[1]
Ratnaparkhi, M.P.; Chaudhari, S.P.; Pandya, V.A. Peptides and proteins in pharmaceuticals. Int. J. Curr. Pharma. Res., 2011, 3, 1-9.
[2]
Hew, C.S.; Khoo, B.Y.; Gam, L.H. The anti-cancer property of proteins extracted from Gynura procumbens (Lour.) Merr. PLoS One, 2013, 8, 1-10.
[3]
Tepkeeva, I.I.; Moiseeva, E.V.; Chaadaeva, A.V.; Zhavoronkova, E.V.; Kessler, Y.V.; Semushina, S.G.; Demushkin, V.P. Evaluation of antitumor activity of peptide extracts from medicinal plants on the model of transplanted breast cancer in CBRB-Rb (8.17)1Iem mice. Bull. Exp. Biol. Med., 2008, 145, 464-466.
[4]
Bokesch, H.R.; Pannell, L.K.; Cochran, P.K.; Sowder, R.C.; McKee, T.C.; Boyd, M.R. A novel anti-HIV macrocyclic peptide from Palicourea condensate. J. Nat. Prod., 2001, 64, 249-250.
[5]
Mäkinen, S.; Johansson, T.; Vegarud, G.; Pihlava, J.M.; Pihlanto, A. Angiotensin I-converting enzyme inhibitory and antioxidant properties of rapeseed hydrolysates. J. Funct. Foods, 2012, 4, 575-583.
[6]
Mohamed, E.A.; Yam, M.F.; Ang, L.F.; Mohamed, A.J.; Asmawi, M.Z. Antidiabetic properties and mechanism of action of Orthosiphon stamineus Benth bioactive sub-fraction in streptozotocin-induced diabetic rats. J. Acupunct. Meridian Stud., 2013, 6, 31-40.
[7]
Abdelwahab, S.I.; Mohan, S.; Elhassan, M.M.; Al-Mekhlafi, N.; Mariod, A.A.; Abdul, A.B.; Abdulla, M.A.; Alkharfy, M.K. Antiapoptotic and antioxidant properties of Orthosiphon stamineus benth (Cat’s Whiskers): Intervention in the Bcl-2-mediated apoptotic pathway. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-11.
[8]
Akowuah, G.A.; Zhari, I.; Norhayati, I.; Sadikun, A.; Khamsah, S.M. Sinensetin, eupatorin, 3′-hydroxy-5, 6, 7, 4′-tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of Orthosiphon stamineus from Malaysia. Food Chem., 2004, 87, 559-566.
[9]
Awale, S.; Tezuka, Y.; Banskota, A.H.; Kadota, S. Siphonols A-E: Novel nitric oxide inhibitors from Orthosiphon stamineus of Indonesia. Bioorg. Med. Chem. Lett., 2003, 13, 31-35.
[10]
Arafat, O.M.; Tham, S.Y.; Sadikun, A.; Ismail, Z.; Haughton, P.J.; Asmawi, M.Z. Studies on diuretic and hypouricemic effects of Orthosiphon stamineus methanol extracts in rats. J. Ethnopharmacol., 2008, 118, 354-360.
[11]
Ohashi, K.; Bohgaki, T.; Shibuya, H. Antihypertensive substance in the leaves of kumis kucing (Orthosiphon aristatus) in Java island. Yakugaku Zasshi, 2000, 120, 474-482.
[12]
Al-Suede, F.S.R.; Farsi, E.; Ahamed, M.B.K.; Ismail, Z.; Abdul Majid, A.S.; Abdul Majid, A.M.S. Marked antitumor activity of cat’s whiskers tea (Orthosiphon stamineus) extract in orthotopic model of human colon tumor in nude mice. J. Biochem. Technol., 2012, 3, 170-176.
[13]
Han, C.J.; Hussin, A.H.; Ismail, S. Effect of methanol leaf extract of Orthosiphon stamineus benth. on hepatic drug metabolizing enzymes in Sprague Dawley (SD) rats. J. Biosci., 2008, 19, 21-23.
[14]
George, A.; Chinnappan, S.; Choudlary, Y.; Choudhary, V.K.; Bommu, P.; Wong, H.J. Effects of a proprietary standardized orthosiphon stamineus ethanolic leaf extract on enhancing memory in sprague dawley rats possibly via blockade of adenosine a2a receptors. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[15]
Gangolf, M.; Czerniecki, J.; Radermecker, M.; Detry, O.; Nisolle, M.; Jouan, C.; Martin, D.; Chantraine, F.; Lakaye, B.; Wins, P.; Grisar, T.; Bettendorff, L. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One, 2010, 5, 1-13.
[16]
Zahr, N.M.; Kaufman, K.L.; Harper, C.G. Clinical and pathological features of alcohol -related brain damage. Nat. Rev. Neurol., 2011, 7, 284-294.
[17]
Kaufman, A.; Harper, C. Transketolase: Observations in alcohol-related brain damage research. Int. J. Biochem. Cell Biol., 2009, 41, 717-720.
[18]
Beltramo, E.; Solimine, C.; Ubertalli Ape, A.; Porta, M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J. Biol. Chem., 2006, 281, 9307-9313.
[19]
Hammes, H.P.; Du, X.; Edelstein, D.; Taguchi, T.; Matsumura, T.; Ju, Q.; Lin, J.; Bierhaus, A.; Nawroth, P.; Hannak, D. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med., 2003, 9, 294-299.
[20]
Boyle, L.; Wamelink, M.M.; Salomons, G.S.; Roos, B.; Pop, A.; Dauber, A.; Hwa, V.; Andrew, M.; Douglas, J.; Feingold, M. Mutations in TKT are the cause of a syndrome including short stature, developmental delay, and congenital heart defects. Am. J. Hum. Genet., 2016, 98, 1235-1242.
[21]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.D.; Appel, R.; Bairoch, A. In:The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press Inc.: Totowa, 2005, pp. 571-607.
[22]
Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; Van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J., 2011, 40, 843-856.
[23]
Singh, I.; Shah, K. In silico study of interaction between rice proteins enhance disease susceptibility 1 and phytoalexin deficient 4, the regulators of salicylic acid signalling pathway. J. Biosci., 2012, 37, 563-571.
[24]
Luthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356, 83-85.
[25]
Kumar, V.; Sharma, N.; Bhalla, T.C. In silico analysis of β-galactosidases primary and secondary structure in relation to temperature adaptation. J. Amino Acids, 2014, 2014, 1-9.
[26]
He, Y.; Maisuradze, G.G.; Yin, Y.P.; Kachlishvili, K.; Rackovsky, S.; Scheraga, H.A. Sequence-, structure-, and dynamics-based comparisons of structurally homologous Che-Y-like proteins. PNAS, 2016, 114, 1578-1583.
[27]
Mukherjee, J.; Gupta, M.N. Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnol. Rep., 2015, 6, 119-123.
[28]
Nandi, P.K.; English, N.J.; Zdenek, F.; Antonio, B. Hydrogen-bond dynamics at the bio-water interface in hydrated proteins: A molecular-dynamics study. Chem. Phys., 2016, 19, 318-329.
[29]
Chen, Z.; Fu, Y.; Xu, W.; Li, M. Molecular dynamics simulation of barnase: Contribution of noncovalent intramolecular interaction to thermostability. Math. Probl. Eng., 2013, 2013, 1-12.
[30]
Jelesarov, I.; Karshikoff, A. In:Protein Structure, Stability and Interactions; Shriver, J.W., Ed.; Humana Press: New York City, 2009, Vol. 490, pp. 227-260.
[31]
Ramli, A.N.M.; Mahadi, N.M.; Shamsir, M.S.; Rabu, A.; Tan, K.H.; Murad, A.M.A.; Illias, R.M. Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J. Comput. Aided Mol. Des., 2012, 26, 947-961.
[32]
Elcock, A.H. The stability of salt bridges at high temperatures: Implications for thermophilic proteins. J. Mol. Biol., 1998, 284, 489-502.
[33]
Hinzman, M.W.; Essex, M.E.; Park, C. Salt bridge as a gatekeeper against partial unfolding. Protein Sci., 2016, 25, 999-1009.