Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Goniothalamin-Related Styryl Lactones: Isolation, Synthesis, Biological Activity and Mode of Action

Author(s): Ronaldo Aloise Pilli*, Ian de Toledo, Matheus Andrade Meirelles and Thiago Augusto Grigolo

Volume 26, Issue 41, 2019

Page: [7372 - 7451] Pages: 80

DOI: 10.2174/0929867325666181009161439

Price: $65

Abstract

This review covers the chemistry and biological aspects of goniothalamin-related styryl lactones isolated from natural sources. This family of secondary metabolites has been reported to display diverse uses in folk medicine, but only a limited number of these compounds have been throughly investigated regarding their biological profile. Herein, we cover the goniothalamin-related styryl lactones having a C6-C3-C4 framework which appeared in the literature for the first time in the period 2000-2017, and the reports on the synthesis, biological activity and mechanism of action which were published from 2007-2017.

Keywords: Goniothalamin, styryl lactones, isolation, synthesis, biological activity, mode of action.

[1]
Blázquez, M.A.; Bermejo, A.; Zafra-Polo, M.C.; Cortes, D. Styryl-lactones from Goniothalamus species: A review. Phytochem. Anal., 1999, 10(4), 161-170.
[http://dx.doi.org/10.1002/(SICI)1099-1565(199907/08)10:4<161:AID-PCA453>3.0.CO;2-2]
[2]
de Fátima, A.; Modolo, L.V.; Conegero, L.S.; Pilli, R.A.; Ferreira, C.V.; Kohn, L.K.; de Carvalho, J.E. Styryl lactones and their derivatives: biological activities, mechanisms of action and potential leads for drug design. Curr. Med. Chem., 2006, 13(28), 3371-3384.
[http://dx.doi.org/10.2174/092986706779010298] [PMID: 17168711]
[3]
Marco, J.A.; Carda, M.; Murga, J.; Falomir, E. Stereoselective syntheses of naturally occurring 5,6-dihydropyran-2-ones. Tetrahedron, 2007, 63(14), 2929-2958.
[http://dx.doi.org/10.1016/j.tet.2006.12.047]
[4]
Mondon, M.; Gesson, J.P. Asymmetric Synthesis of Styryl-Lactones. Curr. Org. Synth., 2006, 3(1), 41-75.
[http://dx.doi.org/10.2174/157017906775473966]
[5]
Wiart, C. Goniothalamus species: a source of drugs for the treatment of cancers and bacterial infections? Evid. Based Complement. Alternat. Med., 2007, 4(3), 299-311.
[http://dx.doi.org/10.1093/ecam/nem009] [PMID: 17965760]
[6]
Choo, C-Y.; Abdullah, N.; Diederich, M. Cytotoxic activity and mechanism of action of metabolites from the goniothalamus genus. Phytochem. Rev., 2014, 13(4), 835-851.
[http://dx.doi.org/10.1007/s11101-014-9372-2]
[7]
Seyed, M.A.; Jantan, I.; Bukhari, S.N.A. Emerging anticancer potentials of goniothalamin and its molecular mechanisms. BioMed Res. Int., 2014, 2014536508
[http://dx.doi.org/10.1155/2014/536508] [PMID: 25247178]
[8]
Aslam, M.S.; Ahmad, M.S.; Mamat, A.S. Goniothalamus: phytochemical and ethnobotanical review. Recent Adv. Biol. Med., 2016, 2(2016), 34-47.
[http://dx.doi.org/10.18639/RABM.2016.02.292264]
[9]
Fang, X.; Anderson, J.E.; Qiu, X. Gonioheptolides A and B: Novel eight-membered-ring lactones from Goniothalamus giganteus (Annonaceae). Tetrahedron, 1993, 49(8), 1563-1570.
[http://dx.doi.org/10.1016/S0040-4020(01)80344-6]
[10]
Shing, T.K.M.; Tsui, H-C.; Zhou, Z-H. Enantiospecific Syntheses of (+)-Goniofufurone, (+)-7-epi-Goniofufurone, (+)-Goniobutenolide A, (−)-Goniobutenolide B, (+)-Goniopypyrone, (+)-Altholactone, (+)-Goniotriol, and (+)-7-Acetylgoniotriol. J. Org. Chem., 1995, 60(10), 3121-3130.
[http://dx.doi.org/10.1021/jo00115a030]
[11]
Liou, J-R.; Wu, T-Y.; Thang, T.D.; Hwang, T.L.; Wu, C.C.; Cheng, Y.B.; Chiang, M.Y.; Lan, Y.H.; El-Shazly, M.; Wu, S.L.; Beerhues, L.; Yuan, S.S.; Hou, M.F.; Chen, S.L.; Chang, F.R.; Wu, Y.C. Bioactive 6S-styryllactone constituents of Polyalthia parviflora. J. Nat. Prod., 2014, 77(12), 2626-2632.
[http://dx.doi.org/10.1021/np5004577] [PMID: 25419616]
[12]
Hlubucek, J.R.; Robertson, A.V. (+)-(5S)-δ-Lactone of 5-hydroxy-7-phenylhepta-2, 6-dienoic acid, a natural product from Cryptocarya caloneura (Scheff.). Kostermans. Aust. J. Chem., 1967, 20(10), 2199-2206.
[http://dx.doi.org/10.1071/CH9672199]
[13]
Jewers, K.; Davis, J.B.; Dougan, J. Goniothalamin and its distribution in four goniothalamus species. Phytochemistry, 1972, 11(6), 2025-2030.
[http://dx.doi.org/10.1016/S0031-9422(00)90168-7]
[14]
Clarke, P.J.; Pauling, P.J. Crystal and molecular structure of goniothalamin. [(+)-(6S)-5,6-dihydro-6-styryl-2-pyrone]. J. Chem. Soc., Perkin Trans. 2, 1975, 0(4), 368.
[http://dx.doi.org/10.1039/p29750000368]
[15]
Meyer, H.H. Synthesen von (-)-(S)-und (+)‐(R)‐Goniothalamin; absolute Konfiguration des natürlichen (+)‐Goniothalamins. Liebigs Ann. Chem., 1979, 1979(4), 484-491.
[http://dx.doi.org/10.1002/jlac.197919790409]
[16]
Mukhtar, M.R.; Awang, K.; Mustafa, M.R. Chemical constituents and bioactive compounds of Goniothalamus tortilipetalus Hend (Annonaceae). Malaysian J. Sci., 2000, 19(1), 7-12.
[17]
Mahiwan, C.; Buayairaksa, M.; Nuntasaen, N. Potential cancer chemopreventive activity of styryllactones from Goniothalamus marcanii. Am. J. Appl. Sci., 2013, 10(1), 112-116.
[http://dx.doi.org/10.3844/ajassp.2013.112.116]
[18]
Lan, Y-H.; Chang, F-R.; Yu, J-H.; Yang, Y.L.; Chang, Y.L.; Lee, S.J.; Wu, Y.C. Cytotoxic styrylpyrones from Goniothalamus amuyon. J. Nat. Prod., 2003, 66(4), 487-490.
[http://dx.doi.org/10.1021/np020441r] [PMID: 12713398]
[19]
Bermejo, A.; Blázquez, M.A.; Rao, K.S.; Cortes, D. Styryl-lactones from the stem bark of Goniothalamus arvensis. Phytochem. Anal., 1999, 10(3), 127-131.
