Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Oxazole-Based Compounds As Anticancer Agents

Author(s): Maria A. Chiacchio*, Giuseppe Lanza, Ugo Chiacchio, Salvatore V. Giofrè, Roberto Romeo*, Daniela Iannazzo and Laura Legnani

Volume 26, Issue 41, 2019

Page: [7337 - 7371] Pages: 35

DOI: 10.2174/0929867326666181203130402

Price: $65

Abstract

Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.

Keywords: Oxazole, isoxazole, oxazoline, oxazolidine, anticancer activity, synthesis.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[4]
Chiacchio, M.A.; Iannazzo, D.; Romeo, R.; Giofrè, S.V.; Legnani, L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr. Med. Chem., 2018.
[http://dx.doi.org/10.2174/0929867325666180904125400]
[5]
Zhang, H-Z.; Zhao, Z-L.; Zhou, C-H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[6]
Kim, S.J.; Lin, C.C.; Pan, C.M.; Rananaware, D.P.; Ramsey, D.M.; McAlpine, S.R. A structure-activity relationship study on multi-heterocyclic molecules: two linked thiazoles are required for cytotoxic activity. MedChemComm, 2013, 4(2), 406-410.
[http://dx.doi.org/10.1039/C2MD20291C] [PMID: 23524379]
[7]
Im, D.; Jung, K.; Yang, S.; Aman, W.; Hah, J-M. Discovery of 4-arylamido 3-methyl isoxazole derivatives as novel FMS kinase inhibitors. Eur. J. Med. Chem., 2015, 102, 600-610.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.031] [PMID: 26318067]
[8]
Balaji, N.V.; Ramani, M.V.; Viana, A.G.; Sanglard, L.P.; White, J.; Mulabagal, V.; Lee, C.; Gana, T.J.; Egiebor, N.O.; Subbaraju, G.V.; Tiwari, A.K. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs. Bioorg. Med. Chem., 2015, 23(9), 2148-2158.
[http://dx.doi.org/10.1016/j.bmc.2015.03.002] [PMID: 25842364]
[9]
Flynn, D.L.; Belliotti, T.R.; Boctor, A.M.; Connor, D.T.; Kostlan, C.R.; Nies, D.E.; Ortwine, D.F.; Schrier, D.J.; Sircar, J.C. Styrylpyrazoles, styrylisoxazoles, and styrylisothiazoles. Novel 5-lipoxygenase and cyclooxygenase inhibitors. J. Med. Chem., 1991, 34(2), 518-525.
[http://dx.doi.org/10.1021/jm00106a006] [PMID: 1847426]
[10]
Naresh Kumar, R.; Jitender Dev, G.; Ravikumar, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant Jain, S.; Gangagni Rao, A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3-d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2927-2930.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[11]
Emmerich, J.; van Koppen, C.J.; Burkhart, J.L.; Hu, Q.; Siebenbürger, L.; Boerger, C.; Scheuer, C.; Laschke, M.W.; Menger, M.D.; Hartmann, R.W. Lead optimization generates CYP11B1 inhibitors of pyridylmethyl isoxazole type with improved pharmacological profile for the treatment of cushing’s disease. J. Med. Chem., 2017, 60(12), 5086-5098.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00437] [PMID: 28570067]
[12]
Wan, M.; Xu, L.; Hua, L.; Li, A.; Li, S.; Lu, W.; Pang, Y.; Cao, C.; Liu, X.; Jiao, P. Synthesis and evaluation of novel isoxazolyl chalcones as potential anticancer agents. Bioorg. Chem., 2014, 54, 38-43.
[http://dx.doi.org/10.1016/j.bioorg.2014.03.004] [PMID: 24747188]
[13]
Crawford, T.D.; Ndubaku, C.O.; Chen, H.; Boggs, J.W.; Bravo, B.J.; Delatorre, K.; Giannetti, A.M.; Gould, S.E.; Harris, S.F.; Magnuson, S.R.; McNamara, E.; Murray, L.J.; Nonomiya, J.; Sambrone, A.; Schmidt, S.; Smyczek, T.; Stanley, M.; Vitorino, P.; Wang, L.; West, K.; Wu, P.; Ye, W. Discovery of selective 4-Amino-pyridopyrimidine inhibitors of MAP4K4 using fragment-based lead identification and optimization. J. Med. Chem., 2014, 57(8), 3484-3493.
