Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Hydroxychloroquine (HCQ) and its Synthetic Precursors: A Review

Author(s): Rafi Shaik* and H. Surya Prakash Rao

Volume 19, Issue 1, 2022

Published on: 04 February, 2021

Page: [111 - 124] Pages: 14

DOI: 10.2174/1570193X18666210204113412

Price: $65

Abstract

Hydroxychloroquine (HCQ) is an extremely important drug used for the treatment of various ailments. WHO listed it as one of the essential drugs. The utility of hydroxychloroquine (HCQ) as prophylaxis of COVID19, although debated, is well known. We have reviewed synthetic strategies for the industrial and academic synthesis of HCQ and its key intermediates like 4,7-dichloroquinoline (4,7- DCQ) and 2-((4-aminopentyl)(ethyl)amino)ethan-1-ol 9 (aka hydroxy novaldiamine; HNDA). The review is expected to provide the right perspective of state-of-the-art knowledge in this field so that further developments are possible.

Keywords: Hydroxychloroquine (HCQ), 4, 7-DCQ, HNDA, coronavirus disease, Covid-19, toxic chloroquine

Graphical Abstract

[1]
Katelyn, A.P.; Elizabeth, C.O.; Wang, F.; Lofgren, S.M.; Skipper, C.P.; Nicol, M.R.; Matthew, F.P.; Rajasingham, R.; McDonald, D.G.; Lee, T.C.; Schwartz, I.S.; Lauren, E.K.; Sylvain, A.L.; Oriol, M.; Emili, L.; Abbassi, M. David. R.B. Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect. Dis., 2020, 7, 1-9.
[2]
(a)Devaus, C.A.; Jean-Marc, R.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int. J. Antimicrob. Agents, 2020.105938
(b)Serafin, M.B.; Bottega, A.; Foletto, V.S.; da Rosa, T.F.; Andreas, H.; Rosmari, H. Drug repositioning is an alternative for the treatment of coronavirus COVID-19. Int. J. Antimicrob. Agents, 2020, 105969
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105969]
Article in press (c) Bendaif, H.; Hammouti, B.; Stiane, I.; Bendaif, Y.; El Ouadi, M.A.; El Ouadi, Y. Investigation of spread of novel coronavirus (COVID-19) pandemic in Morocco & estimated confinement duration to overcome the danger phase. Caspian J. Environ. Sci. Flight., 2020, 18, 149-156.
[3]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16, 155-166.
[4]
Price, C.C.; Roberts, R.M. The synthesis of 4-hydroxyquinolines I. through ethoxymethylenemalonic ester. J. Am. Chem. Soc., 1946, 68, 1204-1208.
[5]
Pan, A.; Liu, L.; Wang, C. Association of public health interven-tions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA, 2020, 323, 1915-1923.
[6]
Guida, J.P. Chloroquine, hydroxychloroquine and COVID-19: A systematic review of literature. Inter. Am. J. Med. Health, 2020, 3, 1-10.
[7]
Edward, E.F.; Tendick, F.H.; Werbel, L.M. Repository drugs. VIII. Ester and amide congeners of amodiaquine, hydroxychloroquine, oxychloroquine, primaquine, quinacrine, and related substances as potential long-acting antimalarial agents. J. Med. Chem., 1969, 12, 600-607.
[8]
Szymkuć, S.; Gajewska, E.P.; Mogla, K. Computer-assisted planning of hydroxychloroquine’s syntheses commencing from inexpensive substrates and bypassing patented routes. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12026439.v1]
[9]