[http://dx.doi.org/10.1002/(SICI)1099-1565(199905/06)10:3<127:AID-PCA451>3.0.CO;2-5]
[20]
Peris, E.; Estornell, E.; Cabedo, N.; Cortes, D.; Bermejo, A. 3-acetylaltholactone and related styryl-lactones, mitochondrial respiratory chain inhibitors. Phytochemistry, 2000, 54(3), 311-315.
[http://dx.doi.org/10.1016/S0031-9422(00)00104-7] [PMID: 10870186]
[21]
El-Zayat, A.A.E.; Ferrigni, N.R.; McCloud, T.G. Goniothalenol: a novel, bioactive, tetrahydrofurano-2-pyrone from Goniothalamus giganteus (Annonaceae). Tetrahedron Lett., 1985, 26(8), 955-956.
[http://dx.doi.org/10.1016/S0040-4039(00)98484-3]
[22]
Tuchinda, P.; Munyoo, B.; Pohmakotr, M.; Thinapong, P.; Sophasan, S.; Santisuk, T.; Reutrakul, V. Cytotoxic styryl-lactones from the leaves and twigs of Polyalthia crassa. J. Nat. Prod., 2006, 69(12), 1728-1733.
[http://dx.doi.org/10.1021/np060323u] [PMID: 17190450]
[23]
Zhang, Y.J.; Zhou, G.X.; Chen, R.Y.; Yu, D.Q. Styryllactones from the rhizomes of Goniothalamus griffithii. J. Asian Nat. Prod. Res., 1999, 1(3), 189-197.
[http://dx.doi.org/10.1080/10286029908039864] [PMID: 11254031]
[24]
Lan, Y-H.; Chang, F-R.; Liaw, C-C.; Wu, C.C.; Chiang, M.Y.; Wu, Y.C. Digoniodiol, deoxygoniopypyrone A, and goniofupyrone A: three new styryllactones from Goniothalamus amuyon. Planta Med., 2005, 71(2), 153-159.
[http://dx.doi.org/10.1055/s-2005-837783] [PMID: 15729624]
[25]
Tai, B.H.; Huyen, V.T.; Huong, T.T.; Nhiem, N.X.; Choi, E.M.; Kim, J.A.; Long, P.Q.; Cuong, N.M.; Kim, Y.H. New pyrano-pyrone from Goniothalamus tamirensis enhances the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Chem. Pharm. Bull. (Tokyo), 2010, 58(4), 521-525.
[http://dx.doi.org/10.1248/cpb.58.521] [PMID: 20410636]
[26]
Fang, X-P.; Anderson, J.E.; Chang, C-J.; McLaughlin, J.L.; Fanwick, P.E. Two new styryl lactones, 9-deoxygoniopypyrone and 7-epi-goniofufurone, from Goniothalamus giganteus. J. Nat. Prod., 1991, 54(4), 1034-1043.
[http://dx.doi.org/10.1021/np50076a017] [PMID: 1791471]
[27]
Seco, J.M.; Quiñoá, E.; Riguera, R. Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents. Chem. Rev., 2012, 112(8), 4603-4641.
[http://dx.doi.org/10.1021/cr2003344] [PMID: 22658125]
[28]
Goh, S.H.; Ee, G.C.L.; Chuah, C.H.; Wei, C. Styrylpyrone Derivatives From Goniothalamus dolichocarpus. Aust. J. Chem., 1995, 48(2), 199-205.
[http://dx.doi.org/10.1071/CH9950199]
[29]
Surivet, J-P.; Vatèle, J-M. First total synthesis of (-)-8-epi-9-deoxygoniopypyrone. Tetrahedron Lett., 1998, 39(52), 9681-9682.
[http://dx.doi.org/10.1016/S0040-4039(98)02269-2]
[30]
Prawat, U.; Chaimanee, S.; Butsuri, A. Bioactive styryllactones, two new naphthoquinones and one new styryllactone, and other constituents from Goniothalamus scortechinii. Phytochem. Lett., 2012, 5(3), 529-534.
[http://dx.doi.org/10.1016/j.phytol.2012.05.007]
[31]
Jayakumar, G.; Ajthabai, M.D.; Harikumar, B. Pypyrones from Goniothalamus wightii, Hook, f. and Thoms., Annonaceae. Indian J. Chem. - Sect. B Org. Med. Chem., 2010, 49(1), 112-114.
[32]
Kim, R.P.T.; Bihud, V.; Bin Mohamad, K.; Leong, K.H.; Bin Mohamad, J.; Bin Ahmad, F.; Hazni, H.; Kasim, N.; Halim, S.N.; Awang, K. Cytotoxic and antioxidant compounds from the stem bark of Goniothalamus tapisoides Mat Salleh. Molecules, 2012, 18(1), 128-139.
[http://dx.doi.org/10.3390/molecules18010128] [PMID: 23344192]
[33]
Trieu, Q.H.; Mai, H.D.T.; Pham, V.C.; Litaudon, M.; Gueritte, F.; Retailleau, P.; Schmitz-Afonso, I.; Gimello, O.; Nguyen, V.H.; Chau, V.M. Styryllactones and acetogenins from the fruits of Goniothalamus macrocalyx. Nat. Prod. Commun., 2014, 9(4), 495-498.
[http://dx.doi.org/10.1177/1934578X1400900417] [PMID: 24868866]
[34]
Marquissolo, C.; de Fátima, A.; Kohn, L.K.; Ruiz, A.L.; de Carvalho, J.E.; Pilli, R.A. Asymmetric total synthesis and antiproliferative activity of goniothalamin oxide isomers. Bioorg. Chem., 2009, 37(2), 52-56.
[http://dx.doi.org/10.1016/j.bioorg.2008.12.001] [PMID: 19185327]
[35]
Yoshida, T.; Yamauchi, S.; Tago, R.; Maruyama, M.; Akiyama, K.; Sugahara, T.; Kishida, T.; Koba, Y. Syntheses of all stereoisomers of goniodiol from yeast-reduction products and their antimicrobiological activity. Biosci. Biotechnol. Biochem., 2008, 72(9), 2342-2352.
[http://dx.doi.org/10.1271/bbb.80262] [PMID: 18776681]
[36]
Wang, S.; Zhang, Y-J.; Chen, R-Y.; Yu, D-Q. Goniolactones A-F, six new styrylpyrone derivatives from the roots of Goniothalamus cheliensis. J. Nat. Prod., 2002, 65(6), 835-841.
[http://dx.doi.org/10.1021/np010443w] [PMID: 12088424]
[37]
Jiang, M-M.; Feng, Y-F.; Gao, H.; Zhang, X.; Tang, J.S.; Yao, X.S. Three new bis-styryllactones from Goniothalamus cheliensis. Fitoterapia, 2011, 82(4), 524-527.
[http://dx.doi.org/10.1016/j.fitote.2010.11.014] [PMID: 21075179]
[38]
Zhu, J.X.; Yu, D.L.; Huang, W.H. Goniodilactone and gonioheptenolactone, two novel cytotoxic styryllactones from the leaves of Goniothalamus cheliensis. Chin. Chem. Lett., 2012, 23(5), 583-586.
[http://dx.doi.org/10.1016/j.cclet.2012.03.002]
[39]
Moharam, B.A.; Jantan, I.; Jalil, J.; Ahmad, F. Inhibitory effect of compounds from Goniothalamus tapis Miq. and Goniothalamus uvaroides King on platelet-activating factor receptor binding. Phytother. Res., 2012, 26(5), 687-691.
[http://dx.doi.org/10.1002/ptr.3620] [PMID: 22002630]
[40]
Suchaichit, N.; Kanokmedhakul, K.; Panthama, N.; Poopasit, K.; Moosophon, P.; Kanokmedhakul, S.A. 2H-tetrahydropyran derivative and bioactive constituents from the bark of Goniothalamus elegants Ast. Fitoterapia, 2015, 103, 206-212.
[http://dx.doi.org/10.1016/j.fitote.2015.04.005] [PMID: 25865074]
[41]
Tian, Z.; Chen, S.; Zhang, Y.; Huang, M.; Shi, L.; Huang, F.; Fong, C.; Yang, M.; Xiao, P. The cytotoxicity of naturally occurring styryl lactones. Phytomedicine, 2006, 13(3), 181-186.
[http://dx.doi.org/10.1016/j.phymed.2004.07.010] [PMID: 16428026]
[42]
Alabsi, A.M.; Ali, R.; Ali, A.M.; Al-Dubai, S.A.; Harun, H.; Abu Kasim, N.H.; Alsalahi, A. Apoptosis induction, cell cycle arrest and in vitro anticancer activity of gonothalamin in a cancer cell lines. Asian Pac. J. Cancer Prev., 2012, 13(10), 5131-5136.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5131] [PMID: 23244123]
[43]
Abdullah, N.; Sahibul-Anwar, H.; Ideris, S.; Hasuda, T.; Hitotsuyanagi, Y.; Takeya, K.; Diederich, M.; Choo, C. Goniolandrene A and B from Goniothalamus macrophyllus. Fitoterapia, 2013, 88, 1-6.
[http://dx.doi.org/10.1016/j.fitote.2013.03.028] [PMID: 23570840]
[44]
Wattanapiromsakul, C.; Wangsintaweekul, B.; Sangprapan, P. Goniothalamin, a cytotoxic compound, isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus. Songklanakarin J. Sci. Technol., 2005, 27(2), 479-487.
[45]
Jusoh, S.; Zakaria, Z.; Ahmad, F.B.; Din, L.B. Isolation and characterization of styryllactone of Goniothalamus ridleyi. Sains Malays., 2015, 44(3), 365-370.
[http://dx.doi.org/10.17576/jsm-2015-4403-07]
[46]
Hisham, A.; Toubi, M.; Shuaily, W.; Bai, M.D.; Fujimoto, Y. Cardiobutanolide, a styryllactone from Goniothalamus cardiopetalus. Phytochemistry, 2003, 62(4), 597-600.
[http://dx.doi.org/10.1016/S0031-9422(02)00536-8] [PMID: 12560032]
[47]
Ahmad, F.B.; Din, L.B. Isolation and characterization of dehydrogoniothalamin from Goniothalamus umbrosus. Indian J. Chem., 2002, 41(7), 1540-1541.
[48]
Mosaddik, M.A.; Haque, M.E.; Rashid, M.A. Goniothalamin from bryonopsis laciniosa linn (cucurbiataceae). Biochem. Syst. Ecol., 2000, 28(10), 1039-1040.
[http://dx.doi.org/10.1016/S0305-1978(00)00017-X] [PMID: 10996270]
[49]
Kabir, K.E.; Khan, A.R.; Mosaddik, M.A. Goniothalamin - A potent mosquito larvicide from Bryonopsis laciniosa L. J. Appl. Entomol., 2003, 127(2), 112-115.
[http://dx.doi.org/10.1046/j.1439-0418.2003.00716.x]
[50]
Mosaddik, M.A.; Haque, M.E. Cytotoxicity and antimicrobial activity of goniothalamin isolated from Bryonopsis laciniosa. Phytother. Res., 2003, 17(10), 1155-1157.
[http://dx.doi.org/10.1002/ptr.1303] [PMID: 14669248]
[51]
Cavalheiro, A.J.; Yoshida, M. 6-[ω-arylalkenyl]-5,6-dihydro-α-pyrones from Cryptocarya moschata (Lauraceae). Phytochemistry, 2000, 53(7), 811-819.
[http://dx.doi.org/10.1016/S0031-9422(99)00532-4] [PMID: 10783987]
[52]
Mu, Q.; Tang, W.; Li, C. Four new styryllactones from Goniothalamus leiocarpus. Heterocycles, 1999, 51(12), 2969-2976.
[http://dx.doi.org/10.3987/COM-99-8679]
[53]
Li, C-M.; Mu, Q.; Sun, H-D. A new anti-cancer constituent of Goniothalamus cheliensis. Yunnan Zhi Wu Yan Jiu, 1998, 20(1), 102-104.
[54]
Lekphrom, R.; Kanokmedhakul, S.; Kanokmedhakul, K. Bioactive styryllactones and alkaloid from flowers of Goniothalamus laoticus. J. Ethnopharmacol., 2009, 125(1), 47-50.
[http://dx.doi.org/10.1016/j.jep.2009.06.023] [PMID: 19573585]
[55]
Levrier, C.; Balastrier, M.; Beattie, K.D.; Carroll, A.R.; Martin, F.; Choomuenwai, V.; Davis, R.A. Pyridocoumarin, aristolactam and aporphine alkaloids from the Australian rainforest plant Goniothalamus australis. Phytochemistry, 2013, 86, 121-126.
[http://dx.doi.org/10.1016/j.phytochem.2012.09.019] [PMID: 23158725]
[56]
Tantithanaporn, S.; Wattanapiromsakul, C.; Itharat, A.; Keawpradub, N. Cytotoxic activity of acetogenins and styryl lactones isolated from Goniothalamus undulatus Ridl. root extracts against a lung cancer cell line (COR-L23). Phytomedicine, 2011, 18(6), 486-490.
[http://dx.doi.org/10.1016/j.phymed.2010.10.010] [PMID: 21112751]
[57]
Macabeo, A.P.G.; Lopez, A.D.A.; Schmidt, S. Antitubercular and cytotoxic constituents from Goniothalamus gitingensis. Rec. Nat. Prod., 2013, 8(1), 41-45.
[58]
Hisham, A.; Harassi, A.; Shuaily, W. Cardiopetalolactone: a novel stryryllactone from Goniothalamus cardiopetalus. Tetrahedron, 2000, 56(51), 9985-9989.
[http://dx.doi.org/10.1016/S0040-4020(00)00948-0]
[59]
Limpipatwattana, Y.; Tip-pyang, S.; Khumkratok, S. Chemical constituents from the stems of Goniothalamus laoticus. Biochem. Syst. Ecol., 2008, 36(10), 798-800.
[http://dx.doi.org/10.1016/j.bse.2008.06.006]
[60]
Saunders, R.M.K.; Chalermglin, P. A synopsis of Goniothalamus species (Annonaceae) in Thailand, with descriptions of three new species. Bot. J. Linn. Soc., 2008, 156(3), 355-384.
[http://dx.doi.org/10.1111/j.1095-8339.2007.00762.x]
[61]
Ngnintedo, D.; Fotso, G.W.; Kuete, V.; Nana, F.; Sandjo, L.P.; Karaosmanoğlu, O.; Sivas, H.; Keumedjio, F.; Kirsch, G.; Ngadjui, B.T.; Andrae-Marobela, K. Two new pterocarpans and a new pyrone derivative with cytotoxic activities from Ptycholobium contortum (N.E.Br.) Brummitt (Leguminosae): revised NMR assignment of mundulea lactone. Chem. Cent. J., 2016, 10(1), 58.
[http://dx.doi.org/10.1186/s13065-016-0204-x] [PMID: 28316643]
[62]
Yang, C-S.; Wang, X-B.; Wang, J-S.; Luo, J.G.; Luo, J.; Kong, L.Y.A. [2 + 2] cycloaddition dimer and a Diels-Alder adduct from Alpinia katsumadai. Org. Lett., 2011, 13(13), 3380-3383.
[http://dx.doi.org/10.1021/ol201137v] [PMID: 21634422]
[63]
Nahra, F.; Riant, O. Recruiting the students to fight cancer: Total synthesis of goniothalamin. J. Chem. Educ., 2015, 92(1), 179-182.
[http://dx.doi.org/10.1021/ed500457d]
[64]
Ramachandran, P.V.; Reddy, M.V.R.; Brown, H.C. Asymmetric synthesis of goniothalamin, hexadecanolide, massoia lactone, and parasorbic acid via sequential allylboration-esterification ring-closing metathesis reactions. Tetrahedron Lett., 2000, 41(5), 583-586.
[http://dx.doi.org/10.1016/S0040-4039(99)02130-9]
[65]
de Fátima, Â.; Pilli, R.A. Total syntheses of (R)-argentilactone and (R)-goniothalamin via catalytic enantioselective allylation of aldehydes. Tetrahedron Lett., 2003, 44(48), 8721-8724.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.122]
[66]
Kasaplar, P.; Yilmazer, O.; Cağir, A. 6-Bicycloaryl substituted (S)- and (R)-5,6-dihydro-2H-pyran-2-ones: asymmetric synthesis, and anti-proliferative properties. Bioorg. Med. Chem., 2009, 17(1), 311-318.
[http://dx.doi.org/10.1016/j.bmc.2008.10.069] [PMID: 19022676]
[67]
Harsh, P.; O’Doherty, G.A. De novo asymmetric syntheses of (+)-goniothalamin, (+)-goniothalamin oxide, and 7,8-bis-epi-goniothalamin using asymmetric allylations. Tetrahedron, 2009, 65(26), 5051-5055.
[http://dx.doi.org/10.1016/j.tet.2009.03.097] [PMID: 20161297]
[68]
Weber, A.; Döhl, K.; Sachs, J.; Nordschild, A.C.M.; Schröder, D.; Kulik, A.; Fischer, T.; Schmitt, L.; Teusch, N.; Pietruszka, J. Synthesis and cytotoxic activities of goniothalamins and derivatives. Bioorg. Med. Chem., 2017, 25(22), 6115-6125.
[http://dx.doi.org/10.1016/j.bmc.2017.02.004] [PMID: 28214230]
[69]
Yadav, J.S.; Bhunia, D.C.; Ganganna, B.; Singh, V.K. First stereoselective total synthesis of cryptomoscatone E1 and synthesis of (+)-goniothalamin via an asymmetric acetate aldol reaction. RSC Advances, 2013, 3(15), 5254-5260.
[http://dx.doi.org/10.1039/c3ra23167d]
[70]
Wach, J-Y.; Güttinger, S.; Kutay, U.; Gademann, K. The cytotoxic styryl lactone goniothalamin is an inhibitor of nucleocytoplasmic transport. Bioorg. Med. Chem. Lett., 2010, 20(9), 2843-2846.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.049] [PMID: 20381347]
[71]
Mohideen, M.; Zulkepli, S.; Nik-Salleh, N.S.; Zulkefeli, M.; Weber, J.F.; Rahman, A.F. Design, synthesis, in vitro cytotoxicity evaluation and structure-activity relationship of goniothalamin analogs. Arch. Pharm. Res., 2013, 36(7), 812-831.
[http://dx.doi.org/10.1007/s12272-013-0099-1] [PMID: 23543632]
[72]
You, Z-W.; Jiang, Z-X.; Wang, B-L.; Qing, F-L. An efficient and general route to gem-difluoromethylenated α,β-unsaturated δ-lactones: high enantioselective synthesis of gem-difluoromethylenated goniothalamins. J. Org. Chem., 2006, 71(19), 7261-7267.
[http://dx.doi.org/10.1021/jo061012r] [PMID: 16958519]
[73]
Yang, Y.; You, Z.; Qing, F. Design and synthetic investigation toward gem-difluoromethylenated fostriecin analogue. Acta Chimi. Sin., 2012, 70(22), 2323-2336.
[http://dx.doi.org/10.6023/A12090668]
[74]
Yang, Y.; Yang, Z.; Cheng, C.; Qing, F. Synthesis and antitumor activity evaluation of γ-monofluorinated and γ,γ-difluorinated goniothalamin analogues. Chin. J. Chem., 2013, 31(6), 805-812.
[http://dx.doi.org/10.1002/cjoc.201300227]
[75]
Chen, J-L.; You, Z-W.; Qing, F-L. Total synthesis of γ-trifluoromethylated analogs of goniothalamin and their derivatives. J. Fluor. Chem., 2013, 155, 143-150.
[http://dx.doi.org/10.1016/j.jfluchem.2013.07.017]
[76]
Dumitrescu, L.; Mai Huong, D.T.; Van Hung, N.; Crousse, B.; Bonnet-Delpon, D. Synthesis and cytotoxic activity of fluorinated analogues of Goniothalamus lactones. Impact of fluorine on oxidative processes. Eur. J. Med. Chem., 2010, 45(7), 3213-3218.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.032] [PMID: 20392543]
[77]
Nakashima, K.; Kikuchi, N.; Shirayama, D. Total synthesis and cytotoxicity of (+)- and (-)-goniodiol and 6-epi-goniodiol. Construction of α,β-unsaturated lactones by ring-closing metathesis. Bull. Chem. Soc. Jpn., 2007, 80(2), 387-394.
[http://dx.doi.org/10.1246/bcsj.80.387]
[78]
Prasad, K.R.; Gholap, S.L. Facile stereoselective syntheses of goniodiol, 8-epi-goniodiol and 9-deoxygoniopypyrone. Tetrahedron Lett., 2007, 48(27), 4679-4682.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.029]
[79]
Favre, A.; Carreaux, F.; Deligny, M.; Carboni, B. Stereoselective synthesis of (+)-goniodiol, (+)-goniotriol, (-)-goniofupyrone, and (+)-altholactone using a catalytic asymmetric hetero-Diels-Alder/allylboration approach. Eur. J. Org. Chem., 2008, (29), 4900-4907.
[http://dx.doi.org/10.1002/ejoc.200800535]
[80]
Yadav, J.S.; Krishna, V.H.; Srilatha, A. Stereoselective total synthesis of leiocarpin C and (+)-goniodiol. Synthesis (Stuttg), 2010, 2010(17), 3004-3012.
[http://dx.doi.org/10.1055/s-0030-1257858]
[81]
Yadav, J.S.; Premalatha, K.; Harshavardhan, S.J.; Subba Reddy, B.V. The first stereoselective and the total synthesis of Leiocarpin C and total synthesis of. Goniodiol. Tetrahedron Lett., 2008, 49(48), 6765-6767.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.078]
[82]
Yadav, J.S.; Das, S.; Mishra, A.K. Stereoselective and facile total synthesis of (+)-goniodiol, a styryllactone from carbohydrates. Tetrahedron Asymmetry, 2010, 21(20), 2443-2447.
[http://dx.doi.org/10.1016/j.tetasy.2010.08.017]
[83]
Paioti, P.H.S.; Coelho, F. A Morita-Baylis-Hillman adduct allows the diastereoselective synthesis of styryl lactones. Tetrahedron Lett., 2011, 52(46), 6180-6184.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.044]
[84]
Sabitha, G.; Bhikshapathi, M.; Ranjith, N. An efficient total synthesis of (+)-goniodiol. Synthesis (Stuttg)., 2011, (5), 821–825.
[85]
Sabitha, G.; Rammohan Reddy, T.; Yadav, J.S. Tandem α-aminoxylation-allylation reaction based approach for the synthesis of goniothalesdiol A, leiocarpin A and (+)-goniodiol. Tetrahedron Lett., 2011, 52(49), 6550-6553.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.105]
[86]
Kiran, I.N.C.; Reddy, R.S.; Suryavanshi, G.; Sudalai, A. A concise enantioselective synthesis of (+)-goniodiol and (+)-8-methoxygoniodiol via Co-catalyzed HKR of anti-(2SR, 3RS)-3-methoxy-3- phenyl-1, 2-epoxypropane. Tetrahedron Lett., 2011, 52(3), 438-440.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.085]
[87]
Yadav, J.S.; Madhava Rao, B.; Sanjeeva Rao, K. Total synthesis of 8-methoxygoniodiol related compounds via chiron approach. Tetrahedron Asymmetry, 2009, 20(15), 1725-1730.
[http://dx.doi.org/10.1016/j.tetasy.2009.05.034]
[88]
Ramesh, P. A five-step total synthesis of parvistone B. ChemistrySelect, 2016, 1(12), 3244-3246.
[http://dx.doi.org/10.1002/slct.201600578]
[89]
Ramesh, P.; Rao, T.P. Biosynthesis-inspired total synthesis of bioactive styryllactones (+)-Goniodiol, (6S,7S,8S)-Goniodiol, (-)-Parvistone D, and (+)-Parvistone E. J. Nat. Prod., 2016, 79(8), 2060-2065.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00386] [PMID: 27518479]
[90]
Ramesh, P.; Narasimha Reddy, Y.; Narendar Reddy, T.; Srinivasu, N. First total synthesis of the highly potent antitumor lactones 8-chlorogoniodiol and parvistone A: Exploiting a bioinspired late-stage epoxide ring-opening. Tetrahedron Asymmetry, 2017, 28(2), 246-249.
[http://dx.doi.org/10.1016/j.tetasy.2017.01.005]
[91]
Jala, R.; Nomula, R.; Krishna, P.R. First total synthesis of parvistone C and its C8-epimer. Synth. Commun., 2017, 47(20), 1879-1883.
[http://dx.doi.org/10.1080/00397911.2017.1354381]
[92]
Sharada, A.; Rao, K.L.S.; Yadav, J.S. First stereoselective synthesis of (6R,7R,8S)-8-Chlorogoniodiol. Synth., 2017, 49(11), 2483-2487.
[http://dx.doi.org/10.1055/s-0036-1588972]
[93]
Li, Z.; Tong, R. Asymmetric total syntheses of the trans-2-aryl-6-alkyltetrahydropyrans Diospongin B and Parvistones D and E from a Common Precursor. Synth., 2016, 48(11), 1630-1636.
[http://dx.doi.org/10.1055/s-0035-1561592]
[94]
Sabitha, G.; Sudhakar, K.; Yadav, J.S. A simple and efficient total synthesis of a styryllactone, 7-epi-goniodiol. Synthesis (Stuttg), 2007, 2007(3), 385-388.
[http://dx.doi.org/10.1055/s-2007-965879]
[95]
Kumaraswamy, G.; Kumar, R.S. Highly diastereoselective total syntheses of (+)-7-Epigoniodiol, (-)-8-Epigoniodiol, and (+)-9-Deoxygoniopypyrone. Helv. Chim. Acta, 2013, 96(7), 1366-1375.
[http://dx.doi.org/10.1002/hlca.201200368]
[96]
Veena, B.; Sharma, G. Synthesis of 7-epi-goniodiol by proline-catalyzed diastereoselective direct aldol reaction. Synlett, 2014, 25(09), 1283-1286.
[http://dx.doi.org/10.1055/s-0033-1341107]
[97]
Chavan, S.P.; Khatod, H.S.; Das, T.; Vanka, K. Exploration of the diastereoselectivity in an unusual Grignard reaction and its application towards the synthesis of styryl lactones 7-epi-(+)-goniodiol and 8-epi-(−)-goniodiol. RSC Advances, 2016, 6(56), 50721-50725.
[http://dx.doi.org/10.1039/C6RA03192G]
[98]
Zeng, P.L.; Wang, D.; Zhou, J.; Dong, Z. A concise synthesis of the dihydroxy styryllactone, 7-epi-goniodiol. J. Chem. Res., 2016, 40(6), 331-334.
[http://dx.doi.org/10.3184/174751916X14615896825798]
[99]
Prasad, K.; Dhaware, M. Stereoselective total synthesis of (-)-9-Deoxygoniopypyrone. Synlett, 2007, 2007(7), 1112-1114.
[http://dx.doi.org/10.1055/s-2007-973873]
[100]
Enders, D.; Barbion, J. Asymmetric synthesis of (+)-altholactone: a styryllactone isolated from various Goniothalamus species. Chemistry, 2008, 14(9), 2842-2849.
[http://dx.doi.org/10.1002/chem.200701647] [PMID: 18219645]
[101]
Gupta, S.; Rajagopalan, M.; Alhamadsheh, M.M. First total synthesis and absolute configuration of the styryl lactone gonioheptolide A. Synthesis (Stuttg), 2007, 2007(22), 3512-3518.
[http://dx.doi.org/10.1055/s-2007-990862]
[102]
Gupta, S.; Poeppelman, L.; Hinman, C.L.; Bretz, J.; Hudson, R.A.; Tillekeratne, L.M. Apoptotic activities in closely related styryllactone stereoisomers toward human tumor cell lines: Investigation of synergism of styryllactone-induced apoptosis with TRAIL. Bioorg. Med. Chem., 2010, 18(2), 849-854.
[http://dx.doi.org/10.1016/j.bmc.2009.11.045] [PMID: 20036566]
[103]
Meira, P.R.R.; Moro, A.V.; Correia, C.R.D. Stereoselective Heck-Matsuda arylations of chiral dihydrofurans with arenediazonium tetrafluoroborates; an efficient enantioselective total synthesis of (-)-isoaltholactone. Synthesis (Stuttg), 2007, 15, 2279-2286.
[http://dx.doi.org/10.1002/chin.200748217]
[104]
Moro, A.V.; Rodrigues Dos Santos, M.; Correia, C.R.D. Stereoselective synthesis of aza analogues of isoaltholactone and goniothalesdiol - New applications of the Heck-Matsuda reaction. Eur. J. Org. Chem., 2011, (36), 7259-7270.
[http://dx.doi.org/10.1002/ejoc.201100886]
[105]
Unsworth, W.P.; Stevens, K.; Lamont, S.G.; Robertson, J. Stereospecificity in the Au-catalysed cyclisation of monoallylic diols. Synthesis of (+)-isoaltholactone. Chem. Commun. (Camb.), 2011, 47(27), 7659-7661.
[http://dx.doi.org/10.1039/c1cc11805f] [PMID: 21666896]
[106]
Liu, J.; Zhang, X.; Liu, Y. Total synthesis of (-)-isoaltholactone. Sci. China Chem., 2013, 56(7), 928-932.
[http://dx.doi.org/10.1007/s11426-012-4823-3]
[107]
Nicolas, L.; Izquierdo, E.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Reymond, S.; Cossy, J. Cobalt-catalyzed diastereoselective synthesis of C-furanosides. Total synthesis of (-)-isoaltholactone. J. Org. Chem., 2013, 78(23), 11807-11814.
[http://dx.doi.org/10.1021/jo401845q] [PMID: 24127819]
[108]
Trost, B.M.; Aponick, A.; Stanzl, B.N. A convergent Pd-catalyzed asymmetric allylic alkylation of dl- and meso-divinylethylene carbonate: enantioselective synthesis of (+)-australine hydrochloride and formal synthesis of isoaltholactone. Chemistry, 2007, 13(34), 9547-9560.
[http://dx.doi.org/10.1002/chem.200700832] [PMID: 17847148]
[109]
Harris, J.M.; O’Doherty, G.A. An olefination approach to the enantioselective syntheses of several styryllactones. Tetrahedron, 2001, 57(24), 5161-5171.
[http://dx.doi.org/10.1016/S0040-4020(01)00355-6]
[110]
Chen, J-L.; Chu, L.; Qing, F-L. Total synthesis of the trifluoromethylated analog of isoaltholactone: 5-trifluoromethylisoaltholactone. J. Fluor. Chem., 2013, 152, 70-76.
[http://dx.doi.org/10.1016/j.jfluchem.2013.01.008]
[111]
Fearnley, S.P.; Lory, P. A concise synthesis of (±)-3-deoxyisoaltholactone. Tetrahedron Lett., 2014, 55(37), 5207-5209.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.081]
[112]
Fearnley, S.P.; Lory, P. Vinylsilane-mediated synthesis of styryl-lactone frameworks. Tetrahedron, 2016, 72(9), 1161-1167.
[http://dx.doi.org/10.1016/j.tet.2016.01.003]
[113]
Ramesh, P. Protecting-group-free total synthesis of 8-methoxygoniodiol. Synth., 2016, 48(23), 4300-4304.
[http://dx.doi.org/10.1055/s-0035-1561491]
[114]
You, Z.W.; Zhang, X.; Qing, F.L. Stereocontrolled synthesis of gem-difluoromethylenated goniodiols and goniothalamin epoxides based on ring-closing metathesis. Synthesis (Stuttg)., 2006, (15), 2535–2542.
[http://dx.doi.org/10.1055/s-2006-942467]
[115]
Nagaiah, K.; Sreenu, D.; Purnima, K.V. Stereoselective total syntheses of leiocarpin A and (-)-galantinic acid starting from D-mannitol. Synthesis (Stuttg), 2009, 2(8), 1386-1392.
[http://dx.doi.org/10.1055/s-0028-1087993]
[116]
Prasad, K.R.; Gholap, S.L. Stereoselective total synthesis of bioactive styryllactones (+)-goniofufurone, (+)7-epi-goniofufurone, (+)-goniopypyrone, (+)-goniotriol, (+)-altholactone, and (-)-etharvensin. J. Org. Chem., 2008, 73(1), 2-11.
[http://dx.doi.org/10.1021/jo0702342] [PMID: 17523660]
[117]
Prasad, K.R.; Gholap, S.L. Stereoselective synthesis of (+)-goniothalesdiol. J. Org. Chem., 2006, 71(9), 3643-3645.
[http://dx.doi.org/10.1021/jo060159f] [PMID: 16626158]
[118]
Yadav, V.K.; Agrawal, D. Total syntheses of (+)-7-epi-goniofufurone, (+)-goniopypyrone and (+)-goniofufurone from a common precursor. Chem. Commun. (Camb.), 2007, 0(48), 5232-5234.
[http://dx.doi.org/10.1039/b713070h] [PMID: 18060152]
[119]
Kunde, R.; Ramakrishna, K.V.S.; Radha Krishna, P. Studies toward the total synthesis of (+)-etharvendiol. Tetrahedron Lett., 2015, 56(11), 1344-1347.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.180]
[120]
AnkiReddy. S.; AnkiReddy, P.; Sabitha, G. The first total synthesis of (+)-goniothalesacetate and syntheses of (+)-altholactone, (+)-gonioheptolide A, and (-)-goniofupyrone by an asymmetric acetate aldol approach. Org. Biomol. Chem., 2015, 13(42), 10487-10495.
[http://dx.doi.org/10.1039/C5OB01598G] [PMID: 26329987]
[121]
Krishna, P.R.; Alivelu, M. Total synthesis of leiocarpin C and (+)-goniodiol via an olefin cross-metathesis protocol. Helv. Chim. Acta, 2011, 94(6), 1102-1107.
[http://dx.doi.org/10.1002/hlca.201000365]
[122]
Rao, C.D.; Shekhar, V.; Reddy, K.D. Concise stereoselective total synthesis of leiocarpin C. Helv. Chim. Acta, 2013, 96(12), 2179-2184.
[http://dx.doi.org/10.1002/hlca.201200656]
[123]
Yadav, J.S.; Subba Reddy, U.V.; Anusha, B.; Subba Reddy, B.V. The stereoselective total synthesis of (+)-garvensintriol. Tetrahedron Lett., 2010, 51(42), 5529-5531.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.158]
[124]
Mohapatra, D.K.; Kumar, B.P.; Bhaskar, K.; Yadav, J.S. First total syntheses of (+)-garvensintriol and (+)-5-epi-garvensintriol. Synlett, 2010, (7), 1059-1062.
[http://dx.doi.org/10.1055/s-0029-1219557]
[125]
Deng, X.; Su, J.; Zhao, Y.; Peng, L.Y.; Li, Y.; Yao, Z.J.; Zhao, Q.S. Development of novel conformation-constrained cytotoxic derivatives of cheliensisin A by embedment of small heterocycles. Eur. J. Med. Chem., 2011, 46(9), 4238-4244.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.028] [PMID: 21775031]
[126]
Shekhar, V.; Kumar Reddy, D.; Suresh, V. First total synthesis of (+)-crassalactone A. Tetrahedron Lett., 2010, 51(6), 946-948.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.038]
[127]
Yadav, J.S.; Rao, G.M.; Thirupathaiah, B. A chiron approach for the total synthesis of crassalactone A. Helv. Chim. Acta, 2013, 96(12), 2233-2239.
[http://dx.doi.org/10.1002/hlca.201300231]
[128]
Reddy, P.R.; Das, B. Stereoselective total synthesis of crassalactone A, a natural cytotoxic styryl lactone. Helv. Chim. Acta, 2015, 98(4), 509-514.
[http://dx.doi.org/10.1002/hlca.201400237]
[129]
Martins, C.V.B.; de Resende, M.A.; Magalhaes, T.F.F. Antifungal activity of goniothalamin enantiomers. Lett. Drug Des. Discov., 2008, 5(1), 74-78.
[http://dx.doi.org/10.2174/157018008783406732]
[130]
Yen, C-Y.; Chiu, C-C.; Haung, R-W.; Yeh, C.C.; Huang, K.J.; Chang, K.F.; Hseu, Y.C.; Chang, F.R.; Chang, H.W.; Wu, Y.C. Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction. Mutat. Res., 2012, 747(2), 253-258.
[http://dx.doi.org/10.1016/j.mrgentox.2012.06.003] [PMID: 22721813]
[131]
Semprebon, S.C.; de Fátima, Â.; Lepri, S.R.; Sartori, D.; Ribeiro, L.R.; Mantovani, M.S. (S)-Goniothalamin induces DNA damage, apoptosis, and decrease in BIRC5 messenger RNA levels in NCI-H460 cells. Hum. Exp. Toxicol., 2014, 33(1), 3-13.
[http://dx.doi.org/10.1177/0960327113491506] [PMID: 23749456]
[132]
Innajak, S.; Mahabusrakum, W.; Watanapokasin, R. Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells. Oncol. Rep., 2016, 35(5), 2851-2858.
[http://dx.doi.org/10.3892/or.2016.4655] [PMID: 26987063]
[133]
Kido, L.A.; Montico, F.; Vendramini-Costa, D.B.; Pilli, R.A.; Cagnon, V.H.A. Goniothalamin and celecoxib effects during aging: targeting pro-inflammatory mediators in chemoprevention of prostatic disorders. Prostate, 2017, 77(8), 838-848.
[http://dx.doi.org/10.1002/pros.23324] [PMID: 28191652]
[134]
Senthil-Nathan, S.; Choi, M-Y.; Paik, C-H.; Kalaivani, K. The toxicity and physiological effect of goniothalamin, a styryl-pyrone, on the generalist herbivore, Spodoptera exigua Hübner. Chemosphere, 2008, 72(9), 1393-1400.
[http://dx.doi.org/10.1016/j.chemosphere.2008.03.037] [PMID: 18499224]
[135]
Fátima, Ad.; Kohn, L.K.; Carvalho, J.E.; Pilli, R.A. Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells. Bioorg. Med. Chem., 2006, 14(3), 622-631.
[http://dx.doi.org/10.1016/j.bmc.2005.08.036] [PMID: 16202605]
[136]
Kasaplar, P.; Çakmak, Ö.Y.; Cağir, A. Michael acceptor properties of 6-bicycloaryl substituted (R)-5,6-dihydro-2H-pyran-2-ones. Bioorg. Chem., 2010, 38(5), 186-189.
[http://dx.doi.org/10.1016/j.bioorg.2010.06.005] [PMID: 20655568]
[137]
Uthaisang-Tanechpongtamb, W.; Sriyabhaya, P.; Wilairat, P. Role of altholactone in inducing type II apoptosis signalling pathway and expression of cancer-related genes in cervical carcinoma HeLa cell line. Cell Biol. Int., 2013, 37(5), 471-477.
[http://dx.doi.org/10.1002/cbin.10059] [PMID: 23494867]
[138]
Johnson, T.A.; Sohn, J.; Ward, A.E.; Cohen, T.L.; Lorig-Roach, N.D.; Chen, H.; Pilli, R.A.; Widjaja, E.A.; Hanafi, M.; Kardono, L.B.; Lotulung, P.D.; Boundy-Mills, K.; Bjeldanes, L.F. (+)-Altholactone exhibits broad spectrum immune modulating activity by inhibiting the activation of pro-inflammatory cytokines in RAW 264.7 cell lines. Bioorg. Med. Chem., 2013, 21(14), 4358-4364.
[http://dx.doi.org/10.1016/j.bmc.2013.04.055] [PMID: 23735825]
[139]
Mhaidat, N.M.; Abdul-Razzak, K.K.; Alkofahi, A.S.; Alsarhan, A.M.; Aldaher, A.N.; Thorne, R.F. Altholactone induces apoptotic cell death in human colorectal cancer cells. Phytother. Res., 2012, 26(6), 926-931.
[http://dx.doi.org/10.1002/ptr.3666] [PMID: 22105918]
[140]
Euanorasetr, J.; Junhom, M.; Tantimavanich, S.; Vorasin, O.; Munyoo, B.; Tuchinda, P.; Panbangred, W. Halogenated benzoate derivatives of altholactone with improved anti-fungal activity. J. Asian Nat. Prod. Res., 2016, 18(5), 462-474.
[http://dx.doi.org/10.1080/10286020.2015.1133611] [PMID: 26765144]
[141]
Al Momani, F.; Alkofahi, A.S.; Mhaidat, N.M. Altholactone displays promising antimicrobial activity. Molecules, 2011, 16(6), 4560-4566.
[http://dx.doi.org/10.3390/molecules16064560] [PMID: 21642933]
[142]
Zhang, J.; Gao, G.; Chen, L.; Li, J.; Deng, X.; Zhao, Q.S.; Huang, C. Hydrogen peroxide/ATR-Chk2 activation mediates p53 protein stabilization and anti-cancer activity of cheliensisin A in human cancer cells. Oncotarget, 2014, 5(3), 841-852.
[http://dx.doi.org/10.18632/oncotarget.1780] [PMID: 24553354]
[143]
de Fátima, A.; Zambuzzi, W.F.; Modolo, L.V.; Tarsitano, C.A.; Gadelha, F.R.; Hyslop, S.; de Carvalho, J.E.; Salgado, I.; Ferreira, C.V.; Pilli, R.A. Cytotoxicity of goniothalamin enantiomers in renal cancer cells: involvement of nitric oxide, apoptosis and autophagy. Chem. Biol. Interact., 2008, 176(2-3), 143-150.
[http://dx.doi.org/10.1016/j.cbi.2008.08.003] [PMID: 18771661]
[144]
Inayat-Hussain, S.H.; Chan, K.M.; Rajab, N.F.; Din, L.B.; Chow, S.C.; Kizilors, A.; Farzaneh, F.; Williams, G.T. Goniothalamin-induced oxidative stress, DNA damage and apoptosis via caspase-2 independent and Bcl-2 independent pathways in Jurkat T-cells. Toxicol. Lett., 2010, 193(1), 108-114.
[http://dx.doi.org/10.1016/j.toxlet.2009.12.010] [PMID: 20026395]
[145]
Vendramini-Costa, D.B.; de Castro, I.B.D.; Ruiz, A.L.T.G.; Marquissolo, C.; Pilli, R.A.; de Carvalho, J.E. Effect of goniothalamin on the development of Ehrlich solid tumor in mice. Bioorg. Med. Chem., 2010, 18(18), 6742-6747.
[http://dx.doi.org/10.1016/j.bmc.2010.07.053] [PMID: 20729093]
[146]
Al-Qubaisi, M.; Rosli, R.; Subramani, T.; Omar, A.R.; Yeap, S.K.; Ali, A.M.; Alitheen, N.B. Goniothalamin selectively induces apoptosis on human hepatoblastoma cells through caspase-3 activation. Nat. Prod. Res., 2013, 27(23), 2216-2218.
[http://dx.doi.org/10.1080/14786419.2013.800979] [PMID: 23767409]
[147]
Semprebon, S.C.; Marques, L.A.; D’Epiro, G.F.R.; de Camargo, E.A.; da Silva, G.N.; Niwa, A.M.; Macedo, F. Junior; Mantovani, M.S. Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells. Toxicol. In Vitro, 2015, 30(1 Pt B), 250-263.
[http://dx.doi.org/10.1016/j.tiv.2015.10.012] [PMID: 26522230]
[148]
Akçok, İ.; Mete, D.; Şen, A.; Kasaplar, P.; Korkmaz, K.S.; Çağır, A. Synthesis and Topoisomerase I inhibitory properties of klavuzon derivatives. Bioorg. Chem., 2017, 71, 275-284.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.012] [PMID: 28242062]
[149]
Bruder, M.; Vendramini-Costa, D.B.; de Carvalho, J.E.; Pilli, R.A. Design, synthesis and in vitro evaluation against human cancer cells of 5-methyl-5-styryl-2,5-dihydrofuran-2-ones, a new series of goniothalamin analogues. Bioorg. Med. Chem., 2013, 21(17), 5107-5117.
[http://dx.doi.org/10.1016/j.bmc.2013.06.044] [PMID: 23876338]
[150]
Barcelos, R.C.; Pastre, J.C.; Vendramini-Costa, D.B.; Caixeta, V.; Longato, G.B.; Monteiro, P.A.; de Carvalho, J.E.; Pilli, R.A. Design and synthesis of N-acylated aza-goniothalamin derivatives and evaluation of their in vitro and in vivo antitumor activity. ChemMedChem, 2014, 9(12), 2725-2743.
[http://dx.doi.org/10.1002/cmdc.201402292] [PMID: 25263285]
[151]
Martins, C.V.B.; de Resende, M.A.; da Silva, D.L.; Magalhães, T.F.; Modolo, L.V.; Pilli, R.A.; de Fátima, A. In vitro studies of anticandidal activity of goniothalamin enantiomers. J. Appl. Microbiol., 2009, 107(4), 1279-1286.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04307.x] [PMID: 19486403]
[152]
Campos, V.A.C.; Machado, A.R.T.; Silva, W.J.R. Styryllactones from Cryptocarya aschersoniana Mez. (Lauraceae Juss.) with activity against Meloidogyne spp. and in silico interaction with a putative fumarase from Meloidogyne hapla. Quim. Nova, 2016, 39(2), 130-136.
[153]
de Fátima, A.; Marquissolo, C.; de Albuquerque, S.; Carraro-Abrahão, A.A.; Pilli, R.A. Trypanocidal activity of 5,6-dihydropyran-2-ones against free trypomastigotes forms of Trypanosoma cruzi. Eur. J. Med. Chem., 2006, 41(10), 1210-1213.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.010] [PMID: 16815596]
[154]
Barcelos, R.C.; Pelizzaro-Rocha, K.J.; Pastre, J.C.; Dias, M.P.; Ferreira-Halder, C.V.; Pilli, R.A. A new goniothalamin N-acylated aza-derivative strongly downregulates mediators of signaling transduction associated with pancreatic cancer aggressiveness. Eur. J. Med. Chem., 2014, 87, 745-758.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.085] [PMID: 25305718]
[155]
Vendramini-Costa, D.B.; Francescone, R.; Posocco, D.; Hou, V.; Dmitrieva, O.; Hensley, H.; de Carvalho, J.E.; Pilli, R.A.; Grivennikov, S.I. Anti-inflammatory natural product goniothalamin reduces colitis-associated and sporadic colorectal tumorigenesis. Carcinogenesis, 2017, 38(1), 51-63.
[http://dx.doi.org/10.1093/carcin/bgw112] [PMID: 27797827]
[156]
Li, L.K.; Rola, A-S.; Kaid, F.A.; Ali, A.M.; Alabsi, A.M. Goniothalamin induces cell cycle arrest and apoptosis in H400 human oral squamous cell carcinoma: A caspase-dependent mitochondrial-mediated pathway with downregulation of NF-κβ. Arch. Oral Biol., 2016, 64, 28-38.
[http://dx.doi.org/10.1016/j.archoralbio.2015.12.002] [PMID: 26752226]
[157]
Boonmuen, N.; Thongon, N.; Chairoungdua, A.; Suksen, K.; Pompimon, W.; Tuchinda, P.; Reutrakul, V.; Piyachaturawat, P. 5-Acetyl goniothalamin suppresses proliferation of breast cancer cells via Wnt/β-catenin signaling. Eur. J. Pharmacol., 2016, 791, 455-464.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.024] [PMID: 27640746]
[158]
Chiu, C-C.; Liu, P-L.; Huang, K-J.; Wang, H.M.; Chang, K.F.; Chou, C.K.; Chang, F.R.; Chong, I.W.; Fang, K.; Chen, J.S.; Chang, H.W.; Wu, Y.C. Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability. J. Agric. Food Chem., 2011, 59(8), 4288-4293.
[http://dx.doi.org/10.1021/jf200566a] [PMID: 21391609]
[159]
Barcelos, R.C.; Pastre, J.C.; Caixeta, V.; Vendramini-Costa, D.B.; de Carvalho, J.E.; Pilli, R.A. Synthesis of methoxylated goniothalamin, aza-goniothalamin and γ-pyrones and their in vitro evaluation against human cancer cells. Bioorg. Med. Chem., 2012, 20(11), 3635-3651.
[http://dx.doi.org/10.1016/j.bmc.2012.03.059] [PMID: 22537680]
[160]
Vendramini-Costa, D.B.; Spindola, H.M.; de Mello, G.C.; Antunes, E.; Pilli, R.A.; de Carvalho, J.E. Anti-inflammatory and antinociceptive effects of racemic goniothalamin, a styryl lactone. Life Sci., 2015, 139, 83-90.
[http://dx.doi.org/10.1016/j.lfs.2015.08.010] [PMID: 26297443]
[161]
Vendramini-Costa, D.B.; Monteiro, K.M.; Iwamoto, L.H.; Jorge, M.P.; Tinti, S.V.; Pilli, R.A.; de Carvalho, J.E. Gastroprotective effects of goniothalamin against ethanol and indomethacin-induced gastric lesions in rats: Role of prostaglandins, nitric oxide and sulfhydryl compounds. Chem. Biol. Interact., 2014, 224, 206-212.
[http://dx.doi.org/10.1016/j.cbi.2014.10.025] [PMID: 25451594]
[162]
Carreaux, F.; Favre, A.; Carboni, B. First synthesis of (+)-8-methoxygoniodiol and its analogue, 8-deoxygoniodiol, using a three component strategy. Tetrahedron Lett., 2006, 47(27), 4545-4548.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.005]
[163]
Zhao, B.; Li, X. Altholactone induces reactive oxygen species-mediated apoptosis in bladder cancer T24 cells through mitochondrial dysfunction, MAPK-p38 activation and Akt suppression. Oncol. Rep., 2014, 31(6), 2769-2775.
[http://dx.doi.org/10.3892/or.2014.3126] [PMID: 24700345]
[164]
Yokoyama, Y.; Ohtaki, A.; Jantan, I.; Yohda, M.; Nakamoto, H. Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity. J. Biochem., 2015, 157(3), 161-168.
[http://dx.doi.org/10.1093/jb/mvu061] [PMID: 25294885]
[165]
Zhu, J.; Zhang, J.; Huang, H.; Li, J.; Yu, Y.; Jin, H.; Li, Y.; Deng, X.; Gao, J.; Zhao, Q.; Huang, C. Crucial role of c-Jun phosphorylation at Ser63/73 mediated by PHLPP protein degradation in the cheliensisin a inhibition of cell transformation. Cancer Prev. Res. (Phila.), 2014, 7(12), 1270-1281.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0233] [PMID: 25281487]
[166]
Zhang, J.; Gao, G.; Chen, L.; Deng, X.; Li, J.; Yu, Y.; Zhang, D.; Li, F.; Zhang, M.; Zhao, Q.; Huang, C. Cheliensisin A inhibits EGF-induced cell transformation with stabilization of p53 protein via a hydrogen peroxide/Chk1-dependent axis. Cancer Prev. Res. (Phila.), 2013, 6(9), 949-958.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0097] [PMID: 23852422]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy