[1]
Ruijter, A.J.M.D.; Gennip, A.H.V.; Caron, H.N.; Kemp, S.; Kuilenburg, A.B.P.V. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(3), 737-739.
[2]
Hamm, C.A.; Costa, F.F. Epigenomes as therapeutic targets. Pharmacol. Ther., 2015, 151, 72-86.
[3]
Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett., 2009, 277(1), 8-21.
[4]
Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents. Biologics, 2013, 7, 47-60.
[5]
Valente, S.; Mai, A. Small-molecule inhibitors of histone deacetylase for the treatment of cancer and non-cancer diseases: A patent review (2011-2013). Expert Opin. Ther. Pat., 2014, 24(4), 401-415.
[6]
Jiyang, L.; Guangqiang, L.; Wenqing, X. Histone deacetylase inhibitors: an attractive strategy for cancer therapy. Curr. Med. Chem., 2013, 20(14), 1858-1886.
[7]
Qiu, T.; Zhou, L.; Zhu, W.; Wang, T.; Wang, J.; Shu, Y.; Liu, P. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol., 2013, 9(2), 255-269.
[8]
Zwergel, C.; Valente, S.; Jacob, C.; Mai, A. Emerging approaches for histone deacetylase inhibitor drug discovery. Expert Opin. Drug Discov., 2015, 10(6), 599-613.
[9]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[10]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[11]
Glaser, K.B. HDAC inhibitors: Clinical update and mechanism-based potential. Biochem. Pharmacol., 2007, 74(5), 659-671.
[12]
Dallavalle, S.; Cincinelli, R.; Nannei, R.; Merlini, L.; Morini, G.; Penco, S.; Pisano, C.; Vesci, L.; Barbarino, M.; Zuco, V.; De Cesare, M.; Zunino, F. Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2009, 44(5), 1900-1912.
[13]
Bracker, T.U.; Sommer, A.; Fichtner, I.; Faus, H.; Haendler, B.; Hess-Stumpp, H. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int. J. Oncol., 2009, 35(4), 909-920.
[14]
Iyer, S.P.; Foss, F.F. Romidepsin for the treatment of peripheral t-cell lymphoma. Oncologist, 2015, 20(9), 1084-1091.
[15]
Guha, M. HDAC inhibitors still need a home run, despite recent approval. Nat. Rev. Drug Discov., 2015, 14(5), 365-365.
[16]
Oanh, D.T.K.; Hai, H.V.; Park, S.H.; Kim, H.J.; Han, B.W.; Kim, H-S.; Hong, J.T.; Han, S.B.; Hue, V.T.M.; Nam, N.H. Benzothiazole-containing hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg. Med. Chem. Lett., 2011, 21(24), 7509-7512.
[17]
Thanh, T.T.; Kim, D.T.O.; Phuong, P.T.D.; My, V.T.H.; Ho, S.P.; Woo, B.H.; Youngsoo, K.; Jin-Tae, H.; Sang-Bae, H.; Nguyen-Hai, N. New Benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents. Med. Chem., 2013, 9(8), 1051-1057.
[18]
Nam, N.H.; Huong, T.L.; Dung, D.T.M.; Dung, P.T.P.; Oanh, D.T.K.; Park, S.H.; Kim, K.; Han, B.W.; Yun, J.; Kang, J.S.; Kim, Y.; Han, S.B. Synthesis, bioevaluation and docking study of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 611-618.
[19]
Do, T.M.D.; Phan, T.P.D.; Dao, T.K.O.; Pham, T.H.; Le, T.T.H.; Vu, D.L.; Hyunggu, H.; Byung, W.H.; Jisung, K.; Sang-Bae, H.; Nguyen-Hai, N. Novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides as histone deacetylase inhibitors and antitumor agents. Med. Chem., 2015, 11(8), 725-735.
[20]
Huong, T.T.L.; Dung, D.T.M.; Huan, N.V.; Cuong, L.V.; Hai, P.T.; Huong, L.T.T.; Kim, J.; Kim, Y.G.; Han, S.B.; Nam, N.H. Novel N-hydroxybenzamides incorporating 2-oxoindoline with unexpected potent histone deacetylase inhibitory effects and antitumor cytotoxicity. Bioorg. Chem., 2017, 71, 160-169.
[21]
Hieu, D.T.; Anh, D.T.; Tuan, N.M.; Hai, P.T.; Huong, L.T.T.; Kim, J.; Kang, J.S.; Vu, T.K.; Dung, P.T.P.; Han, S.B.; Nam, N.H.; Hoa, N.D. Design, synthesis and evaluation of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones as histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2018, 76, 258-267.
[22]
Hieu, D.T.; Anh, D.T.; Hai, P.T.; Huong, L.T.T.; Park, E.J.; Choi, J.E.; Kang, J.S.; Dung, P.T.P.; Han, S.B.; Nam, N.H. Quinazoline-based hydroxamic acids: Design, synthesis, and evaluation of histone deacetylase inhibitory effects and cytotoxicity. Chem. Biodivers., 2018, 15(6), e1800027.
[23]
Dung, D.T.M.; Hai, P.T.; Anh, D.T.; Huong, L.T.T.; Yen, N.T.K.; Han, B.W.; Park, E.J.; Choi, Y.J.; Kang, J.S.; Hue, V.T.M.; Han, S.B.; Nam, N.H. Novel hydroxamic acids incorporating 1-((1H-1,2,3-Triazol-4-yl) methyl)-3-hydroxyimino-indolin-2-ones: synthesis, biological evaluation, and SAR analysis. J. Chem. Sci., 2018, 130(6), 63.
[24]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[25]
Nam, N.H.; Sardari, S.; Parang, K. Reactions of solid-supported reagents and solid supports with alcohols and phenols through their hydroxyl functional group. J. Comb. Chem., 2003, 5(5), 479-546.
[26]
Thuong, P.T.; Na, M.K.; Dang, N.H.; Hung, T.M.; Ky, P.T.; Thanh, T.V.; Nam, N.H.; Thuan, N.D.; Sok, D.E.; Bae, K.H. Antioxidant activities of Vietnamese medicinal plants. Nat. Prod. Sci., 2006, 12, 29-37.
[27]
Wu, L.; Smythe, A.M.; Stinson, S.F.; Mullendore, L.A.; Monks, A.; Scudiero, D.A.; Paull, K.D.; Koutsoukos, A.D.; Rubinstein, L.V.; Boyd, M.R.; Shoemaker, R.H. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res., 1992, 52(11), 3029.
[28]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[29]
Lauffer, B.E.L.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone Deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem., 2013, 288(37), 26926-26943.
[30]
Schuttelkopf, A.W.; van-Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D, 2004, 60(8), 1355-1363.
[31]
Huong, T.T.L.; Van Cuong, L.; Huong, P.T.; Thao, T.P.; Huong, L.T.T.; Dung, P.T.P.; Oanh, D.T.K.; Huong, N.T.M.; Quan, H-V.; Vu, T.K.; Kim, J.; Lee, J.H.; Han, S.B.; Hai, P.T.; Nam, N.H. Exploration of some indole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Chem. Pap., 2017, 71(9), 1759-1769.
[32]
Pelzel, H.R.; Schlamp, C.L.; Nickells, R.W. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci., 2010, 11(1), 62.