Ben-Zvi, I.; Kivity, S.; Langevitz, P. Hydroxychloroquine: From malaria to autoimmunity. Clin. Rev. Allergy Immunol., 2012, 42, 145-153.
[10]
(a)Achan, J.; Talisuna, A.O.; Erhart, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10, 144.
(b)Hofheinz, W.; Merkli, B. Quinine and quinine analogues.Antimalarial Drug II; Springer: Berlin, Heidelberg, 1984, pp. 61-81.
[11]
Urban, H.; Ericsson, O.; Adenabdi, Y. Gustafsson. Y.L. Handbook of Drugs for Tropical Parasitic Infections; CRC press, Taylor & Francis: London, 1995.
[12]
Kawanishi, K.; Farnsworth, N.R. Current Status of the Chemistry and Synthesis of Natural Antimalarial Compounds and Natural Substances Used to Alleviate Symptoms of Diabetes (Aldose Reductase and A-Glucosidase Inhibitors). In: Studies in Natural Products Chemistry, Elsevier BV:Amsterdam, , 2000; 22, pp. 145-193.
[13]
World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. HDL: 10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BYNC- SA 3.0 IGO.
[14]
Jaya kumar, K.N.; John, N.A.; Kimberly, Y.; Kekeli, A.E.K.; Leah, B.C.; Angel C.D.; Christian, W.; Paul, D.R. 4-N-, 4-S-, and 4-O-chloroquine analogues: Influence of side chain length and quinolyl nitrogen pKa on activity vs. chloroquine resistant malaria. J. Med. Chem., 2008, 51(12), 3466-3479.
[15]
Aylin, Y.; Richard, W.P.; Magnus, G. Antiretroviral drug treatment of CNS HIV-1 infection. J. Antimicrob. Chemother., 2012, 67, 299-311.
[16]
Sciascia, S.; Hunt, B.J.; Talavera, E.G.; Lliso, G.; Khamashta, M.; Cuadrado, M.J. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. Am. J. Obstet. Gynecol., 2015, 214, 273-e1.
[17]
(a)Nathalie, C.C.; Bertrand, D.; Leroux, G.; Morel, N.; Jallouli, M.; Le Guern, V.; Piette, J.C.; Antonie, P.B.; Ronald, B.M.; Michael, F.M. A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin. Rev. Allergy Immunol., 2015, 49, 317-326.
(b)Michael, F.M.; Kellner, U.; Timothy, Y.Y.L.; Ronald, M.B.; Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 Revision). Ophthalmology, 2016, 123, 1386-1394.
(c)Chatre, C.; Roubille, F.; Vernhet, H.; Jorgensen, C.; Marie Pers, Y. Cardiac complications attributed to chloroquine and hydroxychloroquine: A systematic review of the literature. Drug Saf., 2018, 41, 919-931.
(d)Frustaci, A.; Morgante, E.; Antuzzi, D.; Russo, M.A.; Chimenti, C. Inhibition of cardiomyocyte lysosomal activity in hydroxychloroquine cardiomyopathy. Cardiology, 2012, 157, 117-119.
[18]
Stein, M.; Bell, M.J.; Ang, L.C. Hydroxychloroquine neuromyotoxicity. J. Rheumatol., 2000, 27, 2927-2931.
[19]
Tang, C.; Godfrey, T.; Stawell, R.; Nikpour, M. Hydroxychloro-quine in lupus: Emerging evidence supporting multiple beneficial effects. Intern. Med. J., 2012, 42, 968-978.
[20]
Yang, W.; Kairong, S.; Li, Z.; Guanlian, H.; Jingyu, W.; Jiajing, T.; Sheng, Y.; Jiandong, D.; Ming, Q.; Neng, W.; Dandan, X.; Xinle, G.; Huile, G.; Zhirong, Z.; Qin, H. Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin. Autophagy, 2016, 12, 949-962.
[21]
