[1]
Katelyn, A.P.; Elizabeth, C.O.; Wang, F.; Lofgren, S.M.; Skipper, C.P.; Nicol, M.R.; Matthew, F.P.; Rajasingham, R.; McDonald, D.G.; Lee, T.C.; Schwartz, I.S.; Lauren, E.K.; Sylvain, A.L.; Oriol, M.; Emili, L.; Abbassi, M. David. R.B. Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect. Dis., 2020, 7, 1-9.
[3]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16, 155-166.
[4]
Price, C.C.; Roberts, R.M. The synthesis of 4-hydroxyquinolines I. through ethoxymethylenemalonic ester. J. Am. Chem. Soc., 1946, 68, 1204-1208.
[5]
Pan, A.; Liu, L.; Wang, C. Association of public health interven-tions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA, 2020, 323, 1915-1923.
[6]
Guida, J.P. Chloroquine, hydroxychloroquine and COVID-19: A systematic review of literature. Inter. Am. J. Med. Health, 2020, 3, 1-10.
[7]
Edward, E.F.; Tendick, F.H.; Werbel, L.M. Repository drugs. VIII. Ester and amide congeners of amodiaquine, hydroxychloroquine, oxychloroquine, primaquine, quinacrine, and related substances as potential long-acting antimalarial agents. J. Med. Chem., 1969, 12, 600-607.
[9]
Ben-Zvi, I.; Kivity, S.; Langevitz, P. Hydroxychloroquine: From malaria to autoimmunity. Clin. Rev. Allergy Immunol., 2012, 42, 145-153.
[10]
(a)Achan, J.; Talisuna, A.O.; Erhart, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10, 144.
(b)Hofheinz, W.; Merkli, B. Quinine and quinine analogues.Antimalarial Drug II; Springer: Berlin, Heidelberg, 1984, pp. 61-81.
[11]
Urban, H.; Ericsson, O.; Adenabdi, Y. Gustafsson. Y.L. Handbook of Drugs for Tropical Parasitic Infections; CRC press, Taylor & Francis: London, 1995.
[12]
Kawanishi, K.; Farnsworth, N.R. Current Status of the Chemistry and Synthesis of Natural Antimalarial Compounds and Natural Substances Used to Alleviate Symptoms of Diabetes (Aldose Reductase and A-Glucosidase Inhibitors). In: Studies in Natural Products Chemistry, Elsevier BV:Amsterdam, , 2000; 22, pp. 145-193.
[13]
World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. HDL: 10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BYNC- SA 3.0 IGO.
[14]
Jaya kumar, K.N.; John, N.A.; Kimberly, Y.; Kekeli, A.E.K.; Leah, B.C.; Angel C.D.; Christian, W.; Paul, D.R. 4-N-, 4-S-, and 4-O-chloroquine analogues: Influence of side chain length and quinolyl nitrogen pKa on activity vs. chloroquine resistant malaria. J. Med. Chem., 2008, 51(12), 3466-3479.
[15]
Aylin, Y.; Richard, W.P.; Magnus, G. Antiretroviral drug treatment of CNS HIV-1 infection. J. Antimicrob. Chemother., 2012, 67, 299-311.
[16]
Sciascia, S.; Hunt, B.J.; Talavera, E.G.; Lliso, G.; Khamashta, M.; Cuadrado, M.J. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. Am. J. Obstet. Gynecol., 2015, 214, 273-e1.
[17]
(a)Nathalie, C.C.; Bertrand, D.; Leroux, G.; Morel, N.; Jallouli, M.; Le Guern, V.; Piette, J.C.; Antonie, P.B.; Ronald, B.M.; Michael, F.M. A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin. Rev. Allergy Immunol., 2015, 49, 317-326.
(b)Michael, F.M.; Kellner, U.; Timothy, Y.Y.L.; Ronald, M.B.; Mieler, W.F. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 Revision). Ophthalmology, 2016, 123, 1386-1394.
(c)Chatre, C.; Roubille, F.; Vernhet, H.; Jorgensen, C.; Marie Pers, Y. Cardiac complications attributed to chloroquine and hydroxychloroquine: A systematic review of the literature. Drug Saf., 2018, 41, 919-931.
(d)Frustaci, A.; Morgante, E.; Antuzzi, D.; Russo, M.A.; Chimenti, C. Inhibition of cardiomyocyte lysosomal activity in hydroxychloroquine cardiomyopathy. Cardiology, 2012, 157, 117-119.
[18]
Stein, M.; Bell, M.J.; Ang, L.C. Hydroxychloroquine neuromyotoxicity. J. Rheumatol., 2000, 27, 2927-2931.
[19]
Tang, C.; Godfrey, T.; Stawell, R.; Nikpour, M. Hydroxychloro-quine in lupus: Emerging evidence supporting multiple beneficial effects. Intern. Med. J., 2012, 42, 968-978.
[20]
Yang, W.; Kairong, S.; Li, Z.; Guanlian, H.; Jingyu, W.; Jiajing, T.; Sheng, Y.; Jiandong, D.; Ming, Q.; Neng, W.; Dandan, X.; Xinle, G.; Huile, G.; Zhirong, Z.; Qin, H. Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin. Autophagy, 2016, 12, 949-962.
[21]
Wills, R.; Seif, A.M.; McGwin, Jr, G., ; Martinez-Martinez, L.A.; González, E.B.; Dang, N.; Papalardo, E.; Liu, J.; Vilá, L.M.; Reveille, J.D.; Alarcón, G.S.; Pierangeli, S.S. Effect of hydroxy-chloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: Data from LUMINA (LXXV), a multiethnic US cohort. Lupus, 2012, 21, 830-835.
[22]
(a) Plantone, D.; Koudriavtseva, T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin. Drug Investig., 2018, 38, 653-671.
(b) Rainsford, D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015, 23, 231-269.
[23]
Burgess, S.J.; Kelly, J.X.; Shomloo, S.; Wittlin, S.; Brun, R.; Liebmann, K.; Peyton, D.H. Synthesis, structure-activity relationship, and mode-of-action studies of antimalarial reversed chloroquine compounds. J. Med. Chem., 2010, 53, 6477-6489.
[24]
Ruiz-Irastorza, G.; Ramos-Casals, M.; Brito-Zeron, P.; Khamashta, M.A. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: A systematic review. Ann. Rheum. Dis., 2010, 69, 20-28.
[25]
O’Dell, J.R.; Leff, R.; Paulsen, G.; Haire, C.; Mallek, J.; Eckhoff, P.J.; Fernandez, A.; Blakely, K.; Wess, S.; Stoner, J.; Hadley, S.; Felt, J.; Palmer, W.; Waytz, P.; Churchill, M.; Klassen, L.; Moore, G. Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications: Results of a two‐year, randomized, double‐blind, placebo‐controlled trial. Arthritis Rheuma, 2002, 46, 1164-1170.
[26]
Wang, S.; Zhang, L.; Wei, P. Is hydroxychloroquine effective in treating primary Sjogren’s syndrome: A systematic review and meta-analysis. BMC Musculoskelet. Disord., 2017, 18, 186.
[28]
(a) Kumar, A.; Liang, B.; Aarthy, M.; Singh, S.K.; Garg, N.; Mysorekar, I.U. Giri, R. Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS Omega, 2018, 3, 18132-18141.
(b) Ravindran, V.; Alias, G. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: A 24-week randomized controlled open label study. Clin. Rheumatol., 2017, 36, 1335-1340.
[29]
Manic, G.; Obrist, F.; Kroemer, G.; Vitale, I.; Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol., 2014, 1e29911
[30]
(a) Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. E-cancer. Med. Sci., 2017, 11, 781.
(b) Shi, T.; Yu, X.; Yan, L. Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother. Pharmacol., 2017, 79, 287-294.
(c) Xu, R.; Ji, Z.; Xu, C.; Zhu, J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine (Baltimore), 2018, 97e12912
[34]
Vincent, M.J.; Bergeron, E.; Benjannet, S. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69-79.
