[1]
Wolfman, C.; Viola, H.; Paladini, A.; Dajas, F.; Medina, J.H. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passifloracoerulea. Pharmacol. Biochem. Behav., 1994, 47(1), 1-4.
[2]
Yang, M.; Xiong, J.; Zou, Q.; Wang, D.D.; Huang, C.X. Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. J. Mol. Histol., 2018, 49(6), 555-565.
[3]
Williams, C.A.; Harborne, J.B.; Newman, M.; Greenham, J.; Eagles, J. Chrysin and other leaf exudate flavonoids in the genus Pelargonium. Phytochemistry, 1997, 46(8), 1349-1353.
[4]
Zheng, X.; Zhao, F.F.; Liu, Y.M.; Yao, X.; Zheng, Z.T.; Luo, X.; Liao, D.F. Synthesis and preliminary biological evaluation of chrysin derivatives as potential anticancer drugs. Med. Chem., 2010, 6(1), 6-8.
[5]
Habtemariam, S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-α in L-929 tumor cells. J. Nat. Prod., 1997, 60, 775-778.
[6]
Harris, G.K.; Qian, Y.; Leonard, S.S.; Sbarra, D.C.; Shi, X.L. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E-2 formation in RAW 264.7 cells. J. Nutr., 2006, 136, 1517-1521.
[7]
Ko, C.H.; Shen, S.C.; Lin, H.Y.; Hou, W.C.; Lee, W.R.; Yang, L.L.; Chen, Y.C. Flavanones structure-related inhibition on TPA-induced tumor promotion through suppression of extracellular signal-regulated protein kinases: Involvement of prostaglandin E-2 in anti-promotive process. J. Cell. Physiol., 2002, 193, 93-102.
[8]
Hou, D.X.; Yanagita, T.; Uto, T.; Masuzaki, S.; Fujii, M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochem. Pharmacol., 2005, 70, 417-425.
[9]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13, 572-584.
[10]
Medina, J.H.; Paladini, A.C.; Wolfman, C.; De Stein, M.L.; Calvo, D.; Diaz, L.E.; Peña, C. Chrysin (5, 7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol., 1990, 40(10), 2227-2231.
[11]
Tsuji, P.A.; Walle, T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem. Biol. Interact., 2008, 171(1), 37-44.
[12]
Ge, S.; Gao, S.; Yin, T.; Hu, M. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and BCRP1 knockout mice using a validated LC-MS/MS method. J. Agric. Food Chem., 2015, 63(11), 2902-2910.
[13]
Melekoglu, R.; Ciftci, O.; Eraslan, S.; Alan, S.; Basak, N. The protective effects of glycyrrhetinic acid and chrysin against ischemia-reperfusion injury in rat ovaries. BioMed Res. Int., 2018, 20185421308
[14]
Sulaiman, G.M.; Jabir, M.S.; Hameed, A.H. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol., 2018, 31, 1-13.
[15]
Wu, T.C.; Chan, S.T.; Chang, C.N.; Yu, P.S.; Chuang, C.H.; Yeh, S.L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact., 2018, 292, 101-109.
[17]
Testai, L.; Martelli, A.; Cristofaro, M.; Breschi, M.C.; Calderone, V. Cardioprotective effects of different flavonoids against myocardial ischaemia/ reperfusion injury in Langendorff-perfused rat hearts. J. Pharm. Pharmacol., 2013, 65, 750-756.
[18]
Tian, S.S.; Jiang, F.S.; Zhang, K.; Zhu, X.X.; Jin, B.; Lu, J.J.; Ding, Z.S. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis. Fitoterapia, 2014, 92, 34-40.
[19]
Bae, Y.; Lee, S.; Kim, S.H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-kB. Toxicol. Appl. Pharmacol., 2011, 254, 56-64.
[20]
Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Hasanzadeh, M.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag., 2016, 12(4), S436-S440.
[21]
Yao, Y.; Chen, L.; Xiao, J.; Wang, C.; Jiang, W.; Zhang, R.; Hao, J. Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. IJMS, 2014, 15(11), 20913-20926.
[22]
Mantawy, E.M.; El-Bakly, W.M.; Esmat, A.; Badr, A.M.; El-Demerdash, E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur. J. Pharmacol., 2014, 728, 107-118.
[23]
Mehrpour, O.; Aghabiklooei, A.; Abdollahi, M.; Singh, S. Severe hypoglycemia following acute aluminum phosphide (rice tablet) poisoning; a case report and review of the literature. Acta Med. Iran., 2012, 50(8), 568-571.