Wills, R.; Seif, A.M.; McGwin, Jr, G., ; Martinez-Martinez, L.A.; González, E.B.; Dang, N.; Papalardo, E.; Liu, J.; Vilá, L.M.; Reveille, J.D.; Alarcón, G.S.; Pierangeli, S.S. Effect of hydroxy-chloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: Data from LUMINA (LXXV), a multiethnic US cohort. Lupus, 2012, 21, 830-835.
[22]
(a) Plantone, D.; Koudriavtseva, T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin. Drug Investig., 2018, 38, 653-671.
(b) Rainsford, D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015, 23, 231-269.
[23]
Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem., 2010, 53, 6477-6489.
[24]
Ruiz-Irastorza, G.; Ramos-Casals, M.; Brito-Zeron, P.; Khamashta, M.A. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: A systematic review. Ann. Rheum. Dis., 2010, 69, 20-28.
[25]
O’Dell, J.R.; Leff, R.; Paulsen, G.; Haire, C.; Mallek, J.; Eckhoff, P.J.; Fernandez, A.; Blakely, K.; Wess, S.; Stoner, J.; Hadley, S.; Felt, J.; Palmer, W.; Waytz, P.; Churchill, M.; Klassen, L.; Moore, G. Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications: Results of a two‐year, randomized, double‐blind, placebo‐controlled trial. Arthritis Rheuma, 2002, 46, 1164-1170.
[26]
Wang, S.; Zhang, L.; Wei, P. Is hydroxychloroquine effective in treating primary Sjogren’s syndrome: A systematic review and meta-analysis. BMC Musculoskelet. Disord., 2017, 18, 186.
[27]
Chiranjeev, S.; Satish Kumar, A. Recent advances in antimalarial drug discovery-challenges and opportunities; Overview Trop. Dis., Amidou Samie, IntechOpen, 2015.
[http://dx.doi.org/10.5772/61191]
[28]
(a) Kumar, A.; Liang, B.; Aarthy, M.; Singh, S.K.; Garg, N.; Mysorekar, I.U. Giri, R. Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS Omega, 2018, 3, 18132-18141.
(b) Ravindran, V.; Alias, G. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: A 24-week randomized controlled open label study. Clin. Rheumatol., 2017, 36, 1335-1340.
[29]
Manic, G.; Obrist, F.; Kroemer, G.; Vitale, I.; Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol., 2014, 1e29911
[30]
(a) Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. E-cancer. Med. Sci., 2017, 11, 781.
(b) Shi, T.; Yu, X.; Yan, L. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother. Pharmacol., 2017, 79, 287-294.
(c) Xu, R.; Ji, Z.; Xu, C.; Zhu, J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine (Baltimore), 2018, 97e12912
[31]
(a) Xueting, Y.; Fei, Y.; Zhang, M.; Cheng, C.; Baoying, H.; Peihua, N.; Liu, X.; Zhao, L.; Erdan, D.; Chunli, S.; Zhan, S.; Roujian, L.; Haiyan, L.; Wenjie, T.; Dongyang, L. In vitro antiviral activity and projection of optimized dosing design of hydroxy-chloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
(b) Liu, J.; Cao, R.; Xu, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6, 16.
(c) Clemnti, N.; Criscuolo, E.; Roberta, A.D.; Ferrarese, R.; Matteo, C.; Roberto, B.; Nicasio, C.M. Combined prophylactic and therapeutic use maximizes hydroxychloroquine anti-SARS-CoV-2 effects in vitro. bioRxiv, 2020. .03.29.014407.
[http://dx.doi.org/10.1101/2020.03.29.014407]
[32]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949]
[33]