[35]
Lenzer, J. Covid-19: US gives emergency approval to hydroxychloroquine despite lack of evidence. BMJ, 2020, 369, m1335.
[36]
(a) Robin, E.F.; Jaffrey, K.A. Chloroquine and hydroxychloroquine in covid-19. BMJ, 2020, 369, m1432.
(b) Shah, S.; Das, S.; Jain, A.; Misra, D.P.; Negi, V.S. A systematic review of the prophylactic role of chloroquine and hydroxychloroquine in coronavirus disease-19 (COVID-19). Int. J. Rheum. Dis., 2020, 1-7.
[37]
Li, J.J. Conrad-Limpach reaction.Name Reactions; Springer: Berlin, Heidelberg, 2009.
[38]
Manske, R.H.F.; Kulka, M. The S Kraup synthesis of quinolines. In: Organic Reactions, (Ed.), John Wiley and Sons Hoboken, 2011, pp. 59-98.
[39]
Wang, Z. Combes Quinoline Synthesis.Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons: Hoboken, 2010.
[40]
Cheng, C.C.; Yan, S.J. The Friedländer synthesis of quinolines. Organic Reactions, (Ed.),Wiley Hoboken, 2005, pp. 37-201.
[41]
Conrad, M.; Limpach, L. Synthesis of quinoline derivatives using acetoacetic ester. Ber. Dtsch. Chem. Ges., 1887, 20, 944.
[42]
Wang, Z. Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, 2010.
[43]
(a) Charles, C.P.; Roberts, R.M. Synthesis of 4-hydroxyquinolines. IV. A modified preparation through bis-(m-chlorophenyl)-formamidine. J. Am. Chem. Soc., 1946, 68, 1255-1256.
(b) Gerschickter, C.F.; Rice, L.M. Salts of 7-chloro-4-(4-diethylamino- 1-methylbutylamino) quinolone. U.S. Patent 2947664 1960.
(c) Charles, C.P.; Roberts, R.M. 4,7-Dichloroquinoline. Org. Synth., 1948, 3, 272.
[44]
(a) Alexander, R.S.; Hammer, H.F. Some 7-Substituted 4-Aminoquinoline derivatives. J. Am. Chem. Soc., 1946, 68, 113-116.
(b) Wu, R.; Williams, R.F.; Silks, P.L.; Schmidt, J.G. Synthesis of stable isotope-labeled chloroquine and amodiaquine and their metabolites. J. Labelled Comp. Radiopharm., 2019, 6, 230-248.
[45]
Northey, E.H.; Dreisbach, P.F. Preparation of 4-hydroxyquinolines. US Patent 2478125, August 2 1949.
[46]
(a) William, S.J.; Bennett, G.B. A new synthesis of chloroquine. J. Am. Chem. Soc., 1952, 74, 4513-4516.
(b) Michel Baudouin, S.F.; Daneil, M. Preparation of 4-hydroxyquinolines. U.S. Patent 4412076, January 15 1983.
[47]
William, S.J.; Eugene, L.W.; Bennett, G.B. Cyclization studies in the quinoline series. A new synthesis of 4-aminoquinolines. J. Am. Chem. Soc., 1949, 71, 1901-1905.
[48]
(a) Merchant, J.R.; Engineer, A.B. Synthesis of 7-chloro-2,3-dihydro-4(1H)-quinolone - an important intermediate in the synthesis of chloroquine. Curr. Sci., 1978, 21, 803-804.
(b) Heininger, S.A. Cupric acetate catalyzed monocyanoethylation of aromatic amines. J. Org. Chem., 1957, 22, 1213-1217.
(c) Chothia, D.S.; Dike, S.Y.; Engineer, A.B.; Merchant, J.R. Indian J. Chem., 1976, 14B, 323-325.
