[1]
Elledge, S.J. Cell cycle checkpoints: Preventing an identity crisis. Science, 1996, 274, 1664-1672.
[2]
Boffetta, P.; Kaldor, J.M. Secondary malignancies following cancer chemotherapy. Acta Oncol., 1994, 33, 1-9.
[3]
Curtis, A.E.; Courtney, C.A. Synthesis of chromone, quinolone and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J. Org. Chem., 2013, 78(15), 7470-7481.
[4]
El-Mekabaty, A. Chemistry of 4H-3,1-benzoxazin-4-ones. Int. J. Mod. Org. Chem., 2013, 2, 81-121.
[5]
Ozden, S.; Ozturk, A.M.; Goker, H.; Altanlar, N. Synthesis and antimicrobial activity of some new 4-hydroxy-2H-1,4-benzoxazin-3(4H)-ones. ILFarmaco, 2000, 55, 715-718.
[6]
Mhaske, S.; Argade, N. The chemistry of recently isolated naturally occurring quiazolinone alkaloids. Tetrahedron, 2006, 62, 9787-9826.
[7]
Chandrika, M.P.; Yakaiah, T.; Raghuramaraa, A.; Narasaiah, B.; Chakrareddy, N.; Shridhar, V. Synthesis of novel 4,6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U 937 leukemia cell lines. Eur. J. Med. Chem., 2008, 43, 846-852.
[8]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[9]
Sionov, R.V.; Haupt, Y. The cellular response to p53: The decision between life and death. Oncogene, 1999, 18, 6145-6157.
[10]
Lacroix, M.; Toillon, R.A.; Leclercq, G. p53 and breast cancer, an update. Endocr. Relat. Cancer, 2006, 13, 293-325.
[11]
Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 mutations in human cancers. Science, 1991, 253, 49-53.
[12]
Vogan, K.; Bernstein, M.; Leclerc, J.M.; Brisson, L.; Brossard, J.; Brodeur, G.M.; Pelletier, J.; Gros, P. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res., 1993, 53, 5269-5273.
[13]
George, P. P53 How crucial is its role in cancer. Int. J. Curr. Pharmaceut. Res., 2011, 3(2), 19-25.
[14]
Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev., 2015, 16(6), 2129-2144.
[15]
Walsh, J.G.; Cullen, S.P.; Sheridan, C.; Lüthi, A.U.; Gerner, C.; Martin, S.J. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci., 2008, 105, 12815-12819.
[16]
Manash, K.P.; Anup, K.M. Tyrosine kinase -Role and significance in cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[17]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48-67.
[18]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[19]
Bishayee, A.; Block, K. A broad-spectrum integrative design for cancer prevention and therapy: The challenge ahead. Semin. Cancer Biol., 2015, 35, S1-S4.
[20]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89, 271-277.
[21]
Hussein, R.A.; El-Husseiny, E.A.; Hassanin, L.A.; El-Sayed, W.M. The prophylactic and therapeutic effects of safranal and selenite on liver damage induced by thyrotoxicosis in adult male albino rats. Int. J. Clin. Pharmacol. Toxicol., 2017, 6, 270-279.
[22]
El-Metwally, S.A.; Khalil, A.K.; El-Naggar, A.M.; El-Sayed, W.M. Novel Tetrahydrobenzo [b] Thiophene analogues exhibit anticancer activity through enhancing apoptosis and inhibiting tyrosine kinase. Anticancer. Agents Med. Chem., 2018, 18(12), 1761-1769.
[23]
Ismail, M.A.; Youssef, M.M.; Arafa, R.K.; Al-Shihry, S.S.; El-Sayed, W.M. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem., 2017, 126, 789-798.
[24]
El-hashash, M.A.; El-Shahawi, M.M.; Ragab, E.A.; Nagdy, S. Synthesis and antifunal activity of novel quinazolin-4(3H)-one derivatives. Synth. Commun., 2015, 45, 2240-2250.
[25]
Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers, 2011, 3, 994-1013.
[26]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Lui, Q.; Hua, X. A systemic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11, 87-102.
[27]
Wang, S.; Konorev, E.A.; Kotamraju, S.; Joseph, J.; Kalivendi, S.; Kalyanaraman, B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms intermediacy of H2O2- And p53-dependent pathways. J. Biol. Chem., 2004, 279(24), 25535-25543.
[28]
Sonntag, R.; Gassler, N.; Bangen, J.M.; Trautwein, C.; Liedtke, C. Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo. Cell Death Dis., 2014, 5, 1-12.
[29]
Jänicke, R.U. MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res. Treat., 2009, 117(1), 219-221.
[30]
Hartmann, J.T.; Haap, M.; Kopp, H.G.; Lipp, H.P. Tyrosine kinase inhibitor - A review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10(5), 470-481.