Zhou, D.; Sheng-Ming, D.; Quang, T. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J. Antimicrob. Chemother., 2020, 75(7), 1667-1770.
[http://dx.doi.org/10.1093/jac/dkaa114]
[34]
Vincent, M.J.; Bergeron, E.; Benjannet, S. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69-79.
[35]
Lenzer, J. Covid-19: US gives emergency approval to hydroxychloroquine despite lack of evidence. BMJ, 2020, 369, m1335.
[36]
(a) Robin, E.F.; Jaffrey, K.A. Chloroquine and hydroxychloroquine in covid-19. BMJ, 2020, 369, m1432.
(b) Shah, S.; Das, S.; Jain, A.; Misra, D.P.; Negi, V.S. A systematic review of the prophylactic role of chloroquine and hydroxychloroquine in coronavirus disease-19 (COVID-19). Int. J. Rheum. Dis., 2020, 1-7.
[37]
Li, J.J. Conrad-Limpach reaction.Name Reactions; Springer: Berlin, Heidelberg, 2009.
[38]
Manske, R.H.F.; Kulka, M. The S Kraup synthesis of quinolines. In: Organic Reactions, (Ed.), John Wiley and Sons Hoboken, 2011, pp. 59-98.
[39]
Wang, Z. Combes Quinoline Synthesis.Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons: Hoboken, 2010.
[40]
Cheng, C.C.; Yan, S.J. The Friedländer synthesis of quinolines. Organic Reactions, (Ed.),Wiley Hoboken, 2005, pp. 37-201.
[41]
Conrad, M.; Limpach, L. Synthesis of quinoline derivatives using acetoacetic ester. Ber. Dtsch. Chem. Ges., 1887, 20, 944.
[42]
Wang, Z. Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, 2010.
[43]
(a) Charles, C.P.; Roberts, R.M. Synthesis of 4-hydroxyquinolines. IV. A modified preparation through bis-(m-chlorophenyl)-formamidine. J. Am. Chem. Soc., 1946, 68, 1255-1256.
(b) Gerschickter, C.F.; Rice, L.M. Salts of 7-chloro-4-(4-diethylamino- 1-methylbutylamino) quinolone. U.S. Patent 2947664 1960.
(c) Charles, C.P.; Roberts, R.M. 4,7-Dichloroquinoline. Org. Synth., 1948, 3, 272.
[44]
(a) Alexander, R.S.; Hammer, H.F. Some 7-Substituted 4-Aminoquinoline derivatives. J. Am. Chem. Soc., 1946, 68, 113-116.
(b) Wu, R.; Williams, R.F.; Silks, P.L.; Schmidt, J.G. Synthesis of stable isotope-labeled chloroquine and amodiaquine and their metabolites. J. Labelled Comp. Radiopharm., 2019, 6, 230-248.
[45]
Northey, E.H.; Dreisbach, P.F. Preparation of 4-hydroxyquinolines. US Patent 2478125, August 2 1949.
[46]
(a) William, S.J.; Bennett, G.B. A new synthesis of chloroquine. J. Am. Chem. Soc., 1952, 74, 4513-4516.
(b) Michel Baudouin, S.F.; Daneil, M. Preparation of 4-hydroxyquinolines. U.S. Patent 4412076, January 15 1983.
[47]
William, S.J.; Eugene, L.W.; Bennett, G.B. Cyclization studies in the quinoline series. A new synthesis of 4-aminoquinolines. J. Am. Chem. Soc., 1949, 71, 1901-1905.
[48]
(a) Merchant, J.R.; Engineer, A.B. Synthesis of 7-chloro-2,3-dihydro-4(1H)-quinolone - an important intermediate in the synthesis of chloroquine. Curr. Sci., 1978, 21, 803-804.
(b) Heininger, S.A. Cupric acetate catalyzed monocyanoethylation of aromatic amines. J. Org. Chem., 1957, 22, 1213-1217.
(c) Chothia, D.S.; Dike, S.Y.; Engineer, A.B.; Merchant, J.R. Indian J. Chem., 1976, 14B, 323-325.
[49]
Theeraladanon, C.; Mitsuhiro, A.; Atsushi, N.; Masako, N.F. A novel synthesis of substituted quinolines using Ring-Closing Metathesis (RCM): Its application to the synthesis of key intermediates for anti-malarial agents. Tetrahedron, 2004, 60, 3017-3035.
