Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Molecular Modeling and Simulation of Transketolase from Orthosiphon stamineus

Author(s): Mei Ling Ng, Zaidah binti Rahmat* and Mohd Shahir Shamsir bin Omar

Volume 15, Issue 4, 2019

Page: [308 - 317] Pages: 10

DOI: 10.2174/1573409914666181022141753

Price: $65

Abstract

Background: Orthosiphon stamineus is a traditional medicinal plant in Southeast Asia countries with various well-known pharmacological activities such as antidiabetic, diuretics and antitumor activities. Transketolase is one of the proteins identified in the leaves of the plant and transketolase is believed able to lower blood sugar level in human through non-pancreatic mechanism. In order to understand the protein behavioral properties, 3D model of transketolase and analysis of protein structure are of obvious interest.

Methods: In the present study, 3D model of transketolase was constructed and its atomic characteristics revealed. Besides, molecular dynamic simulation of the protein at 310 K and 368 K deciphered transketolase may be a thermophilic protein as the structure does not distort even at elevated temperature. This study also used the protein at 310 K and 368 K resimulated back at 310 K environment.

Results: The results revealed that the protein is stable at all condition which suggest that it has high capacity to adapt at different environment not only at high temperature but also from high temperature condition to low temperature where the structure remains unchanged while retaining protein function.

Conclusion: The thermostability properties of transketolase is beneficial for pharmaceutical industries as most of the drug making processes are at high temperature condition.

Keywords: Transketolase, Orthosiphon stamineus, modeling, molecular dynamics simulation, thermostability, flexibility.

Graphical Abstract

[1]
Ratnaparkhi, M.P.; Chaudhari, S.P.; Pandya, V.A. Peptides and proteins in pharmaceuticals. Int. J. Curr. Pharma. Res., 2011, 3, 1-9.
[2]
Hew, C.S.; Khoo, B.Y.; Gam, L.H. The anti-cancer property of proteins extracted from Gynura procumbens (Lour.) Merr. PLoS One, 2013, 8, 1-10.
[3]
Tepkeeva, I.I.; Moiseeva, E.V.; Chaadaeva, A.V.; Zhavoronkova, E.V.; Kessler, Y.V.; Semushina, S.G.; Demushkin, V.P. Evaluation of antitumor activity of peptide extracts from medicinal plants on the model of transplanted breast cancer in CBRB-Rb (8.17)1Iem mice. Bull. Exp. Biol. Med., 2008, 145, 464-466.
[4]
Bokesch, H.R.; Pannell, L.K.; Cochran, P.K.; Sowder, R.C.; McKee, T.C.; Boyd, M.R. A novel anti-HIV macrocyclic peptide from Palicourea condensate. J. Nat. Prod., 2001, 64, 249-250.
[5]
Mäkinen, S.; Johansson, T.; Vegarud, G.; Pihlava, J.M.; Pihlanto, A. Angiotensin I-converting enzyme inhibitory and antioxidant properties of rapeseed hydrolysates. J. Funct. Foods, 2012, 4, 575-583.
[6]
Mohamed, E.A.; Yam, M.F.; Ang, L.F.; Mohamed, A.J.; Asmawi, M.Z. Antidiabetic properties and mechanism of action of Orthosiphon stamineus Benth bioactive sub-fraction in streptozotocin-induced diabetic rats. J. Acupunct. Meridian Stud., 2013, 6, 31-40.
[7]
Abdelwahab, S.I.; Mohan, S.; Elhassan, M.M.; Al-Mekhlafi, N.; Mariod, A.A.; Abdul, A.B.; Abdulla, M.A.; Alkharfy, M.K. Antiapoptotic and antioxidant properties of Orthosiphon stamineus benth (Cat’s Whiskers): Intervention in the Bcl-2-mediated apoptotic pathway. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-11.
[8]
Akowuah, G.A.; Zhari, I.; Norhayati, I.; Sadikun, A.; Khamsah, S.M. Sinensetin, eupatorin, 3′-hydroxy-5, 6, 7, 4′-tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of Orthosiphon stamineus from Malaysia. Food Chem., 2004, 87, 559-566.
[9]
Awale, S.; Tezuka, Y.; Banskota, A.H.; Kadota, S. Siphonols A-E: Novel nitric oxide inhibitors from Orthosiphon stamineus of Indonesia. Bioorg. Med. Chem. Lett., 2003, 13, 31-35.
[10]
Arafat, O.M.; Tham, S.Y.; Sadikun, A.; Ismail, Z.; Haughton, P.J.; Asmawi, M.Z. Studies on diuretic and hypouricemic effects of Orthosiphon stamineus methanol extracts in rats. J. Ethnopharmacol., 2008, 118, 354-360.
[11]
Ohashi, K.; Bohgaki, T.; Shibuya, H. Antihypertensive substance in the leaves of kumis kucing (Orthosiphon aristatus) in Java island. Yakugaku Zasshi, 2000, 120, 474-482.
[12]
Al-Suede, F.S.R.; Farsi, E.; Ahamed, M.B.K.; Ismail, Z.; Abdul Majid, A.S.; Abdul Majid, A.M.S. Marked antitumor activity of cat’s whiskers tea (Orthosiphon stamineus) extract in orthotopic model of human colon tumor in nude mice. J. Biochem. Technol., 2012, 3, 170-176.
[13]
Han, C.J.; Hussin, A.H.; Ismail, S. Effect of methanol leaf extract of Orthosiphon stamineus benth. on hepatic drug metabolizing enzymes in Sprague Dawley (SD) rats. J. Biosci., 2008, 19, 21-23.
[14]
George, A.; Chinnappan, S.; Choudlary, Y.; Choudhary, V.K.; Bommu, P.; Wong, H.J. Effects of a proprietary standardized orthosiphon stamineus ethanolic leaf extract on enhancing memory in sprague dawley rats possibly via blockade of adenosine a2a receptors. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[15]
Gangolf, M.; Czerniecki, J.; Radermecker, M.; Detry, O.; Nisolle, M.; Jouan, C.; Martin, D.; Chantraine, F.; Lakaye, B.; Wins, P.; Grisar, T.; Bettendorff, L. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One, 2010, 5, 1-13.
[16]
Zahr, N.M.; Kaufman, K.L.; Harper, C.G. Clinical and pathological features of alcohol -related brain damage. Nat. Rev. Neurol., 2011, 7, 284-294.
[17]
Kaufman, A.; Harper, C. Transketolase: Observations in alcohol-related brain damage research. Int. J. Biochem. Cell Biol., 2009, 41, 717-720.
[18]
Beltramo, E.; Solimine, C.; Ubertalli Ape, A.; Porta, M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J. Biol. Chem., 2006, 281, 9307-9313.
[19]
Hammes, H.P.; Du, X.; Edelstein, D.; Taguchi, T.; Matsumura, T.; Ju, Q.; Lin, J.; Bierhaus, A.; Nawroth, P.; Hannak, D. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med., 2003, 9, 294-299.
[20]
Boyle, L.; Wamelink, M.M.; Salomons, G.S.; Roos, B.; Pop, A.; Dauber, A.; Hwa, V.; Andrew, M.; Douglas, J.; Feingold, M. Mutations in TKT are the cause of a syndrome including short stature, developmental delay, and congenital heart defects. Am. J. Hum. Genet., 2016, 98, 1235-1242.
[21]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.D.; Appel, R.; Bairoch, A. In:The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press Inc.: Totowa, 2005, pp. 571-607.
[22]
Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; Van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J., 2011, 40, 843-856.
[23]
Singh, I.; Shah, K. In silico study of interaction between rice proteins enhance disease susceptibility 1 and phytoalexin deficient 4, the regulators of salicylic acid signalling pathway. J. Biosci., 2012, 37, 563-571.
[24]
Luthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356, 83-85.
[25]
Kumar, V.; Sharma, N.; Bhalla, T.C. In silico analysis of β-galactosidases primary and secondary structure in relation to temperature adaptation. J. Amino Acids, 2014, 2014, 1-9.
[26]
He, Y.; Maisuradze, G.G.; Yin, Y.P.; Kachlishvili, K.; Rackovsky, S.; Scheraga, H.A. Sequence-, structure-, and dynamics-based comparisons of structurally homologous Che-Y-like proteins. PNAS, 2016, 114, 1578-1583.
[27]
Mukherjee, J.; Gupta, M.N. Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnol. Rep., 2015, 6, 119-123.
[28]
Nandi, P.K.; English, N.J.; Zdenek, F.; Antonio, B. Hydrogen-bond dynamics at the bio-water interface in hydrated proteins: A molecular-dynamics study. Chem. Phys., 2016, 19, 318-329.
[29]
Chen, Z.; Fu, Y.; Xu, W.; Li, M. Molecular dynamics simulation of barnase: Contribution of noncovalent intramolecular interaction to thermostability. Math. Probl. Eng., 2013, 2013, 1-12.
[30]
Jelesarov, I.; Karshikoff, A. In:Protein Structure, Stability and Interactions; Shriver, J.W., Ed.; Humana Press: New York City, 2009, Vol. 490, pp. 227-260.
[31]
Ramli, A.N.M.; Mahadi, N.M.; Shamsir, M.S.; Rabu, A.; Tan, K.H.; Murad, A.M.A.; Illias, R.M. Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J. Comput. Aided Mol. Des., 2012, 26, 947-961.
[32]
Elcock, A.H. The stability of salt bridges at high temperatures: Implications for thermophilic proteins. J. Mol. Biol., 1998, 284, 489-502.
[33]
Hinzman, M.W.; Essex, M.E.; Park, C. Salt bridge as a gatekeeper against partial unfolding. Protein Sci., 2016, 25, 999-1009.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy