Abstract
Cancer is thought to be caused by a sequence of multiple genetic and epigenetic alterations which occur in one or more of the genes controlling cell cycle progression and signaling transduction. The complexity of carcinogenic mechanisms leads to heterogeneity in molecular phenotype, pathology, and prognosis of cancers. Genome-wide mutational analysis of cancer genes in individual tumors is the most direct way to elucidate the complex process of disease progression, although such high-throughput sequencing technologies are not yet fully developed. As a surrogate marker for pathway activation analysis, expression profiling using microarrays has been successfully applied for the classification of tumor types, stages of tumor progression, or in some cases, prediction of clinical outcomes. However, the biological implication of those gene expression signatures is often unclear. Systems biological approaches leverage the signature genes as a representation of changes in signaling pathways, instead of interpreting the relevance between each gene and phenotype. This approach, which can be achieved by comparing the gene set or the expression profile with those of reference experiments in which a defined pathway is modulated, will improve our understanding of cancer classification, clinical outcome, and carcinogenesis. In this review, we will discuss recent studies on the development of expression signatures to monitor signaling pathway activities and how these signatures can be used to improve the identification of responders to anticancer drugs.
Keywords: Expression signature, signaling pathway, drug discovery, cancer therapy, systems biology
Current Genomics
Title: Can Systems Biology Understand Pathway Activation? Gene Expression Signatures as Surrogate Markers for Understanding the Complexity of Pathway Activation
Volume: 9 Issue: 5
Author(s): Hiraku Itadani, Shinji Mizuarai and Hidehito Kotani
Affiliation:
Keywords: Expression signature, signaling pathway, drug discovery, cancer therapy, systems biology
Abstract: Cancer is thought to be caused by a sequence of multiple genetic and epigenetic alterations which occur in one or more of the genes controlling cell cycle progression and signaling transduction. The complexity of carcinogenic mechanisms leads to heterogeneity in molecular phenotype, pathology, and prognosis of cancers. Genome-wide mutational analysis of cancer genes in individual tumors is the most direct way to elucidate the complex process of disease progression, although such high-throughput sequencing technologies are not yet fully developed. As a surrogate marker for pathway activation analysis, expression profiling using microarrays has been successfully applied for the classification of tumor types, stages of tumor progression, or in some cases, prediction of clinical outcomes. However, the biological implication of those gene expression signatures is often unclear. Systems biological approaches leverage the signature genes as a representation of changes in signaling pathways, instead of interpreting the relevance between each gene and phenotype. This approach, which can be achieved by comparing the gene set or the expression profile with those of reference experiments in which a defined pathway is modulated, will improve our understanding of cancer classification, clinical outcome, and carcinogenesis. In this review, we will discuss recent studies on the development of expression signatures to monitor signaling pathway activities and how these signatures can be used to improve the identification of responders to anticancer drugs.
Export Options
About this article
Cite this article as:
Itadani Hiraku, Mizuarai Shinji and Kotani Hidehito, Can Systems Biology Understand Pathway Activation? Gene Expression Signatures as Surrogate Markers for Understanding the Complexity of Pathway Activation, Current Genomics 2008; 9 (5) . https://dx.doi.org/10.2174/138920208785133235
DOI https://dx.doi.org/10.2174/138920208785133235 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Polymorphism of miR-146a (rs2910164) and Breast Cancer Risk: A Meta-Analysis of 17 Studies
MicroRNA Antibodies for Therapeutic Uses and the Evolution of Biotechniques
Current Medicinal Chemistry Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents
Current Medicinal Chemistry Cancer Stem Cells in Prostate Cancer Chemoresistance
Current Cancer Drug Targets Targeting Lipoxygenases (LOs): Drug Design And Discovery
Current Enzyme Inhibition Microglial Activation as a Compelling Target for Treating Acute Traumatic Brain Injury
Current Medicinal Chemistry Conventional Anticancer Therapeutics and Telomere Maintenance Mechanisms
Current Pharmaceutical Design Increased Expression of the Remodeling- and Tumorigenic-Associated Factor Osteopontin in Pyramidal Neurons of the Alzheimers Disease Brain
Current Alzheimer Research Recent Advances and Future Directions in the Management of Metastatic Renal Cell Carcinoma
Anti-Cancer Agents in Medicinal Chemistry Ferroquine: A New Weapon in the Fight Against Malaria
Current Medicinal Chemistry - Anti-Infective Agents Synthesis and Biological Activity of Chiral Dihydropyrazole: Potential Lead for Drug Design
Mini-Reviews in Medicinal Chemistry Damaged Proteins Bearing L-Isoaspartyl Residues and Aging: A Dynamic Equilibrium Between Generation of Isomerized Forms and Repair by PIMT
Current Aging Science α7 Nicotinic Acetylcholine Receptor Mediated Neuroprotection in Parkinson’s Disease
Current Drug Targets Peroxisome Proliferator-Activated Receptors: Role of Isoform Gamma in the Antineoplastic Effect of Iodine in Mammary Cancer
Current Cancer Drug Targets Cancer Targeted Therapy Strategy: The Pathologist’s Perspectives
Current Cancer Drug Targets Mycotoxins Levels in Human Milk: A Menace to Infants and Children Health
Current Nutrition & Food Science TSC-22 (TGF-β Stimulated Clone-22): A Novel Molecular Target for Differentiation-Inducing Therapy in Salivary Gland Cancer
Current Cancer Drug Targets Cadherins: The Superfamily Critically Involved in Breast Cancer
Current Pharmaceutical Design HLA-G and Inflammatory Diseases
Inflammation & Allergy - Drug Targets (Discontinued) Nanomedicines for Brain Targeting: A Patent Review
Recent Patents on Nanomedicine