, M.H.; Razali, S.A.; Mohamed, Z.R.; Ya’akob, H. Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins. Apoptosis, 2018, 23(1), 27-40.
[81]
Abusnina, A.; Lugnier, C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell. Signal., 2017, 39, 55-65.
[82]
Yu, S.M.; Cheng, Z.J.; Kuo, S.C. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor. Eur. J. Pharmacol., 1995, 280(1), 69-77.
[83]
Gonçalves, R.L.; Lugnier, C.; Keravis, T.; Lopes, M.J.; Fantini, F.A.; Schmitt, M.; Cortes, S.F.; Lemos, V.S. The flavonoid dioclein is a selective inhibitor of cyclic nucleotide phosphodiesterase type 1 (PDE1) and a cGMP-dependent protein kinase (PKG) vasorelaxant in human vascular tissue. Eur. J. Pharmacol., 2009, 620(1-3), 78-83.
[84]
Berrougui, H.; Martin-Cordero, C.; Khalil, A.; Hmamouchi, M.; Ettaib, A.; Marhuenda, E.; Herrera, M.D. Vasorelaxant effects of harmine and harmaline extracted from Peganum harmala L. seed’s in isolated rat aorta. Pharmacol. Res., 2006, 54(2), 150-157.
[85]
Hsu, H.T.; Wang, W.H.; Han, C.Y.; Chen, C.N.; Chen, C.M.; Ko, W.C. Inhibitory effects of hesperetin derivatives on guinea pig phosphodiesterases and their ratios between high- and low-affinity rolipram binding. J. Pharm. Sci., 2013, 102(7), 2120-2127.