[50]
(a) Peter, B.M.; Sherrill, J.; Ally, P.L.; Jennifer, L.W.; Joseph, L.D.; Kiplin, G. Synthesis of ring-substituted 4-aminoquinolines and evaluation of their antimalarial activities. Bioorg. Med. Chem. Lett., 2005, 15, 1015-1018.
(b) AlAwadi, N.A.; Abdelhamid, A.; Al-Etaibi, A.M.; Elnagdi, M.H. Gas-phase pyrolysis in organic synthesis: Rapid green synthesis of 4-quinolinones. Synlett, 2007, 14, 2205-2208.
[51]
(a) Lange, J.; Alex, C.B.; Martin, G.B.; Ian, A.C. Synthesis of 2,3-Dihydro-4(1H)-quinolones and the corresponding 4(1h)-quinolones via low-temperature fries rearrangement of N-arylazetidin-2-ones. Aust. J. Chem., 2011, 64, 454-470.
(b) Shinto, K.; Tsutomu, E.; Shiroshi, S. Formation of 2, 3-dihydro-4(1H)-quinolones and related compounds via Fries-type acid-catalysed rearrangement of 1-arylazetidin-2-ones. J. Chem. Soc., Perkin Trans. 1, 1980, 2105-2111.
[52]
Wang, F.; Liang, J.; Lingheng, K.; Xingwei, L. Cobalt(III)- and rhodium(iii)-catalyzed c-h amidation and synthesis of 4-quinolones: C-H activation assisted by weakly coordinating and functionalizable enaminone. Org. Lett., 2017, 19, 1812-1815.
[53]
(a) Medina, F.; Manjarrez, A. A new synthesis of (±)-3-carone. Tetrahedron, 1964, 20, 1807-1810.
(b) Thomas, J.F.; Chen, J.; Cuong, V.L.; Kari, J.H. Isomerization-free sulfonylation and its application in the synthesis of PHA-565272A. Org. Process Res. Dev., 2006, 10, 334-338.
[54]
Rahul, N.; Gregor, J.; Chitra, S.; Jeet, K. Rapid and reversible hydrazone bioconjugation in cells without the use of extraneous catalysts. Org. Biomol. Chem., 2018, 16, 4304-4310.
[55]
Zheng, D.; Ning, J.; Wei, X.; Zhou, J.; Zhang, Z.; Xiaolin, W. 5- chloro-2-pentanone preparation method. CN Patent, CN103694094A, April 2 2016.
[56]
(a) Mizushima, E.; Hayashi, T.; Sato, K.; Tanaka, M.U.S. Patent 143597, June 30 2005.
(b) Eiichiro, M.; Dong-Mei, C.; Dilip Chandra, D.; Teruyuki, H.; Masato, T. Au (I)-catalyzed hydration of alkynes: 2,8-nonanedione. Org. Synth., 2006, 83, 55.
[57]
Gao, X.; Jianhao, Z.; Xinhua, P. Efficient palladium(0) supported on reduced graphene oxide for selective oxidation of olefins using graphene oxide as a ‘solid weak acid’. Catal. Commun., 2019, 122, 73-78.
[58]
Alexander, R.S.; Hammer, H.F. Some 7-Substituted 4-aminoquinoline derivatives. J. Am. Chem. Soc., 1946, 68, 113-116.
[59]
Ashok, K.; Dhansukhlal, V.K.; Sanjay, S.; Sanjay, N.; Atul, J. An improved process for the preparation of 7-Chloro-4-(5-N-ethyl-N- 2-hydroxyethylamine)-2-phenyl] aminoquinoline and its intermediates. U.S. Patent 2005062723 A2, July 14 2005.
[60]
You H.; Liu, Y.; Ning, F.; Zheng, Z.; Yu, Q.; Niu X.; Li, C. Synthetic method of 5-(N-ethyl-N-2-ethylolamine)-2-amylamine. CN Patent 104803859A, July 29 2015.
[61]
(a) Jensen, K.F. Flow chemistry-microreaction technology comes of age. AIChE J., 2017, 63, 858-869.
(b) Baumann, M.; Baxendale, I.R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J. Org. Chem., 2015, 11, 1194-1219.