[24]
Rehman, M.U.; Tahir, M.; Khan, A.Q.; Khan, R.; Lateef, A.; Qamar, W.; Sultana, S. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: Plausible role of NF-κB. Toxicol. Lett., 2013, 216(2-3), 146-158.
[25]
Sharma, P.; Kumari, A.; Gulati, A.; Krishnamurthy, S.; Hemalatha, S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci., 2019, 22(8), 569-577.
[26]
Uhl, M.; Ecker, S.; Kassie, F.; Lhoste, E.; Chakraborty, A.; Mohn, G.; Knasmüller, S. Effect of chrysin, a flavonoid compound, on the mutagenic activity of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) and benzo (a) pyrene (B (a) P) in bacterial and human hepatoma (HepG2) cells. Arch. Toxicol., 2003, 77(8), 477-484.
[27]
Mehrpour, O.; Karrari, P.; Abdollahi, M. Chronic lead poisoning in Iran; a silent disease. Daru, 2012, 20(1), 8.
[28]
Souza, L.C.; Antunes, M.S.; Borges Filho, C.; Del Fabbro, L.; De Gomes, M.G.; Goes, A.T.R.; Jesse, C.R. Flavonoid chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol. Biochem. Behav., 2015, 134, 22-30.
[29]
Goodarzi, F.; Mehrpour, O.; Eizadi-Mood, N. View correspondence (jump link). A study to evaluate factors associated with seizure in tramadol poisoning in Iran. Indian J. Forensic Med. Toxicol, 2011, 5(2), 66-69.
[30]
Karrari, P.; Mehrpour, O.; Afshari, R.; Keyler, D. Pattern of illicit drug use in patients referred to addiction treatment centres in Birjand, Eastern Iran. J. Pak. Med. Assoc., 2013, 63(6), 711-716.
[31]
Alinejad, S.; Aaseth, J.; Abdollahi, M.; Hassanian-Moghaddam, H.; Mehrpour, O. Clinical aspects of opium adulterated with lead in Iran: A review. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 56-64.
[32]
Mehrpour, O.; Amouzeshi, A.; Dadpour, B.; Oghabian, Z.; Zamani, N.; Amini, S.; Hoffman, R.S. Successful treatment of cardiogenic shock with an intraaortic balloon pump following aluminium phosphide poisoning. Arh. Hig. Rada Toksikol., 2014, 65(1), 121-126.
[33]
Samarghandian, S.; Ohata, H.; Yamauchi, N.; Shibasaki, T. Corticotropin-releasing factor as well as opioid and dopamine are involved in tail-pinch-induced food intake of rats. Neuroscience, 2003, 116(2), 519-524.
[34]
Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol., 2015, 71, 40-56.
[35]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response, 2017, 15(1)1559325817691158
[36]
Patel, R.V.; Mistry, B.; Syed, R.; Rathi, A.K.; Lee, Y.J.; Sung, J.S.; Shinf, H.S.; Keum, Y.S. Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur. J. Pharm. Sci., 2016, 88, 166-177.
[37]
Hajzadeh, M.A.R.; Rajaei, Z.; Shafiee, S.; Alavinejhad, A.; Samarghandian, S.; Ahmadi, M. Effect of barberry fruit (Berberis Vulgaris) on serum glucose and lipids in streptozotocin-diabetic rats. Pharmacol. Online, 2011, 1, 809-817.
[38]
Berliner, J.A.; Navab, M.; Fogelman, A.M.; Frank, J.S.; Demer, L.L.; Edwards, P.A.; Lusis, A.J. Atherosclerosis: Basic mechanisms: Oxidation, inflammation, and genetics. Circulation, 1995, 91(9), 2488-2496.
[39]
Missassi, G.; Dos Santos Borges, C.; De Lima Rosa, J.; Villela e Silva, P.; Da Cunha Martins, A.; Barbosa, F.; De Grava Kempinas, W. Chrysin administration protects against oxidative damage in varicocele-induced adult rats. Oxid. Med. Cell Longev., 2017,, 2017.
[40]
Sharma, P.; Kumari, A.; Gulati, A.; Krishnamurthy, S.; Hemalatha, S. Chrysin isolated from Pyruspashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci., 2019, 22(8), 569-577.
[41]
Anandhi, R.; Annadurai, T.; Anitha, T.S.; Muralidharan, A.R.; Najmunnisha, K.; Nachiappan, V.; Thomas, P.A.; Geraldine, P. Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotusostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J. Physiol. Biochem., 2013, 69(2), 313-323.
[42]
Yang, J.R. Effect of chrysin on expression of NOX4 and NF-κB in right ventricle of monocrotaline-induced pulmonary arterial hypertension of rats. Yao Xue Xue Bao, 2015, 50(9), 1128-1134.
[43]
Li, X.W.; Wang, X.M.; Li, S.; Yang, J.R. Effects of chrysin (5, 7-dihydroxyflavone) on vascular remodeling in hypoxia-induced pulmonary hypertension in rats. Chin. Med., 2015, 10(1), 4.
[44]
Veerappan, R.; Senthilkumar, R. Chrysin enhances antioxidants and oxidative stress in L-NAME-induced hypertensive rats. Int. J. Nutr. Pharmacol. Neurol. Dis, 2015, 5(1), 20.
[45]
Hecker, M.; Preiß, C.; Klemm, P.; Busse, R. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages: Role of nuclear factor kB and interferon regulatory factor 1. Br. J. Pharmacol., 1996, 118(8), 2178-2184.
[46]
Anandhi, R.; Thomas, P.A.; Geraldine, P. Evaluation of the anti-atherogenic potential of chrysin in Wistar rats. Mol. Cell. Biochem., 2014, 385(1-2), 103-113.
[47]
El‐Bassossy, H.M.; Abo‐Warda, S.M.; Fahmy, A. Chrysin and luteolin attenuate diabetes‐induced impairment in endothelial‐dependent relaxation: Effect on lipid profile, AGEs and NO generation. Phytother. Res., 2013, 27(11), 1678-1684.
[48]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol., 2016, 94(4), 388-393.
[49]
Ramírez-Espinosa, J.J.; Saldaña-Ríos, J.; García-Jiménez, S.; Villalobos-Molina, R.; Ávila-Villarreal, G.; Rodríguez-Ocampo, A.N.; Estrada-Soto, S. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules, 2017, 23(1), 67.
[50]
Paulo, L.L.; Cruz, J.C.; Zhuge, Z.; Carvalho-Galvão, A.; Brandão, M.C.; Diniz, T.F.; Montenegro, M.F. The novel organic mononitrate NDHP attenuates hypertension and endothelial dysfunction in hypertensive rats. Redox Biol., 2018, 15, 182-191.
[51]
Veerappan, R.; Malarvili, T. Chrysin pretreatment improves angiotensin system, cGMP concentration in L-NAME induced hypertensive rats. Indian J. Clin. Biochem., 2019, 34(3), 288-295.
[52]
Duarte, J.; Jiménez, R.; Villar, I.C.; Pérez-Vizcaíno, F.; Jiménez, J.; Tamargo, J. Vasorelaxant effects of the bioflavonoid chrysin in isolated rat aorta. Planta Med., 2001, 67(6), 567-569.
[53]
Villar, I.C.; Galisteo, M.; Vera, R.; O’Valle, F.; García-Saura, M.F.; Zarzuelo, A.; Duarte, J. Effects of the dietary flavonoid chrysin in isolated rat mesenteric vascular bed. J. Vasc. Res., 2004, 41(6), 509-516.
[54]
Li, X.W.; Wang, X.M.; Li, S.; Yang, J.R. Effects of chrysin (5, 7-dihydroxyflavone) on vascular remodeling in hypoxia-induced pulmonary hypertension in rats. Chin. Med., 2015, 10(1), 4.
[55]
Ajay, M.; Gilani, A.U.H.; Mustafa, M.R. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci., 2003, 74(5), 603-612.
[56]
Calderone, V.; Chericoni, S.; Martinelli, C.; Testai, L.; Nardi, A.; Morelli, I.; Martinotti, E. Vasorelaxing effects of flavonoids: Investigation on the possible involvement of potassium channels. Naunyn Schmiedebergs Arch. Pharmacol., 2004, 370(4), 290-298.
[57]
Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Di Palma, G. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep., 2014, 16(9), 435.
[58]
Singh, J.; Chaudhari, B.P.; Kakkar, P. Baicalin and chrysin mixture imparts cytoprotection against methylglyoxal induced cytotoxicity and diabetic tubular injury by modulating RAGE, oxidative stress and inflammation. Environ. Toxicol. Pharmacol., 2017, 50, 67-75.
[59]
Harris, G.K.; Qian, Y.; Leonard, S.S.; Sbarra, D.C.; Shi, X. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J. Nutr., 2006, 136(6), 1517-1521.
[60]
Lee, S.H.; Kim, Y.J.; Kwon, S.H.; Lee, Y.H.; Choi, S.Y.; Park, J.S.; Kwon, H.J. Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells. BMB Reports., 2009, 42(5), 265-270.
[61]
Li, X.W.; Guo, B.; Shen, Y.Y.; Yang, J.R. Effect of chrysin on expression of NOX4 and NF-κB in right ventricle of monocrotaline-induced pulmonary arterial hypertension of rats. Yao xuexuebao=Actapharmaceutica Sinica. . 2015, 50(9), 1128-1134.
[62]
Panahi, G.; Pasalar, P.; Zare, M.; Rizzuto, R.; Meshkani, R. High glucose induces inflammatory responses in HepG2 cells via the oxidative stress-mediated activation of NF-κB, and MAPK pathways in HepG2 cells. Arch. Physiol. Biochem., 2018, 1-7.
[63]
Saum, K.; Campos, B.; Celdran‐Bonafonte, D.; Nayak, L.; Sangwung, P.; Thakar, C.; Owens, A.P. Uremic advanced glycation end products and protein‐bound solutes induce endothelial dysfunction through suppression of Krüppel‐like factor 2. J. Am. Heart Assoc., 2018, 7(1)e007566
[64]
Rani, N.; Bharti, S.; Bhatia, J.; Nag, T.C.; Ray, R.; Arya, D.S. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem. Biol. Interact., 2016, 250, 59-67.
[65]
Yang, L.; Gao, L.; Nickel, T.; Yang, J.; Zhou, J.; Gilbertsen, A.; Gourley, G.R. Lactate promotes synthetic phenotype in vascular smooth muscle cells novelty and significance. Circ. Res., 2017, 121(11), 1251-1262.
[66]
Kappert, K. 1.; Sparwel, J.; Sandin, A.; Seiler, A.; Siebolts, U.; Leppänen, O.; Rosenkranz, S.; Ostman, A. Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(12), 2644-2651.
[67]
Lo, H.M.; Wu, M.W.; Pan, S.L.; Peng, C.Y.; Wu, P.H.; Wu, W.B. Chrysin restores PDGF-induced inhibition on protein tyrosine phosphatase and reduces PDGF signaling in cultured VSMCs. J. Nutr. Biochem., 2012, 23(6), 667-678.
[68]
Roe, A.; Frisk, M.; Louch, E. W. Targeting cardiomyocyte Ca2 homeostasis in heart failure. Curr. Pharm. Des., 2015, 21(4), 431-448.
[69]
Anghel, N.; Cotoraci, C.; Ivan, A.; Suciu, M.; Herman, H.; Balta, C.; Hermenean, A. Chrysin attenuates cardiomyocyte apoptosis and loss of intermediate filaments in a mouse model of mitoxantrone cardiotoxicity. Histol. Histopathol., 2015, 30(12), 1465-1475.
[70]
Davì, G.; Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med., 2007, 357(24), 2482-2494.
[71]
Gibbins, J.M. Platelet adhesion signalling and the regulation of thrombus formation. J. Cell Sci., 2004, 11(16), 3415-3425.
[72]
Vaiyapuri, S.; Ali, M.S.; Moraes, L.A.; Sage, T.; Lewis, K.R.; Jones, C.I.; Gibbins, J.M. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling significance. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2740-2749.
[73]
Liu, G.; Xie, W.; He, A.D.; Da, X.W.; Liang, M.L.; Yao, G.Q.; Ming, Z.Y. Antiplatelet activity of chrysin via inhibiting platelet αIIbβ3‐mediated signaling pathway. Mol. Nutr. Food Res., 2016, 60(9), 1984-1993.
[74]
Ravishankar, D.; Salamah, M.; Attina, A.; Pothi, R.; Vallance, T.M.; Javed, M.; Shankland, K. Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy. Sci. Rep., 2017, 7(1), 5738.
[75]
Walle, T.; Otake, Y.; Brubaker, J.; Walle, U.; Halushka, P. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol., 2001, 51, 143-146.
[76]
Saarinen, N.; Joshi, S.C.; Ahotupa, M.; Li, X.; Ämmälä, J.; Mäkelä, S.; Santti, R. No evidence for the in vivo activity of aromatase-inhibiting flavonoids. J. Steroid Biochem. Mol. Biol., 2001, 78, 213-239.
[77]
Gambelunghe, C.; Rossi, R.; Sommavilla, M.; Ferranti, C.; Rossi, R.; Ciculi, C.; Gizzi, S.; Micheletti, A.; Rufini, S. Effects of chrysin on urinary testosterone levels in human males. J. Med. Food, 2003, 6, 387-390.