[49]
Theeraladanon, C.; Mitsuhiro, A.; Atsushi, N.; Masako, N.F. A novel synthesis of substituted quinolines using Ring-Closing Metathesis (RCM): Its application to the synthesis of key intermediates for anti-malarial agents. Tetrahedron, 2004, 60, 3017-3035.
[50]
(a) Peter, B.M.; Sherrill, J.; Ally, P.L.; Jennifer, L.W.; Joseph, L.D.; Kiplin, G. Synthesis of ring-substituted 4-aminoquinolines and evaluation of their antimalarial activities. Bioorg. Med. Chem. Lett., 2005, 15, 1015-1018.
(b) AlAwadi, N.A.; Abdelhamid, A.; Al-Etaibi, A.M.; Elnagdi, M.H. Gas-phase pyrolysis in organic synthesis: Rapid green synthesis of 4-quinolinones. Synlett, 2007, 14, 2205-2208.
[51]
(a) Lange, J.; Alex, C.B.; Martin, G.B.; Ian, A.C. Synthesis of 2,3-Dihydro-4(1H)-quinolones and the corresponding 4(1h)-quinolones via low-temperature fries rearrangement of N-arylazetidin-2-ones. Aust. J. Chem., 2011, 64, 454-470.
(b) Shinto, K.; Tsutomu, E.; Shiroshi, S. Formation of 2, 3-dihydro-4(1H)-quinolones and related compounds via Fries-type acid-catalysed rearrangement of 1-arylazetidin-2-ones. J. Chem. Soc., Perkin Trans. 1, 1980, 2105-2111.
[52]
Wang, F.; Liang, J.; Lingheng, K.; Xingwei, L. Cobalt(III)- and rhodium(iii)-catalyzed c-h amidation and synthesis of 4-quinolones: C-H activation assisted by weakly coordinating and functionalizable enaminone. Org. Lett., 2017, 19, 1812-1815.
[53]
(a) Medina, F.; Manjarrez, A. A new synthesis of (±)-3-carone. Tetrahedron, 1964, 20, 1807-1810.
(b) Thomas, J.F.; Chen, J.; Cuong, V.L.; Kari, J.H. Isomerization-free sulfonylation and its application in the synthesis of PHA-565272A. Org. Process Res. Dev., 2006, 10, 334-338.
[54]
Rahul, N.; Gregor, J.; Chitra, S.; Jeet, K. Rapid and reversible hydrazone bioconjugation in cells without the use of extraneous catalysts. Org. Biomol. Chem., 2018, 16, 4304-4310.
[55]
Zheng, D.; Ning, J.; Wei, X.; Zhou, J.; Zhang, Z.; Xiaolin, W. 5- chloro-2-pentanone preparation method. CN Patent, CN103694094A, April 2 2016.
[56]
(a) Mizushima, E.; Hayashi, T.; Sato, K.; Tanaka, M.U.S. Patent 143597, June 30 2005.
(b) Eiichiro, M.; Dong-Mei, C.; Dilip Chandra, D.; Teruyuki, H.; Masato, T. Au (I)-catalyzed hydration of alkynes: 2,8-nonanedione. Org. Synth., 2006, 83, 55.
[57]
Gao, X.; Jianhao, Z.; Xinhua, P. Efficient palladium(0) supported on reduced graphene oxide for selective oxidation of olefins using graphene oxide as a ‘solid weak acid’. Catal. Commun., 2019, 122, 73-78.
[58]
Alexander, R.S.; Hammer, H.F. Some 7-Substituted 4-aminoquinoline derivatives. J. Am. Chem. Soc., 1946, 68, 113-116.
[59]
Ashok, K.; Dhansukhlal, V.K.; Sanjay, S.; Sanjay, N.; Atul, J. An improved process for the preparation of 7-Chloro-4-(5-N-ethyl-N- 2-hydroxyethylamine)-2-phenyl] aminoquinoline and its intermediates. U.S. Patent 2005062723 A2, July 14 2005.
[60]
You H.; Liu, Y.; Ning, F.; Zheng, Z.; Yu, Q.; Niu X.; Li, C. Synthetic method of 5-(N-ethyl-N-2-ethylolamine)-2-amylamine. CN Patent 104803859A, July 29 2015.
[62]
Joseph, L.H.; Christiane, S.; Duncan, L.B. Continuous flow synthesis of antimalarials: Opportunities for distributed autonomous chemical manufacturing. React. Chem. Eng., 2017, 2, 281-287.
[63]
Rafi, S. Process for preparation of hydroxy novaldiamine. Ind. provisional Patent Application Number 202041020204, May 13,, 2020.
[64]
Rentner, J.; Marko, K.; Lisa, O.; Breinbauer, R. Recent advances and applications of reductive desulfurization in organic synthesis. Tetrahedron, 2014, 70, 8983-9027.
[65]
Richard, S.D.; Chester, J.C. Alkylene Bis-(2-thenylquarter-naryammonium) Salts. J. Am. Chem. Soc., 1953, 75, 3033-3034. (b) Rao, H.S.P.; Rafi, S. Synthesis and stereochemistry of 2-arylperhydrocyclopenta[b]pyridin-1-ols, 8-azaestrone fragments. Tetrahedron Lett., 2008, 49, 6134-6136.
[66]
Alexander, R.S.; Hammer, H.F. 7-chloro-4-[5-(n-ethyl-n-2- hydroxyethylamino)-2-pentyl] aminoquinoline, its acid addition salts, and method of preparation. U.S. Patent 2546658 A, March 27, 1951.
[67]
Daqing, C.; Bhaskar Reddy, G.; Sammy, C.D.; Montemayor, L.K. Process for the preparation of highly pure hydroxychloroquine or a salt thereof. CA Patent 2561987 A1, September 2 2006.
[68]
Alexander, R.S.; Hammer, H.F. The role of phenol in the reaction of 4,7-dichloroquinoline with novel diamine. J. Am. Chem. Soc., 1951, 73, 2623-2626.
[69]
Alexander, R.S.; Hammer, H.F. The preparation of 7-chloro-4-(4-(n-ethyl-n-β-hydroxyethylamino)-1-methylbutylamino)-quinoline and related compounds. J. Am. Chem. Soc., 1950, 72, 1814-1815.
[70]
(a)Paul, M.B.; Stephen, J.B.; Glynis, C.; George, J.E.; John, M.H.; James, E.P.; David, I.S.; William, F.M.; Mark, S.S. A practical synthesis of the enantiomers of hydroxychloroquine. Tetrahedron Asymmetry, 1994, 5, 1815-1822.
(b)Glenn, J.; Edward, P. Use of chloroquine and clemizole compounds for treatment of inflammatory and cancerous conditions. WO Patent 2017004454 A1, January 5, 2017.
[71]
(a) Jinhong, P.; Youyou, D.; Rongyao, Y.; Jinwei, W.; Wenquing, P.; Guofan, X. Industrialized preparation method of hydroxychloroquinoline sulfate. CN Patent 103724261 B, May 25 2016.
(b)Zhang, Y.; Kunjiao, Y.; Huang, Q.; Zhang, Z.; Wei, Y.; Ding, Y.; Wei, J.; Zhu, P. A kind of preparation method of the preparation and process for purification and its sulfate of Hydroxychloroquine. CN Patent 108658858 A, August 16 2018.
[72]
Tang, M.; Dayong, G.; Yang, Z.; Liu, Y.; Yang, J.; Cai, Z.; Zha, Z.; Wang, Y. Preparation method of hydroxychloroquine sulfate. CN Patent 104230803 B, January 2 2017.
[73]
Gupton, B.F.; Ahmad, S.; Mangunuru, H.P.R.; Telang, N.S. Highyielding continuous flow synthesis of antimalarial drug Hydroxychloroquine. WO Patent 2019165337 A1 2019.
[74]
Chen, F.; Binbin, H.; Xiaoxian, M.; Gong, P.; Chunyou, H. Asymmetric synthesis method of optically pure (R)/(S)- hydroxychloroquine. CN Patent 105693606 A, June 22, 2016.