[http://dx.doi.org/10.1021/jm500155b] [PMID: 24673130]
[14]
Sun, J.; Lin, C.; Qin, X.; Dong, X.; Tu, Z.; Tang, F.; Chen, C.; Zhang, J. Synthesis and biological evaluation of 3,5-disubstituted-4-alkynylisoxozales as a novel class of HSP90 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(16), 3129-3134.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.009] [PMID: 26112442]
[15]
Al-Dosari, M.S.; Ghorab, M.M.; Alsaid, M.S.; Nissan, Y.M.; Ahmed, A.B. Synthesis and anticancer activity of some novel trifluoromethylquinolines carrying a biologically active benzenesulfonamide moiety. Eur. J. Med. Chem., 2013, 69, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.048] [PMID: 24077528]
[16]
Weaver, M.J.; Kearns, A.K.; Stump, S.; Li, C.; Gajewski, M.P.; Rider, K.C.; Backos, D.S.; Reigan, P.R.; Beall, H.D.; Natale, N.R. AIMing towards improved antitumor efficacy. Bioorg. Med. Chem. Lett., 2015, 25(8), 1765-1770.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.063] [PMID: 25782743]
[17]
Mirzaei, Y.R.; Weaver, M.J.; Steiger, S.A.; Kearns, A.K.; Gajewski, M.P.; Rider, K.C.; Beall, H.D.; Natale, N.R. Improved synthesis of 3-aryl isoxazoles containing fused aromatic rings. Tetrahedron, 2012, 68(50), 10360-10364.
[http://dx.doi.org/10.1016/j.tet.2012.09.084] [PMID: 23526841]
[18]
Zhang, C.; Wang, X.; Liu, H.; Zhang, M.; Geng, M.; Sun, L.; Shen, A.; Zhang, A. Design, synthesis and pharmacological evaluation of 4,5-diarylisoxazols bearing amino acid residues within the 3-amido motif as potent heat shock protein 90 (Hsp90) inhibitors. Eur. J. Med. Chem., 2017, 125, 315-326.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.043] [PMID: 27688186]
[19]
Steiger, S.A.; Li, C.; Backos, D.S.; Reigan, P.; Natale, N.R. Dimeric isoxazolyl-1,4-dihydropyridines have enhanced binding at the multi-drug resistance transporter. Bioorg. Med. Chem., 2017, 25(12), 3223-3234.
[http://dx.doi.org/10.1016/j.bmc.2017.04.008] [PMID: 28434782]
[20]
Ghorab, M.M.; Bashandy, M.S.; Alsaid, M.S. Novel thiophene derivatives with sulfonamide, isoxazole, benzothiazole, quinoline and anthracene moieties as potential anticancer agents. Acta Pharm., 2014, 64(4), 419-431.
[http://dx.doi.org/10.2478/acph-2014-0035] [PMID: 25531783]
[21]
Yong, J-P.; Lu, C-Z.; Wu, X. Potential anticancer agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anticancer. Agents Med. Chem., 2015, 15(1), 131-136.
[http://dx.doi.org/10.2174/1871520614666140812105445] [PMID: 25142319]
[22]
Burra, S.; Voora, V.; Rao, C.P.; Vijay Kumar, P.; Kancha, R.K.; David Krupadanam, G.L. Synthesis of novel forskolin isoxazole derivatives with potent anti-cancer activity against breast cancer cell lines. Bioorg. Med. Chem. Lett., 2017, 27(18), 4314-4318.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.033] [PMID: 28838692]
[23]
Abu Bakr, S.M.; Abd El-Karim, S.S.; Said, M.M.; Youns, M.M. Synthesis and anticancer evaluation of novel isoxazole/pyrazole derivatives. Res. Chem. Intermed., 2016, 42, 1387-1399.
[http://dx.doi.org/10.1007/s11164-015-2091-5]
[24]
Castellano, S.; Kuck, D.; Viviano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J.L.; Sbardella, G. Synthesis and biochemical evaluation of δ(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J. Med. Chem., 2011, 54(21), 7663-7677.
[http://dx.doi.org/10.1021/jm2010404] [PMID: 21958292]
[25]
Sadashiva, M.P. Basappa; Swamy, S. N.; Li, F.; Manu, K. A.; Sengottuvelan, M.; Prasanna, D. S.; Anilkumar, N. C.; Sethi, G.; Sugahara, K.; Rangappa, K. S. Anti-cancer activity of novel dibenzo[b,f]azepine tethered isoxazoline derivatives. BMC Chem. Biol., 2012, 12(5), 1-11.
[http://dx.doi.org/10.1186/1472-6769-12-5] [PMID: 23033888]
[26]
Filali, I.; Bouajila, J.; Znati, M.; Bousejra-El Garah, F.; Ben Jannet, H. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 371-376.
[http://dx.doi.org/10.3109/14756366.2014.940932] [PMID: 25068731]
[27]
Das, P.; Omollo, A.O.; Sitole, L.J.; McClendon, E.; Valente, E.J.; Raucher, D.; Walker, L.R.; Hamme, A.T. II II A. T. Synthesis and investigation of novel spiro-isoxazolines as anti-cancer agents. Tetrahedron Lett., 2015, 56(14), 1794-1797.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.059] [PMID: 25821250]
[28]
Prajapti, S.K.; Shrivastava, S.; Bihade, U.; Gupta, A.K.; Naidu, V.G.M.; Banerjee, U.C.; Babu, B.N. Synthesis and biological evaluation of novel Δ2-isoxazoline fused cyclopentane derivatives as potential antimicrobial and anticancer agents. MedChemComm, 2015, 6, 839-845.
[http://dx.doi.org/10.1039/C4MD00525B]
[29]
Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chemical synthesis of heterocyclic-sugar nucleoside analogues. Chem. Rev., 2010, 110(6), 3337-3370.
[http://dx.doi.org/10.1021/cr800464r] [PMID: 20232792]
[30]
Piotrowska, D.G.; Cieślak, M.; Królewska, K.; Wróblewski, A.E. Design, synthesis and cytotoxicity of a new series of isoxazolidines derived from substituted chalcones. Eur. J. Med. Chem., 2011, 46(4), 1382-1389.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.067] [PMID: 21334117]
[31]
Piotrowska, D.G. Stereochemistry of substituted isoxazolidines derived from N-methyl C-diethoxyphosphorylated nitrone. Tetrahedron, 2006, 62, 12306-12317.
[http://dx.doi.org/10.1016/j.tet.2006.10.011]
[32]
Piotrowska, D.G.; Balzarini, J.; Głowacka, I.E. Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a 1,2,3-triazole linker. Eur. J. Med. Chem., 2012, 47(1), 501-509.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.021] [PMID: 22137458]
[33]
Romeo, R.; Giofrè, S.V.; Carnovale, C.; Campisi, A.; Parenti, R.; Bandini, L.; Chiacchio, M.A. Synthesis and biological evaluation of 3-hydroxymethyl-5-(1H-1,2,3-triazol) isoxazolidines. Bioorg. Med. Chem., 2013, 21(24), 7929-7937.
[http://dx.doi.org/10.1016/j.bmc.2013.10.001] [PMID: 24436994]
[34]
Giofrè, S.V.; Romeo, R.; Carnovale, C.; Mancuso, R.; Cirmi, S.; Navarra, M.; Garozzo, A.; Chiacchio, M.A. Synthesis and biological properties of 5-(1H-1,2,3-triazol-4-yl)isoxazolidines: a new class of C-nucleosides. Molecules, 2015, 20(4), 5260-5275.
[http://dx.doi.org/10.3390/molecules20045260] [PMID: 25812148]
[35]
Sharma, V.; Kalia, R.; Raj, T.; Gupta, V.K.; Suri, N.; Saxena, A.K.; Sharma, D.; Bhella, S.S.; Sing, G.; Ishar, M.P.S. Synthesis and cytotoxic evaluation of substituted 3-(3′-indolyl-/3′-pyridyl)-isoxazolidines and bis-indoles. Acta Pharm. Sin. B, 2012, 2, 32-41.
[http://dx.doi.org/10.1016/j.apsb.2011.12.009]
[36]
Romeo, R.; Navarra, M.; Giofrè, S.V.; Carnovale, C.; Cirmi, S.; Lanza, G.; Chiacchio, M.A. Synthesis and biological activity of new arenediyne-linked isoxazolidines. Bioorg. Med. Chem., 2014, 22(13), 3379-3385.
[http://dx.doi.org/10.1016/j.bmc.2014.04.047] [PMID: 24835789]
[37]
Khazir, J.; Singh, P.P.; Reddy, D.M.; Hyder, I.; Shafi, S.; Sawant, S.D.; Chashoo, G.; Mahajan, A.; Alam, M.S.; Saxena, A.K.; Arvinda, S.; Gupta, B.D.; Kumar, H.M.S. Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin. Eur. J. Med. Chem., 2013, 63, 279-289.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.003] [PMID: 23501113]
[38]
Fennell, K.A.; Möllmann, U.; Miller, M.J. Syntheses and biological activity of amamistatin B and analogs. J. Org. Chem., 2008, 73(3), 1018-1024.
[http://dx.doi.org/10.1021/jo7020532] [PMID: 18173285]
[39]
Wu, C.; Miller, P.A.; Miller, M.J. Syntheses and studies of amamistatin B analogs reveals that anticancer activity is relatively independent of stereochemistry, ester or amide linkage and select replacement of one of the metal chelating groups. Bioorg. Med. Chem. Lett., 2011, 21(9), 2611-2615.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.084] [PMID: 21315591]
[40]
Shaw, A.Y.; Henderson, M.C.; Flynn, G.; Samulitis, B.; Han, H.; Stratton, S.P.; Chow, H.H.S.; Hurley, L.H.; Dorr, R.T. Characterization of novel diaryl oxazole-based compounds as potential agents to treat pancreatic cancer. J. Pharmacol. Exp. Ther., 2009, 331(2), 636-647.
[http://dx.doi.org/10.1124/jpet.109.156406] [PMID: 19657049]
[41]
Liu, X.H.; Lv, P.C.; Xue, J.Y.; Song, B.A.; Zhu, H.L. Novel 2,4,5-trisubstituted oxazole derivatives: synthesis and antiproliferative activity. Eur. J. Med. Chem., 2009, 44(10), 3930-3935.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.019] [PMID: 19423198]
[42]
Zhang, J.; Polishchuk, E.A.; Chen, J.; Ciufolini, M.A. Development of an oxazole conjunctive reagent and application to the total synthesis of siphonazoles. J. Org. Chem., 2009, 74(23), 9140-9151.
[http://dx.doi.org/10.1021/jo9018705] [PMID: 19950882]
[43]
Kumar, D.; Kumar, N.M.; Sundaree, S.; Johnson, E.O.; Shah, K. An expeditious synthesis and anticancer activity of novel 4-(3′-indolyl)oxazoles. Eur. J. Med. Chem., 2010, 45(3), 1244-1249.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.024] [PMID: 20047778]
[44]
Deng, Z.T.; Feng, T.; Wang, P.; Qi, X.; Chen, X.H.; Li, Y.X.; Song, C.L.; Geng, M.Y.; Li, J. Effects of the novel vascular targeting agent MDS-11P on tumor vascularity and its antitumor activity. Biochem. Pharmacol., 2011, 82(12), 1832-1842.
[http://dx.doi.org/10.1016/j.bcp.2011.08.024] [PMID: 21920350]
[45]
Martín-Cantalejo, Y.; Sáez, B.; Monterde, M.I.; Murillo, M.T.; Braña, M.F. Synthesis and biological activity of new bispyridinium salts of 4,4′-bispyridyl-5,5′-perfluoroalkyl-2,2′-bisoxazoles. Eur. J. Med. Chem., 2011, 46(11), 5662-5667.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.046] [PMID: 21996467]
[46]
Dulla, B.; Kirla, K.T.; Rathore, V.; Deora, G.S.; Kavela, S.; Maddika, S.; Chatti, K.; Reiser, O.; Iqbal, J.; Pal, M. Synthesis and evaluation of 3-amino/guanidine substituted phenyl oxazoles as a novel class of LSD1 inhibitors with anti-proliferative properties. Org. Biomol. Chem., 2013, 11(19), 3103-3107.
[http://dx.doi.org/10.1039/c3ob40217g] [PMID: 23575971]
[47]
Naud, S.; Westwood, I.M.; Faisal, A.; Sheldrake, P.; Bavetsias, V.; Atrash, B.; Cheung, K.M.J.; Liu, M.; Hayes, A.; Schmitt, J.; Wood, A.; Choi, V.; Boxall, K.; Mak, G.; Gurden, M.; Valenti, M.; de Haven Brandon, A.; Henley, A.; Baker, R.; McAndrew, C.; Matijssen, B.; Burke, R.; Hoelder, S.; Eccles, S.A.; Raynaud, F.I.; Linardopoulos, S.; van Montfort, R.L.M.; Blagg, J. Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J. Med. Chem., 2013, 56(24), 10045-10065.
[http://dx.doi.org/10.1021/jm401395s] [PMID: 24256217]
[48]
Colabufo, N.A.; Contino, M.; Cantore, M.; Capparelli, E.; Perrone, M.G.; Cassano, G.; Gasparre, G.; Leopoldo, M.; Berardi, F.; Perrone, R. Naphthalenyl derivatives for hitting P-gp/MRP1/BCRP transporters. Bioorg. Med. Chem., 2013, 21(5), 1324-1332.
[http://dx.doi.org/10.1016/j.bmc.2012.12.021] [PMID: 23347803]
[49]
Choi, M.J.; No, E.S.; Thorat, D.A.; Jang, J.W.; Yang, H.; Lee, J.; Choo, H.; Kim, S.J.; Lee, C.S.; Ko, S.Y.; Lee, J.; Nam, G.; Pae, A.N. Synthesis and biological evaluation of aryloxazole derivatives as antimitotic and vascular-disrupting agents for cancer therapy. J. Med. Chem., 2013, 56(22), 9008-9018.
[http://dx.doi.org/10.1021/jm400840p] [PMID: 24160376]
[50]
Harris, P.A.; Cheung, M.; Hunter, R.N., III; Brown, M.L.; Veal, J.M.; Nolte, R.T.; Wang, L.; Liu, W.; Crosby, R.M.; Johnson, J.H.; Epperly, A.H.; Kumar, R.; Luttrell, D.K.; Stafford, J.A. Discovery and evaluation of 2-anilino-5-aryloxazoles as a novel class of VEGFR2 kinase inhibitors. J. Med. Chem., 2005, 48(5), 1610-1619.
[http://dx.doi.org/10.1021/jm049538w] [PMID: 15743202]
[51]
Lintnerová, L.; García-Caballero, M.; Gregáň, F.; Melicherčík, M.; Quesada, A.R.; Dobiaš, J.; Lác, J.; Sališová, M.; Boháč, A. A development of chimeric VEGFR2 TK inhibitor based on two ligand conformers from PDB: 1Y6A complex--medicinal chemistry consequences of a TKs analysis. Eur. J. Med. Chem., 2014, 72, 146-159.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.023] [PMID: 24368209]
[52]
Fuwa, H.; Noguchi, T.; Kawakami, M.; Sasaki, M. Synthesis and biological evaluation of (+)-neopeltolide analogues: importance of the oxazole-containing side chain. Bioorg. Med. Chem. Lett., 2014, 24(11), 2415-2419.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.031] [PMID: 24792465]
[53]
Zhu, H.Y.; Desai, J.; Deng, Y.; Cooper, A.; Wang, J.; Shipps, J.; Samatar, A.; Carr, D.; Windsor, W. Discovery of hydroxyaniline amides as selective Extracellular Regulated Kinase (Erk) inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(7), 1627-1629.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.049] [PMID: 25716905]
[54]
Wang, L.; Mei, X.; Wang, C.; Zhu, W. Biomimetic semi-synthesis of fradcarbazole A and its analogues. Tetrahedron, 2015, 71, 7990-7997.
[http://dx.doi.org/10.1016/j.tet.2015.08.065]
[55]
Hernández, D.; Altuna, M.; Cuevas, C.; Aligué, R.; Albericio, F.; Álvarez, M. Synthesis and antitumor activity of mechercharmycin A analogues. J. Med. Chem., 2008, 51(18), 5722-5730.
[http://dx.doi.org/10.1021/jm800513w] [PMID: 18763756]
[56]
Satyanarayana, M.; Kim, Y.A.; Rzuczek, S.G.; Pilch, D.S.; Liu, A.A.; Liu, L.F.; Rice, J.E.; LaVoie, E.J. Macrocyclic hexaoxazoles: Influence of aminoalkyl substituents on RNA and DNA G-quadruplex stabilization and cytotoxicity. Bioorg. Med. Chem. Lett., 2010, 20(10), 3150-3154.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.086] [PMID: 20409709]
[57]
Rzuczek, S.G.; Pilch, D.S.; Liu, A.; Liu, L.; LaVoie, E.J.; Rice, J.E. Macrocyclic pyridyl polyoxazoles: selective RNA and DNA G-quadruplex ligands as antitumor agents. J. Med. Chem., 2010, 53(9), 3632-3644.
[http://dx.doi.org/10.1021/jm1000612] [PMID: 20359224]
[58]
Blankson, G.A.; Pilch, D.S.; Liu, A.A.; Liu, L.F.; Rice, J.E.; LaVoie, E.J. Macrocyclic biphenyl tetraoxazoles: synthesis, evaluation as G-quadruplex stabilizers and cytotoxic activity. Bioorg. Med. Chem., 2013, 21(15), 4511-4520.
[http://dx.doi.org/10.1016/j.bmc.2013.05.033] [PMID: 23787291]
[59]
Kita, M.; Oka, H.; Usui, A.; Ishitsuka, T.; Mogi, Y.; Watanabe, H.; Kigoshi, H. Synthesis and biological activities of the tris-oxazole macrolactone analogs of mycalolides. Tetrahedron, 2012, 68, 8753-8760.
[http://dx.doi.org/10.1016/j.tet.2012.08.012]
[60]
Guerra-Bubb, J.M.; Bowers, A.A.; Smith, W.B.; Paranal, R.; Estiu, G.; Wiest, O.; Bradner, J.E.; Williams, R.M. Synthesis and HDAC inhibitory activity of isosteric thiazoline-oxazole largazole analogs. Bioorg. Med. Chem. Lett., 2013, 23(21), 6025-6028.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.012] [PMID: 24035339]
[61]
Bae, S.Y.; Kim, G.D.; Jeon, J.E.; Shin, J.; Lee, S.K. Anti-proliferative effect of (19Z)-halichondramide, a novel marine macrolide isolated from the sponge Chondrosia corticata, is associated with G2/M cell cycle arrest and suppression of mTOR signaling in human lung cancer cells. Toxicol. In Vitro, 2013, 27(2), 694-699.
[http://dx.doi.org/10.1016/j.tiv.2012.11.001] [PMID: 23147639]
[62]
Speed, A.W.H.; Mann, T.J.; O’Brien, R.V.; Schrock, R.R.; Hoveyda, A.H. Catalytic Z-selective cross-metathesis in complex molecule synthesis: a convergent stereoselective route to disorazole C1. J. Am. Chem. Soc., 2014, 136(46), 16136-16139.
[http://dx.doi.org/10.1021/ja509973r] [PMID: 25379808]
[63]
Yadav, P.N.; Beveridge, R.E.; Blay, J.; Boyd, A.R.; Chojnacka, M.W.; Decken, A.; Deshpande, A.A.; Gardiner, M.G.; Hambley, T.W.; Hughes, M.J.; Jolly, L.; Lavangie, J.A.; MacInnis, T.D.; McFarland, S.A.; New, E.J.; Gossage, R.A. Platinum-oxazoline complexes as anti-cancer agents: syntheses, characterization and initial biological studies. MedChemComm, 2011, 2, 274-277.
[http://dx.doi.org/10.1039/c0md00211a]
[64]
Bjedov, S.; Jakimov, D.; Pilipović, A.; Poša, M.; Sakač, M. Antitumor activity of newly synthesized oxo and ethylidene derivatives of bile acids and their amides and oxazolines. Steroids, 2017, 120, 19-25.
[http://dx.doi.org/10.1016/j.steroids.2017.01.008] [PMID: 28192128]
[65]
Li, Q.; Woods, K.W.; Claiborne, A.; Gwaltney, S.L., II; Barr, K.J.; Liu, G.; Gehrke, L.; Credo, R.B.; Hui, Y.H.; Lee, J.; Warner, R.B.; Kovar, P.; Nukkala, M.A.; Zielinski, N.A.; Tahir, S.K.; Fitzgerald, M.; Kim, K.H.; Marsh, K.; Frost, D.; Ng, S-C.; Rosenberg, S.; Sham, H.L. Synthesis and biological evaluation of 2-indolyloxazolines as a new class of tubulin polymerization inhibitors. Discovery of A-289099 as an orally active antitumor agent. Bioorg. Med. Chem. Lett., 2002, 12(3), 465-469.
[http://dx.doi.org/10.1016/S0960-894X(01)00759-4] [PMID: 11814821]
[66]
Pinto, M.C.X.; Dias, D.F.; Del Puerto, H.L.; Martins, A.S.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Badet, B.; Durand, P.; Alves, R.J.; Souza-Fagundes, E.M. Discovery of cytotoxic and pro-apoptotic compounds against leukemia cells: Tert-butyl-4-[(3-nitrophenoxy) methyl]-2,2-dimethyloxazolidine-3-carboxylate. Life Sci., 2011, 89(21-22), 786-794.
[http://dx.doi.org/10.1016/j.lfs.2011.09.012] [PMID: 21983296]
[67]
Rodrigues, F.A.R. Bomfim, Ida.S.; Cavalcanti, B.C.; Pessoa, C.; Goncalves, R.S.; Wardell, J.L.; Wardell, S.M.; de Souza, M.V. Mefloquine-oxazolidine derivatives: a new class of anticancer agents. Chem. Biol. Drug Des., 2014, 83(1), 126-131.
[http://dx.doi.org/10.1111/cbdd.12210] [PMID: 23961998]
[68]
Andrade, S.F.; Teixeira, C.S.; Ramos, J.P.; Lopes, M.S.; Pádua, R.M.; Oliveira, M.C.; Souza-Fagundes, E.M.; Alves, R.J. Synthesis of a novel series of 2,3,4-trisubstituted oxazolidines designed by isosteric replacement or rigidification of the structure and cytotoxic evaluation. MedChemComm, 2014, 5, 1693-1699.
[http://dx.doi.org/10.1039/C4MD00136B]
[69]
Singh, A.; Ha, H.J.; Park, J.; Kim, J.H.; Lee, W.K. 3,4-Disubstituted oxazolidin-2-ones as constrained ceramide analogs with anticancer activities. Bioorg. Med. Chem., 2011, 19(21), 6174-6181.
[http://dx.doi.org/10.1016/j.bmc.2011.09.022] [PMID: 21978949]
[70]
Lin, J.; Shen, W.; Xue, J.; Sun, J.; Zhang, X.; Zhang, C. Novel oxazolo[4,5-g]quinazolin-2(1H)-ones: dual inhibitors of EGFR and Src protein tyrosine kinases. Eur. J. Med. Chem., 2012, 55, 39-48.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.055] [PMID: 22818848]
[71]
Harada, K.; Kubo, H.; Tanaka, A.; Nishioka, K. Identification of oxazolidinediones and thiazolidinediones as potent 17β-hydroxysteroid dehydrogenase type 3 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(1), 504-507.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.095] [PMID: 22137341]
[72]
Savariz, F.C.; Foglio, M.A.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Duarte, M.C.T.; da Rosa, M.F.; Meyer, E.; Sarragiotto, M.H. Synthesis and evaluation of new β-carboline-3-(4-benzylidene)-4H-oxazol-5-one derivatives as antitumor agents. Molecules, 2012, 17(5), 6100-6113.
[http://dx.doi.org/10.3390/molecules17056100] [PMID: 22614863]
[73]
Bregman, H.; Chakka, N.; Guzman-Perez, A.; Gunaydin, H.; Gu, Y.; Huang, X.; Berry, V.; Liu, J.; Teffera, Y.; Huang, L.; Egge, B.; Mullady, E.L.; Schneider, S.; Andrews, P.S.; Mishra, A.; Newcomb, J.; Serafino, R.; Strathdee, C.A.; Turci, S.M.; Wilson, C.; DiMauro, E.F. Discovery of novel, induced-pocket binding oxazolidinones as potent, selective, and orally bioavailable tankyrase inhibitors. J. Med. Chem., 2013, 56(11), 4320-4342.
[http://dx.doi.org/10.1021/jm4000038] [PMID: 23701517]
[74]
Huang, H.; Guzman-Perez, A.; Acquaviva, L.; Berry, V.; Bregman, H.; Dovey, J.; Gunaydin, H.; Huang, X.; Huang, L.; Saffran, D.; Serafino, R.; Schneider, S.; Wilson, C.; DiMauro, E.F. Structure-based design of 2-aminopyridine oxazolidinones as potent and selective tankyrase inhibitors. ACS Med. Chem. Lett., 2013, 4(12), 1218-1223.
[http://dx.doi.org/10.1021/ml4003315] [PMID: 24900633]
[75]
Sarkar, A.; Bhattacharyya, S.; Karmakar, S.K.D.S.; Mukherjee, A. Structure and properties of metal complexes of a pyridine based oxazolidinone synthesized by atmospheric CO2 fixation. New J. Chem., 2014, 38, 817-826.
[http://dx.doi.org/10.1039/C3NJ00990D]
[76]
Naresh, A.; Venkateswara Rao, M.; Kotapalli, S.S.; Ummanni, R.; Venkateswara Rao, B. Oxazolidinone derivatives: cytoxazone-linezolid hybrids induces apoptosis and senescence in DU145 prostate cancer cells. Eur. J. Med. Chem., 2014, 80, 295-307.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.062] [PMID: 24793880]
[77]
Shin, D-S.; Masciocchi, D.; Gelain, A.; Villa, S.; Barlocco, D.; Meneghetti, F.; Pedretti, A.; Han, Y-M.; Han, D.C.; Han, M.Y.; Kwon, B-M.; Legnani, L.; Toma, L. Synthesis, modeling, and crystallographic study of 3,4-disubstituted-1,2,5-oxadiazoles and evaluation of their ability to decrease STAT3 activity. MedChemComm, 2010, 1(2), 156-164.
[http://dx.doi.org/10.1039/c0md00057d]
[78]
Masciocchi, D.; Gelain, A.; Porta, F.; Meneghetti, F.; Pedretti, A.; Celentano, G.; Barlocco, D.; Legnani, L.; Toma, L.; Kwon, B-M.; Asai, A.; Villa, S. Synthesis, structure-activity relationships and stereochemical investigations of new tricyclic pyridazinone derivatives as potential STAT3 inhibitors. MedChemComm, 2013, 4(8), 1181-1188.
[http://dx.doi.org/10.1039/c3md00095h]
[79]
Piperno, A.; Rescifina, A.; Corsaro, A.; Chiacchio, M.A.; Procopio, A.; Romeo, R. A novel class of modified nucleosides: Synthesis of alkylidene isoxazolidinyl nucleosides containing thymine. Eur. J. Org. Chem., 2007, 2007(9), 1517-1521.
[http://dx.doi.org/10.1002/ejoc.200600817]
[80]
Romeo, R.; Giofrè, S.V.; Iaria, D.; Sciortino, M.T.; Ronsisvalle, S.; Chiacchio, M.A.; Scala, A. Synthesis of 5-alkynyl isoxazolidinyl nucleosides. Eur. J. Org. Chem., 2011, 2011(28), 5690-5695.
[http://dx.doi.org/10.1002/ejoc.201100767]
[81]
Iannazzo, D.; Brunaccini, E.; Giofrè, S.V.; Piperno, A.; Romeo, G.; Ronsisvalle, S.; Chiacchio, M.A.; Lanza, G.; Chiacchio, U. Competitive formation of β-enaminones and 3-amino-2(5H)-furanones from the isoxazolidine system: A combined synthetic and quantum chemical study. Eur. J. Org. Chem., 2010, 2010(30), 5897-5905.
[http://dx.doi.org/10.1002/ejoc.201000579]
[82]
Casu, F.; Chiacchio, M.A.; Romeo, R.; Gumina, G. Chiral synthesis of carbocyclic nucleoside analogs from non-carbohydrate precursors. Curr. Org. Chem., 2007, 11(11), 999-1016.
[http://dx.doi.org/10.2174/138527207781058772]
[83]
Toma, L.; Legnani, L.; Rencurosi, A.; Poletti, L.; Lay, L.; Russo, G. Modeling of synthetic phosphono and carba analogues of N-acetyl-α-D-mannosamine 1-phosphate, the repeating unit of the capsular polysaccharide from Neisseria meningitidis serovar A. Org. Biomol. Chem., 2009, 7(18), 3734-3740.
[http://dx.doi.org/10.1039/b907000a] [PMID: 19707677]
[84]
Corsaro, A.; Chiacchio, M.A.; Pistarà, V. Regeneration of carbonyl compounds from the corresponding oximes: An update until to 2008. Curr. Org. Chem., 2009, 13(5), 482-501.
[http://dx.doi.org/10.2174/138527209787582259]
[85]
Corsaro, A.; Pistarà, V.; Catelani, G.; D’Andrea, F.; Adamo, R.; Chiacchio, M.A. A new method for the synthesis of carba-sugar enones (gabosines) using a mercury(II)-mediated opening of 4,5-cyclopropanated pyranosides as the key-step. Tetrahedron Lett., 2006, 47, 6591-6594.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.023]
[86]
Bianco, A.; Chiacchio, M.A.; Grassi, G.; Iannazzo, D.; Piperno, A.; Romeo, R. Phenolic components of Olea europea: Isolation of new tyrosol and hydroxytyrosol derivatives. Food Chem., 2006, 95(4), 562-565.
[http://dx.doi.org/10.1016/j.foodchem.2004.12.033]
[87]
Rescifina, A.; Zagni, C.; Iannazzo, D.; Merino, P. Recent developments on rotaxane–based shuttles. Curr. Org. Chem., 2009, 13, 448-481.
[http://dx.doi.org/10.2174/138527209787582222]
[88]
Legnani, L.; Toma, L.; Caramella, P.; Chiacchio, M.A.; Giofrè, S.; Delso, I.; Tejero, T.; Merino, P. Computational mechanistic study of thionation of carbonyl compounds with lawesson’s reagent. J. Org. Chem., 2016, 81(17), 7733-7740.
[http://dx.doi.org/10.1021/acs.joc.6b01420] [PMID: 27459366]
[89]
Iannazzo, D.; Pistone, A.; Ziccarelli, I.; Espro, C.; Galvagno, S.; Giofré, S.V.; Romeo, R.; Cicero, N.; Bua, G.D.; Lanza, G.; Legnani, L.; Chiacchio, M.A. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes. Environ. Sci. Pollut. Res. Int., 2017, 24(17), 14735-14747.
[http://dx.doi.org/10.1007/s11356-017-9086-2] [PMID: 28470495]
[90]
Legnani, L.; Porta, A.; Caramella, P.; Toma, L.; Zanoni, G.; Vidari, G. Computational mechanistic study of the Julia-Kocieński reaction. J. Org. Chem., 2015, 80(6), 3092-3100.
[http://dx.doi.org/10.1021/acs.joc.5b00008] [PMID: 25685875]
[91]
Chiacchio, M.A.; Legnani, L.; Caramella, P.; Tejero, T.; Merino, P. Pivotal neighbouring group participation in substitution vs elimination reactions: computational evidence for ion pairs in the thionation of alcohols with lawesson’s reagent. Eur. J. Org. Chem., 2017, 2017(14), 1952-1960.
[http://dx.doi.org/10.1002/ejoc.201700127]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy