Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

Methylation Profile of miR-9-1 and miR-9-1/-9-3 as Potential Biomarkers of Diabetic Retinopathy

Author(s): Caroline Severo de Assis*, Alexandre Sérgio Silva, Mayara Karla dos Santos Nunes, João Modesto Filho, Rayner Anderson Ferreira do Nascimento, Cecília Neta Alves Pegado Gomes, Isabella Wanderley de Queiroga Evangelista, Naila Francis Paulo de Oliveira and Darlene Camati Persuhn

Volume 17, Issue 6, 2021

Published on: 31 December, 2020

Article ID: e123120189795 Pages: 9

DOI: 10.2174/1573399817666210101104326

Abstract

Aims: Analysis of the relationship between the methylation profile of miR-9-1 or miRs -9-1 / -9-3 and diabetic retinopathy.

Background: Diabetic Retinopathy (DR) is a frequent complication of Diabetes mellitus and it has a decisive impact on the quality of life, as it is one of the biggest causes of blindness in the adult population. Levels of microRNA-9 have been shown to be related to diabetes but little is known about its involvement with DR in humans.

Objective: To analyze the relationship between the methylation profile of miR-9-1 or miRs -9-1/-9-3 and DR.

Methods: 103 patients diagnosed with diabetes for 5 to 10 years were analyzed. The data were categorized according to clinical, biochemical, lifestyle and anthropometric parameters. DNA extracted from leukocyte samples was used to determine the methylation profile of miRs-9-1 and -9-3 using a specific methylation PCR assay.

Results: miR-9-1 methylation was related to diabetic retinopathy, indicating that methylation of this miR increases the chances of presenting retinopathy up to 5 times. In our analyses, diabetics with lower levels of creatinine and CRP showed significant reductions (99% and 97%) in presenting DR. Methylation of both miRs-9-1 and 9-3 methylated increases the chances of presenting DR by 8 times; in addition, a sedentary lifestyle can increase the risk for the same complication by up to 6 times.

Conclusion: Our results suggest that both methylation of miR-9-1 and e miRs-9-1 / 9-3 favors DR in patients with diabetes in a period of 5 to 10 years of diagnosis.

Keywords: Diabetes, diabetic retinopathy, microRNAs, methylation, diabetes time, sedentary lifestyle.

[1]
Wong TY, Cheung CM, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers 2016; 2: 16012.
[http://dx.doi.org/10.1038/nrdp.2016.12] [PMID: 27159554]
[2]
Liu Y, Li J, Ma J, Tong N. The threshold of the severity of diabetic retinopathy below which intensive glycemic control is beneficial in diabetic patients: Estimation using data from large randomized clinical trials. J Diabetes Res 2020; 2020
[http://dx.doi.org/10.1155/2020/8765139] [PMID: 32016124]
[3]
Liu L, Quang ND, Banu R, et al. Hypertension, blood pressure control and diabetic retinopathy in a large population-based study. PLoS One 2020; 15(3): e0229665.
[http://dx.doi.org/10.1371/journal.pone.0229665] [PMID: 32134944]
[4]
Ben ÂJ, Souza CF, Locatelli F, et al. Health-related quality of life associated with diabetic retinopathy in patients at a public primary care service in southern Brazil. Arch Endocrinol Metab 2021; 64(5): 575-83.
[5]
Bhatia P, Raina S, Chugh J, Sharma S. miRNAs: early prognostic biomarkers for Type 2 diabetes mellitus? Biomark Med 2015; 9: 1025-40.
[6]
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev Diabet Stud 2015; 12(1-2): 159-95.
[http://dx.doi.org/10.1900/RDS.2015.12.159] [PMID: 26676667]
[7]
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522-31.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[8]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[9]
Yue D, Liu H, Huang Y. Survey of computational algorithms for microRNA target prediction. Curr Genomics 2009; 10(7): 478-92.
[http://dx.doi.org/10.2174/138920209789208219] [PMID: 20436875]
[10]
Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 2017; 8(5-6): 203-12.
[http://dx.doi.org/10.1515/bmc-2017-0024] [PMID: 29161231]
[11]
Wang L, Li H. MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3. Biosci Rep 2020; 40(4): 30.
[http://dx.doi.org/10.1042/BSR20193653] [PMID: 32309847]
[12]
Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin B. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells 2019; 8(12): 1533.
[http://dx.doi.org/10.3390/cells8121533] [PMID: 31795194]
[13]
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9(6): 1239-54.
[http://dx.doi.org/10.1111/jdi.12833] [PMID: 29533535]
[14]
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic actions of microRNAs in diabetic wound healing Cells 2020; 9(10): E2228.
[http://dx.doi.org/10.3390/cells9102228]
[15]
Martinez B, Peplow PV. MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen Res 2019; 14(11): 1858-69.
[http://dx.doi.org/10.4103/1673-5374.259602] [PMID: 31290435]
[16]
Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009; 9(2): 109-13.
[http://dx.doi.org/10.1016/j.gep.2008.10.001] [PMID: 18977315]
[17]
Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006; 281(37): 26932-42.
[http://dx.doi.org/10.1074/jbc.M601225200] [PMID: 16831872]
[18]
Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 2011; 278(7): 1167-74.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08042.x] [PMID: 21288303]
[19]
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48(1): 61-9.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[20]
Al-Muhtaresh HA, Al-Kafaji G. Evaluation of two-diabetes related micrornas suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus. J Clin Med 2018; 7(2): 12.
[http://dx.doi.org/10.3390/jcm7020012] [PMID: 29373500]
[21]
Jiménez-Lucena R, Rangel-Zúñiga OA, Alcalá-Díaz JF, et al. Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the cordioprev study. Mol Ther Nucleic Acids 2018; 12: 146-57.
[http://dx.doi.org/10.1016/j.omtn.2018.05.002] [PMID: 30195754]
[22]
Motawae TM, Ismail MF, Shabayek MI, Seleem MM. MicroRNAs 9 and 370 association with biochemical markers in T2D and CAD complication of T2D. PLoS One 2015; 10(5): e0126957.
[http://dx.doi.org/10.1371/journal.pone.0126957] [PMID: 25978320]
[23]
Xiao Y, Guo S, Zhang Y, et al. Diabetic nephropathy: serum miR-9 confers a poor prognosis in and is associated with level changes of vascular endothelial growth factor and pigment epithelium-derived factor. Biotechnol Lett 2017; 39(10): 1583-90.
[http://dx.doi.org/10.1007/s10529-017-2390-6] [PMID: 28667418]
[24]
Micro LIUWL. RNA-9 inhibits retinal neovascularization in rats with diabetic retinopathy by targeting vascular endothelial growth factor A. J Cell Biochem 2018.
[http://dx.doi.org/10.1002/jcb.28081]
[25]
Wirostko B, Wong TY, Simó R. Vascular endothelial growth factor and diabetic complications. Prog Retin Eye Res 2008; 27(6): 608-21.
[http://dx.doi.org/10.1016/j.preteyeres.2008.09.002] [PMID: 18929676]
[26]
Wang LQ, Kwong YL, Kho CS, et al. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia-implications on constitutive activation of NFκB pathway. Mol Cancer 2013; 12: 173-81.
[http://dx.doi.org/10.1186/1476-4598-12-173] [PMID: 24373626]
[27]
Tsai KW, Liao YL, Wu CW, et al. Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics 2011; 6(10): 1189-97.
[http://dx.doi.org/10.4161/epi.6.10.16535] [PMID: 21931274]
[28]
Dos Santos Nunes MK, Silva AS, Wanderley de Queiroga Evangelista I, et al. Analysis of the DNA methylation profiles of miR-9-3, miR-34a, and miR-137 promoters in patients with diabetic retinopathy and nephropathy. J Diabetes Complications 2018; 32(6): 593-601.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.03.013] [PMID: 29674133]
[29]
Rosendorff C, Lackland DT, Allison M, et al. American heart association, american college of cardiology, and american society of hypertension. J Am Coll Cardiol 2015; 65(18): 1998-2038.
[http://dx.doi.org/10.1016/j.jacc.2015.02.038] [PMID: 25840655]
[30]
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[31]
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-8.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[32]
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 1995; 28: 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[34]
Brazilian Diabetes Society. guidelines of the brazilian diabetes society. Clannad 2020.
[35]
Brazilian Archives of Cardiology - 2019. Arq Bras Cardiol 2019; 113(4): 787-891.
[PMID: 31691761]
[36]
Brazilian Society of Nephrology e-book Biomarkers in Nephrology 2011. https://arquivos.sbn.org.br/pdf/biomarcadores.pdf.Accessed on 05/04/2020
[37]
Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A, et al. Update of the brazilian dyslipidemia and atherosclerosis prevention directive- 2017. Arq Bras Cardiol 2017; 109(2)(Suppl. 1): 1-76.
[38]
Antunes MV, Lazzaretti C, Gamaro GD, Linden R. Estudo pré-analítico e de validação para determinação de malondialdeído em plasma humano por cromatografia líquida de alta eficiência, após derivatização com 2,4-dinitrofenilhidrazina. Rev Bras Cien Farm 2008; 44: 279-87.
[http://dx.doi.org/10.1590/S1516-93322008000200013]
[39]
Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the positive acute phase serum proteins, alpha1-acid glycoprotein (orosomucoid), alpha1-antitrypsin, and haptoglobin: a practical, simple, and clinically relevant approach in a large cohort. J Clin Lab Anal 2000; 14(6): 284-92.
[http://dx.doi.org/10.1002/1098-2825(20001212)14:6<284:AID-JCLA7>3.0.CO;2-U] [PMID: 11138611]
[40]
World health organization. obesity: Preventing and managing the global epidemic report on a who consultation (who technical report series 894) 2000.
[41]
ABESO. Brazilian Association for the Study of Obesity and Metabolic Syndrome.Brazilian obesity guidelines (ABESO). (3ed. ),Itapevi, SP: AC Farmacêutica 2009.
[42]
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16(3): 1215.
[http://dx.doi.org/10.1093/nar/16.3.1215] [PMID: 3344216]
[43]
Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93(18): 9821-6.
[http://dx.doi.org/10.1073/pnas.93.18.9821] [PMID: 8790415]
[44]
Costa LA, da Silva ICB, Mariz BALA, da Silva MB, Freitas-Ribeiro GM, de Oliveira NFP. Influence of smoking on methylation and hydroxymethylation levels in global DNA and specific sites of KRT14, KRT19, MIR-9-3 and MIR-137 genes of oral mucosa. Arch Oral Biol 2016; 72: 56-65.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.013] [PMID: 27543926]
[45]
Silva MBD, Melo ARDS, Costa LA, Barroso H, Oliveira NFP. Global and gene-specific DNA methylation and hydroxymethylation in human skin exposed and not exposed to sun radiation. An Bras Dermatol 2017; 92(6): 793-800.
[http://dx.doi.org/10.1590/abd1806-4841.20175875] [PMID: 29364434]
[46]
Song J, Chen S, Liu X, Duan H, Kong J, Li Z. Relationship between C-reactive protein level and diabetic retinopathy: A systematic review and meta-analysis. PLoS One 2015; 10(12): e0144406.
[http://dx.doi.org/10.1371/journal.pone.0144406] [PMID: 26636823]
[47]
Pan HZ, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol 2008; 92(4): 548-51.
[http://dx.doi.org/10.1136/bjo.2007.130542] [PMID: 18369071]
[48]
Chatziralli IP, Theodossiadis G, Dimitriadis P, et al. The effect of vitamin e on oxidative stress indicated by serum malondialdehyde in insulin-dependent Type 2 diabetes mellitus patients with retinopathy. Open Ophthalmol J 2017; 11: 51-8.
[http://dx.doi.org/10.2174/1874364101711010051] [PMID: 28567166]
[49]
He F, Xia X, Wu XF, Yu XQ, Huang FX. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis. Diabetologia 2013; 56(3): 457-66.
[http://dx.doi.org/10.1007/s00125-012-2796-6] [PMID: 23232641]
[50]
Zhang Q, Wang LQ, Wong KY, Li ZY, Chim CS. Infrequent DNA methylation of miR-9-1 and miR-9-3 in multiple myeloma. J Clin Pathol 2015; 68(7): 557-61.
[http://dx.doi.org/10.1136/jclinpath-2014-202817] [PMID: 25855800]
[51]
Momi N, Kaur S, Rachagani S, Ganti AK, Batra SK. Smoking and microRNA dysregulation: a cancerous combination. Trends Mol Med 2014; 20(1): 36-47.
[http://dx.doi.org/10.1016/j.molmed.2013.10.005] [PMID: 24238736]
[52]
Minor J, Wang X, Zhang F, et al. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol 2012; 48(1): 73-8.
[http://dx.doi.org/10.1016/j.oraloncology.2011.11.006] [PMID: 22133638]
[53]
Muraoka T, Soh J, Toyooka S, et al. Impact of aberrant methylation of microRNA-9 family members on non-small cell lung cancers. Mol Clin Oncol 2013; 1(1): 185-9.
[http://dx.doi.org/10.3892/mco.2012.18] [PMID: 24649145]
[54]
Fiaschetti G, Abela L, Nonoguchi N, et al. Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma. Br J Cancer 2014; 110(3): 636-47.
[http://dx.doi.org/10.1038/bjc.2013.764] [PMID: 24346283]
[55]
Coêlho MC, Queiroz IC, Viana Filho JMC, Aquino SG, Persuhn DC, Oliveira NFP. miR-9-1 gene methylation and DNMT3B (rs2424913) polymorphism may contribute to periodontitis. J Appl Oral Sci 2020; 28: e20190583.
[http://dx.doi.org/10.1590/1678-7757-2019-0583] [PMID: 32267380]
[56]
Bansal A, Pinney SE. DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes 2017; 18(3): 167-77.
[http://dx.doi.org/10.1111/pedi.12521] [PMID: 28401680]

© 2025 Bentham Science Publishers | Privacy Policy