(c) Baumann, M.; Moody, T.S.; Smyth, M.; Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process Res. Dev., 2020, 24(10), 1802-1813. Article in press
[http://dx.doi.org/10.1021/acs.oprd.9b00524]
[62]
Joseph, L.H.; Christiane, S.; Duncan, L.B. Continuous flow synthesis of antimalarials: Opportunities for distributed autonomous chemical manufacturing. React. Chem. Eng., 2017, 2, 281-287.
[63]
Rafi, S. Process for preparation of hydroxy novaldiamine. Ind. provisional Patent Application Number 202041020204, May 13,, 2020.
[64]
Rentner, J.; Marko, K.; Lisa, O.; Breinbauer, R. Recent advances and applications of reductive desulfurization in organic synthesis. Tetrahedron, 2014, 70, 8983-9027.
[65]
Richard, S.D.; Chester, J.C. Alkylene Bis-(2-thenylquarter-naryammonium) Salts. J. Am. Chem. Soc., 1953, 75, 3033-3034. (b) Rao, H.S.P.; Rafi, S. Synthesis and stereochemistry of 2-arylperhydrocyclopenta[b]pyridin-1-ols, 8-azaestrone fragments. Tetrahedron Lett., 2008, 49, 6134-6136.
[66]
Alexander, R.S.; Hammer, H.F. 7-chloro-4-[5-(n-ethyl-n-2- hydroxyethylamino)-2-pentyl] aminoquinoline, its acid addition salts, and method of preparation. U.S. Patent 2546658 A, March 27, 1951.
[67]
Daqing, C.; Bhaskar Reddy, G.; Sammy, C.D.; Montemayor, L.K. Process for the preparation of highly pure hydroxychloroquine or a salt thereof. CA Patent 2561987 A1, September 2 2006.
[68]
Alexander, R.S.; Hammer, H.F. The role of phenol in the reaction of 4,7-dichloroquinoline with novel diamine. J. Am. Chem. Soc., 1951, 73, 2623-2626.
[69]
Alexander, R.S.; Hammer, H.F. The preparation of 7-chloro-4-(4-(n-ethyl-n-β-hydroxyethylamino)-1-methylbutylamino)-quinoline and related compounds. J. Am. Chem. Soc., 1950, 72, 1814-1815.
[70]
(a)Paul, M.B.; Stephen, J.B.; Glynis, C.; George, J.E.; John, M.H.; James, E.P.; David, I.S.; William, F.M.; Mark, S.S. A practical synthesis of the enantiomers of hydroxychloroquine. Tetrahedron Asymmetry, 1994, 5, 1815-1822.
(b)Glenn, J.; Edward, P. Use of chloroquine and clemizole compounds for treatment of inflammatory and cancerous conditions. WO Patent 2017004454 A1, January 5, 2017.
[71]
(a) Jinhong, P.; Youyou, D.; Rongyao, Y.; Jinwei, W.; Wenquing, P.; Guofan, X. Industrialized preparation method of hydroxychloroquinoline sulfate. CN Patent 103724261 B, May 25 2016.
(b)Zhang, Y.; Kunjiao, Y.; Huang, Q.; Zhang, Z.; Wei, Y.; Ding, Y.; Wei, J.; Zhu, P. A kind of preparation method of the preparation and process for purification and its sulfate of Hydroxychloroquine. CN Patent 108658858 A, August 16 2018.
[72]
Tang, M.; Dayong, G.; Yang, Z.; Liu, Y.; Yang, J.; Cai, Z.; Zha, Z.; Wang, Y. Preparation method of hydroxychloroquine sulfate. CN Patent 104230803 B, January 2 2017.
[73]
Gupton, B.F.; Ahmad, S.; Mangunuru, H.P.R.; Telang, N.S. Highyielding continuous flow synthesis of antimalarial drug Hydroxychloroquine. WO Patent 2019165337 A1 2019.
[74]
Chen, F.; Binbin, H.; Xiaoxian, M.; Gong, P.; Chunyou, H. Asymmetric synthesis method of optically pure (R)/(S)- hydroxychloroquine. CN Patent 105693606 A, June 22, 2016.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy