[1]
Brown, W.M. Treating COPD with PDE 4 inhibitors. Int. J. COPD, 2007, 2, 517-533.
[2]
Lee, J.; Lee, H.; Kim, J.A.; Rhee, C.K. Trend of cost and utilization of COPD medication in Korea. Int. J. COPD., 2017, 12, 27-33.
[3]
Fabbri, L.M.; Hurd, S.S. Global strategy for the diagnosis, management and prevention of COPD: 2003 update. Eur. Respir. J., 2003, 22, 1.
[4]
Dhamane, A.D.; Schwab, P.; Hopson, S. Association between adherence to medications for COPD and medications for other chronic conditions in COPD patients. Int. J. COPD., 2017, 12, 115-122.
[5]
Su, Y.; Long, C.; Yu, Q.; Zhang, J.; Wu, D.; Duan, Z. Global scientific collaboration in COPD research. Int. J. COPD., 2017, 12, 215-225.
[6]
Pauwels, R.A.; Buist, A.S.; Calverley, P.M.; Jenkins, C.R.; Hurd, S.S. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am. J. Respir. Crit. Care Med., 2001, 163, 1256-1276.
[7]
Agusti, A.G.; Noguera, A.; Sauleda, J.; Sala, E.; Pons, J.; Busquets, X. Systemic effects of chronic obstructive pulmonary disease. Eur. Respir. J., 2003, 21, 347-360.
[8]
Kodimuthali, A.; Jabaris, S.S.L.; Pal, M. Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. J. Med. Chem., 2008, 51, 5471-5489.
[9]
Jain, A.K.; Veerasamy, R.; Vaidya, A.; Kashaw, S.K.; Mourya, V.K.; Agrawal, R.K. QSAR analysis of B-ring-modified diaryl ether derivatives as a InhA inhibitors. Med. Chem. Res., 2012, 21, 145-151.
[10]
Vaidya, A.; Jain, A.K.; Kumar, B.P.R.; Kashaw, S.K.; Agrawal, R.K. Predicting anti-cancer activity of quinoline derivatives: CoMFA and CoMSIA approach. J. Enzyme Inhib. Med. Chem., 2011, 26, 854-861.
[11]
Bhatiya, R.; Vaidya, A.; Kashaw, S.K.; Jain, A.K.; Agrawal, R.K. QSAR analysis of furanone derivatives as potential COX-2 inhibitor: kNN MFA approach. J. Saudi Chem. Soc., 2014, 18, 997-984.
[12]
Jain, S.; Vaidya, A.; Jain, A.K.; Agrawal, R.K.; Kashaw, S.K. Computational analysis of benzyl vinylogus derivatives as potent PDE3B inhibitor. Arab. J. Chem., 2017, 10, S109-S113.
[13]
Bissantz, C.; Flokers, G.; Rognan, D. Protein-based virtual screening of chemical database and evaluation of different docking/ scoring combinations. J. Med. Chem., 2000, 43, 4759-4767.
[14]
Alexander, R.P.; Warrellow, G.J.; Eaton, M.A. CDP840. A prototype of a novel class of orally active anti-inflammatory Phosphodiesterase 4 inhibitors. Bioorg. Med. Chem. Lett., 2002, 37, 64-69.
[15]
Vestbo, J.; Tan, L.; Atkinson, G.; Ward, J. A controlled trial of 6- weeks’ treatment with a novel inhaled phosphodiesterase type-4 inhibitor in COPD. Eur. Respir. J., 2009, 33, 1039-1044.
[16]
Ochiai, H.; Ishida, A.; Ohtani, T. Discovery of new orally active phosphodiesterase (PDE4) inhibitors. Chem. Pharm. Bull., 2004, 52, 1098-1104.
[17]
Hulme, C.; Mathew, R.; Moriarty, K.; Miller, B. Orally active indole N-oxide PDE4 inhibitors. Bioorg. Med. Chem. Lett., 1998, 8, 3053-3058.
[18]
Kim, E.; Chun, H.O.; Jung, S.H. Improvement of therapeutic index of phosphodiesterase type IV inhibitors as anti- asthmatics. Bioorg. Med. Chem. Lett., 2003, 13, 2355-2358.
[19]
Buckley, G.; Cooper, N.; Hazel, J. 7-Methoxyfuran-4-carboxamides as PDE4 inhibitors: A potential treatment for asthma. Bioorg. Med. Chem. Lett., 2000, 10, 2137-2140.
[20]
Ochiai, H.; Ohtani, T.; Ishida, A. Highly potent PDE4 inhibitors with therapeutic potential. Bioorg. Med. Chem. Lett., 2004, 14, 207-210.
[21]
Brullo, C.; Massa, M.; Rocca, M. Synthesis, biological evaluation, and molecular modeling of new 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-Dimethylmorpholino)-2-oxoethyl) Oxime (GEBR-7b) related Phosphodiesterase 4D (PDE4D) inhibitors. J. Med. Chem., 2014, 57, 7061-7072.
[22]
Chakraborti, A.K.; Gopalakrishnan, B.; Sobhia, E.; Malde, A. 3D-QSAR studies of indole derivatives as PDE4 inhibitors. Eur. J. Med. Chem., 2003, 38, 975-982.
[23]
Savi, C.D.; Cox, D.J.; Warner, D. Efficacious inhaled pde4 inhibitors with low emetic potential and long duration of action for the treatment of COPD. J. Med. Chem., 2014, 57, 4661-4676.
[24]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[25]
Kuntz, D.I. Structure-based strategies for drug design and discovery. Science, 1992, 257, 1078-1082.
[26]
Drews, J. Drug discovery: A historical perspective. Science, 2000, 287, 1960-1964.
[27]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: Current status and future challenges. Proteins Struct. Funct. Bioinf., 2006, 65, 15-26.
[28]
Tripos Associates, SYBYL X Molecular Modeling Software, Version 1.2, St. Louis.
[29]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energyfunction. J. Comput. Chem., 1998, 19, 1639-1662.
[30]
Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput. Methods, 1990, 3, 537-547.
[31]
Cui, D.W.X. Evaluation of PDE4 inhibition for COPD. Int. J. COPD, 2006, 1, 373-379.