Review Article

Cubilin,内在因素-维生素B12受体在发育和疾病

卷 27, 期 19, 2020

页: [3123 - 3150] 页: 28

弟呕挨: 10.2174/0929867325666181008143945

价格: $65

摘要

Gp280/内在因子-维生素B12受体/ CUBN是一种大的内吞性受体,在维生素B12稳态、蛋白质或毒性物质(包括白蛋白、维生素d结合蛋白或镉)的肾重吸收中发挥多种作用。Cubilin是由8个表皮生长因子(EGF)样重复和27个CUB(定义为补体C1r/C1s, Uegf, BMP1)结构域组成的外周膜蛋白。这种结构独特的蛋白质至少与两种分子伙伴相互作用,无羊膜(AMN)和Lrp2/Megalin。AMN参与了Cubilin的质膜转运,而Lrp2对Cubilin及其配体的有效内化至关重要。从Cubn缺乏或人类疾病的动物模型中收集的观察结果表明了该蛋白的重要性。本文综述了近年来有关铜胆素及其在肾和肠生物学中的应用,并对基础研究和医学工作者进行了综述。我们还讨论了Cubilin在胚胎发育过程中作为Fgf8信号调节因子的作用,并提出Cubilin-Fgf8相互作用可能与人类病理相关,包括癌症进展、心脏或神经管缺陷。最后,我们提供了一些实验元素,提示Cubilin生理学的某些方面可能与药物设计有关。

关键词: 维生素B12

[1]
Müller, D.; Nykjaer, A.; Willnow, T.E. From holoprosencephaly to osteopathology: role of multifunctional endocytic receptors in absorptive epithelia. Ann. Med., 2003, 35(5), 290-299.
[http://dx.doi.org/10.1080/07853890310006488] [PMID: 12952015]
[2]
Argraves, W.S.; Morales, C.R. Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct. Mol. Reprod. Dev., 2004, 69(4), 419-427.
[http://dx.doi.org/10.1002/mrd.20174] [PMID: 15457546]
[3]
Sahali, D.; Mulliez, N.; Chatelet, F.; Dupuis, R.; Ronco, P.; Verroust, P. Characterization of a 280-kD protein restricted to the coated pits of the renal brush border and the epithelial cells of the yolk sac. Teratogenic effect of the specific monoclonal antibodies. J. Exp. Med., 1988, 167(1), 213-218.
[http://dx.doi.org/10.1084/jem.167.1.213] [PMID: 2891781]
[4]
Assémat, E.; Châtelet, F.; Chandellier, J.; Commo, F.; Cases, O.; Verroust, P.; Kozyraki, R. Overlapping expression patterns of the multiligand endocytic receptors cubilin and megalin in the CNS, sensory organs and developing epithelia of the rodent embryo. Gene Expr. Patterns, 2005, 6(1), 69-78.
[http://dx.doi.org/10.1016/j.modgep.2005.04.014] [PMID: 16027047]
[5]
Cases, O.; Perea-Gomez, A.; Aguiar, D.P.; Nykjaer, A.; Amsellem, S.; Chandellier, J.; Umbhauer, M.; Cereghini, S.; Madsen, M.; Collignon, J.; Verroust, P.; Riou, J.F.; Creuzet, S.E.; Kozyraki, R. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head. J. Biol. Chem., 2013, 288(23), 16655-16670.
[http://dx.doi.org/10.1074/jbc.M113.451070] [PMID: 23592779]
[6]
Willnow, T.E.; Christ, A. Endocytic receptor LRP2/megalin-of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch., 2017, 469(7-8), 907-916.
[http://dx.doi.org/10.1007/s00424-017-1992-0] [PMID: 28497274]
[7]
Tauris, J.; Christensen, E.I.; Nykjaer, A.; Jacobsen, C.; Petersen, C.M.; Ovesen, T. Cubilin and megalin co-localize in the neonatal inner ear. Audiol. Neurotol., 2009, 14(4), 267-278.
[http://dx.doi.org/10.1159/000199446] [PMID: 19202329]
[8]
Verroust, P.J. Pathophysiology of cubilin: of rats, dogs and men. Nephrol. Dial. Transplant., 2002, 17(Suppl. 9), 55-56.
[http://dx.doi.org/10.1093/ndt/17.suppl_9.55] [PMID: 12386289]
[9]
Erranz, B.; Miquel, J.F.; Argraves, W.S.; Barth, J.L.; Pimentel, F.; Marzolo, M.P. Megalin and cubilin expression in gallbladder epithelium and regulation by bile acids. J. Lipid Res., 2004, 45(12), 2185-2198.
[http://dx.doi.org/10.1194/jlr.M400235-JLR200] [PMID: 15375181]
[10]
Tsaroucha, A.K.; Chatzaki, E.; Lambropoulou, M.; Despoudi, K.; Laftsidis, P.; Charsou, C.; Polychronidis, A.; Papadopoulos, N.; Simopoulos, C.E. Megalin and cubilin in the human gallbladder epithelium. Clin. Exp. Med., 2008, 8(3), 165-170.
[http://dx.doi.org/10.1007/s10238-008-0174-y] [PMID: 18791690]
[11]
Lu, X.; Elizondo, R.A.; Nielsen, R.; Christensen, E.I.; Yang, J.; Hammock, B.D.; Watsky, M.A. Vitamin D in tear fluid. Invest. Ophthalmol. Vis. Sci., 2015, 56(10), 5880-5887.
[http://dx.doi.org/10.1167/iovs.15-17177] [PMID: 26348637]
[12]
Bonnet, L.; Karkeni, E.; Couturier, C.; Astier, J.; Dalifard, J.; Defoort, C.; Svilar, L.; Martin, J.C.; Tourniaire, F.; Landrier, J.F. Gene expression pattern in response to cholecalciferol supplementation highlights cubilin as a major protein of 25(OH)D uptake in adipocytes and male mice white adipose tissue. Endocrinology, 2018, 159(2), 957-966.
[http://dx.doi.org/10.1210/en.2017-00650] [PMID: 29186386]
[13]
Wicher, G.; Aldskogius, H. Megalin deficiency induces critical changes in mouse spinal cord development. Neuroreport, 2008, 19(5), 559-563.
[http://dx.doi.org/10.1097/WNR.0b013e3282f94267] [PMID: 18388738]
[14]
Gomes, J.R.; Nogueira, R.S.; Vieira, M.; Santos, S.D.; Ferraz-Nogueira, J.P.; Relvas, J.B.; Saraiva, M.J. Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death Differ., 2016, 23(11), 1749-1764.
[http://dx.doi.org/10.1038/cdd.2016.64] [PMID: 27518433]
[15]
Bartolome, F.; Antequera, D.; Tavares, E.; Pascual, C.; Maldonado, R.; Camins, A.; Carro, E. Obesity and neuroinflammatory phenotype in mice lacking endothelial megalin. J. Neuroinflammation, 2017, 14(1), 26.
[http://dx.doi.org/10.1186/s12974-017-0800-2] [PMID: 28143489]
[16]
Wang, X.; Bornslaeger, E.A.; Haub, O.; Tomihara-Newberger, C.; Lonberg, N.; Dinulos, M.B.; Disteche, C.M.; Copeland, N.; Gilbert, D.J.; Jenkins, N.A.; Lacy, E. A candidate gene for the amnionless gastrulation stage mouse mutation encodes a TRAF-related protein. Dev. Biol., 1996, 177(1), 274-290.
[http://dx.doi.org/10.1006/dbio.1996.0162] [PMID: 8660894]
[17]
Tanner, S.M.; Aminoff, M.; Wright, F.A.; Liyanarachchi, S.; Kuronen, M.; Saarinen, A.; Massika, O.; Mandel, H.; Broch, H.; de la Chapelle, A. Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat. Genet., 2003, 33(3), 426-429.
[http://dx.doi.org/10.1038/ng1098] [PMID: 12590260]
[18]
Ramanujam, K.S.; Seetharam, S.; Seetharam, B. Regulated expression of intrinsic factor-cobalamin receptor by rat visceral yolk sac and placental membranes. Biochim. Biophys. Acta, 1993, 1146(2), 243-246.
[http://dx.doi.org/10.1016/0005-2736(93)90362-4] [PMID: 8384000]
[19]
Oh, Y.S.; Seo, J.T.; Ahn, H.S.; Gye, M.C. Expression of cubilin in mouse testes and Leydig cells. Andrologia, 2016, 48(3), 325-332.
[http://dx.doi.org/10.1111/and.12450] [PMID: 26148765]
[20]
Strope, S.; Rivi, R.; Metzger, T.; Manova, K.; Lacy, E. Mouse amnionless, which is required for primitive streak assembly, mediates cell-surface localization and endocytic function of cubilin on visceral endoderm and kidney proximal tubules. Development, 2004, 131(19), 4787-4795.
[http://dx.doi.org/10.1242/dev.01341] [PMID: 15342463]
[21]
Kozyraki, R.; Cases, O. Vitamin B12 absorption: mammalian physiology and acquired and inherited disorders. Biochimie, 2013, 95(5), 1002-1007.
[http://dx.doi.org/10.1016/j.biochi.2012.11.004] [PMID: 23178706]
[22]
Zhang, F.; Zhao, Y.; Chao, Y.; Muir, K.; Han, Z. Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes. J. Am. Soc. Nephrol., 2013, 24(2), 209-216.
[http://dx.doi.org/10.1681/ASN.2012080795] [PMID: 23264686]
[23]
Moestrup, S.K.; Kozyraki, R.; Kristiansen, M.; Kaysen, J.H.; Rasmussen, H.H.; Brault, D.; Pontillon, F.; Goda, F.O.; Christensen, E.I.; Hammond, T.G.; Verroust, P.J. The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. J. Biol. Chem., 1998, 273(9), 5235-5242.
[http://dx.doi.org/10.1074/jbc.273.9.5235] [PMID: 9478979]
[24]
Kozyraki, R.; Kristiansen, M.; Silahtaroglu, A.; Hansen, C.; Jacobsen, C.; Tommerup, N.; Verroust, P.J.; Moestrup, S.K. The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region. Blood, 1998, 91(10), 3593-3600.
[http://dx.doi.org/10.1182/blood.V91.10.3593] [PMID: 9572993]
[25]
Mahmood, A.; Shao, J.S.; Alpers, D.H. Rat enterocytes secrete SLPs containing alkaline phosphatase and cubilin in response to corn oil feeding. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(2), G433-G441.
[http://dx.doi.org/10.1152/ajpgi.00466.2002] [PMID: 12660142]
[26]
Saraswat, M.; Joenväära, S.; Musante, L.; Peltoniemi, H.; Holthofer, H.; Renkonen, R. N-linked (N-) glycoproteomics of urinary exosomes. Mol. Cell. Proteomics, 2015, 14(8), 2298.
[http://dx.doi.org/10.1074/mcp.A114.040345] [PMID: 26232421]
[27]
Coudroy, G.; Gburek, J.; Kozyraki, R.; Madsen, M.; Trugnan, G.; Moestrup, S.K.; Verroust, P.J.; Maurice, M. Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-amnionless complex. J. Am. Soc. Nephrol., 2005, 16(8), 2330-2337.
[http://dx.doi.org/10.1681/ASN.2004110925] [PMID: 15976000]
[28]
Kristiansen, M.; Kozyraki, R.; Jacobsen, C.; Nexø, E.; Verroust, P.J.; Moestrup, S.K. Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. J. Biol. Chem., 1999, 274(29), 20540-20544.
[http://dx.doi.org/10.1074/jbc.274.29.20540] [PMID: 10400683]
[29]
Andersen, C.B.F.; Madsen, M.; Storm, T.; Moestrup, S.K.; Andersen, G.R. Structural basis for receptor recognition of vitamin-B(12)-intrinsic factor complexes. Nature, 2010, 464(7287), 445-448.
[http://dx.doi.org/10.1038/nature08874] [PMID: 20237569]
[30]
Yammani, R.R.; Seetharam, S.; Seetharam, B. Identification and characterization of two distinct ligand binding regions of cubilin. J. Biol. Chem., 2001, 276(48), 44777-44784.
[http://dx.doi.org/10.1074/jbc.M106419200] [PMID: 11581259]
[31]
Jensen, D.; Kierulf-Lassen, C.; Kristensen, M.L.V.; Nørregaard, R.; Weyer, K.; Nielsen, R.; Christensen, E.I.; Birn, H. Megalin dependent urinary cystatin C excretion in ischemic kidney injury in rats. PLoS One, 2017, 12(6) e0178796
[http://dx.doi.org/10.1371/journal.pone.0178796] [PMID: 28575050]
[32]
Tomihara-Newberger, C.; Haub, O.; Lee, H.G.; Soares, V.; Manova, K.; Lacy, E. The AMN gene product is required in extraembryonic tissues for the generation of middle primitive streak derivatives. Dev. Biol., 1998, 204(1), 34-54.
[http://dx.doi.org/10.1006/dbio.1998.9034] [PMID: 9851841]
[33]
Kalantry, S.; Manning, S.; Haub, O.; Tomihara-Newberger, C.; Lee, H.G.; Fangman, J.; Disteche, C.M.; Manova, K.; Lacy, E. The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat. Genet., 2001, 27(4), 412-416.
[http://dx.doi.org/10.1038/86912] [PMID: 11279523]
[34]
Fyfe, J.C.; Madsen, M.; Højrup, P.; Christensen, E.I.; Tanner, S.M.; de la Chapelle, A.; He, Q.; Moestrup, S.K. The functional cobalamin (vitamin B12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood, 2004, 103(5), 1573-1579.
[http://dx.doi.org/10.1182/blood-2003-08-2852] [PMID: 14576052]
[35]
Pedersen, G.A.; Chakraborty, S.; Steinhauser, A.L.; Traub, L.M.; Madsen, M. AMN directs endocytosis of the intrinsic factor-vitamin B(12) receptor cubam by engaging ARH or Dab2. Traffic, 2010, 11(5), 706-720.
[http://dx.doi.org/10.1111/j.1600-0854.2010.01042.x] [PMID: 20088845]
[36]
Zeng, B.; Chen, G-L.; Garcia-Vaz, E.; Bhandari, S.; Daskoulidou, N.; Berglund, L.M.; Jiang, H.; Hallett, T.; Zhou, L.P.; Huang, L.; Xu, Z.H.; Nair, V.; Nelson, R.G.; Ju, W.; Kretzler, M.; Atkin, S.L.; Gomez, M.F.; Xu, S.Z. ORAI channels are critical for receptor-mediated endocytosis of albumin. Nat. Commun., 2017, 8(1), 1920.
[http://dx.doi.org/10.1038/s41467-017-02094-y] [PMID: 29203863]
[37]
Kerjaschki, D.; Farquhar, M.G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc. Natl. Acad. Sci. USA, 1982, 79(18), 5557-5561.
[http://dx.doi.org/10.1073/pnas.79.18.5557] [PMID: 6752952]
[38]
Kantarci, S.; Al-Gazali, L.; Hill, R.S.; Donnai, D.; Black, G.C.M.; Bieth, E.; Chassaing, N.; Lacombe, D.; Devriendt, K.; Teebi, A.; Loscertales, M.; Robson, C.; Liu, T.; MacLaughlin, D.T.; Noonan, K.M.; Russell, M.K.; Walsh, C.A.; Donahoe, P.K.; Pober, B.R. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat. Genet., 2007, 39(8), 957-959.
[http://dx.doi.org/10.1038/ng2063] [PMID: 17632512]
[39]
Nagai, M.; Meerloo, T.; Takeda, T.; Farquhar, M.G. The adaptor protein ARH escorts megalin to and through endosomes. Mol. Biol. Cell, 2003, 14(12), 4984-4996.
[http://dx.doi.org/10.1091/mbc.e03-06-0385] [PMID: 14528014]
[40]
Oleinikov, A.V.; Zhao, J.; Makker, S.P. Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin. Biochem. J., 2000, 347(Pt 3), 613-621.
[http://dx.doi.org/10.1042/bj3470613] [PMID: 10769163]
[41]
Ahuja, R.; Yammani, R.; Bauer, J.A.; Kalra, S.; Seetharam, S.; Seetharam, B. Interactions of cubilin with megalin and the product of the amnionless gene (AMN): effect on its stability. Biochem. J., 2008, 410(2), 301-308.
[http://dx.doi.org/10.1042/BJ20070919] [PMID: 17990981]
[42]
He, Q.; Madsen, M.; Kilkenney, A.; Gregory, B.; Christensen, E.I.; Vorum, H.; Højrup, P.; Schäffer, A.A.; Kirkness, E.F.; Tanner, S.M.; de la Chapelle, A.; Giger, U.; Moestrup, S.K.; Fyfe, J.C. Amnionless function is required for cubilin brush-border expression and intrinsic factor-cobalamin (vitamin B12) absorption in vivo. Blood, 2005, 106(4), 1447-1453.
[http://dx.doi.org/10.1182/blood-2005-03-1197] [PMID: 15845892]
[43]
Amsellem, S.; Gburek, J.; Hamard, G.; Nielsen, R.; Willnow, T.E.; Devuyst, O.; Nexo, E.; Verroust, P.J.; Christensen, E.I.; Kozyraki, R. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J. Am. Soc. Nephrol., 2010, 21(11), 1859-1867.
[http://dx.doi.org/10.1681/ASN.2010050492] [PMID: 20798259]
[44]
Storm, T.; Emma, F.; Verroust, P.J.; Hertz, J.M.; Nielsen, R.; Christensen, E.I. A patient with cubilin deficiency. N. Engl. J. Med., 2011, 364(1), 89-91.
[http://dx.doi.org/10.1056/NEJMc1009804] [PMID: 21208123]
[45]
Udagawa, T.; Harita, Y.; Miura, K.; Mitsui, J.; Ode, K.L.; Morishita, S.; Urae, S.; Kanda, S.; Kajiho, Y.; Tsurumi, H.; Ueda, H.R.; Tsuji, S.; Saito, A.; Oka, A. Amnionless-mediated glycosylation is crucial for cell surface targeting of cubilin in renal and intestinal cells. Sci. Rep., 2018, 8(1), 2351.
[http://dx.doi.org/10.1038/s41598-018-20731-4] [PMID: 29402915]
[46]
Aseem, O.; Barth, J.L.; Klatt, S.C.; Smith, B.T.; Argraves, W.S. Cubilin expression is monoallelic and epigenetically augmented via PPARs. BMC Genomics, 2013, 14, 405.
[http://dx.doi.org/10.1186/1471-2164-14-405] [PMID: 23773363]
[47]
Pannérec, A.; Migliavacca, E.; De Castro, A.; Michaud, J.; Karaz, S.; Goulet, L.; Rezzi, S.; Ng, T.P.; Bosco, N.; Larbi, A.; Feige, J.N. Vitamin B12 deficiency and impaired expression of amnionless during aging. J. Cachexia Sarcopenia Muscle, 2018, 9(1), 41-52.
[http://dx.doi.org/10.1002/jcsm.12260] [PMID: 29159972]
[48]
Hollway, G.E.; Maule, J.; Gautier, P.; Evans, T.M.; Keenan, D.G.; Lohs, C.; Fischer, D.; Wicking, C.; Currie, P.D. Scube2 mediates Hedgehog signalling in the zebrafish embryo. Dev. Biol., 2006, 294(1), 104-118.
[http://dx.doi.org/10.1016/j.ydbio.2006.02.032] [PMID: 16626681]
[49]
Kozyraki, R.; Fyfe, J.; Verroust, P.J.; Jacobsen, C.; Dautry-Varsat, A.; Gburek, J.; Willnow, T.E.; Christensen, E.I.; Moestrup, S.K. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12491-12496.
[http://dx.doi.org/10.1073/pnas.211291398] [PMID: 11606717]
[50]
Nykjaer, A.; Fyfe, J.C.; Kozyraki, R.; Leheste, J.R.; Jacobsen, C.; Nielsen, M.S.; Verroust, P.J.; Aminoff, M.; de la Chapelle, A.; Moestrup, S.K.; Ray, R.; Gliemann, J.; Willnow, T.E.; Christensen, E.I. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3). Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13895-13900.
[http://dx.doi.org/10.1073/pnas.241516998] [PMID: 11717447]
[51]
Weyer, K.; Andersen, P.K.; Schmidt, K.; Mollet, G.; Antignac, C.; Birn, H.; Nielsen, R.; Christensen, E.I. Abolishment of proximal tubule albumin endocytosis does not affect plasma albumin during nephrotic syndrome in mice. Kidney Int., 2018, 93(2), 335-342.
[http://dx.doi.org/10.1016/j.kint.2017.07.024] [PMID: 29032953]
[52]
Eshbach, M.L.; Kaur, A.; Rbaibi, Y.; Tejero, J.; Weisz, O.A. Hemoglobin inhibits albumin uptake by proximal tubule cells: implications for sickle cell disease. Am. J. Physiol. Cell Physiol., 2017, 312(6), C733-C740.
[http://dx.doi.org/10.1152/ajpcell.00021.2017] [PMID: 28356267]
[53]
Kozyraki, R.; Fyfe, J.; Kristiansen, M.; Gerdes, C.; Jacobsen, C.; Cui, S.; Christensen, E.I.; Aminoff, M.; de la Chapelle, A.; Krahe, R.; Verroust, P.J.; Moestrup, S.K. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat. Med., 1999, 5(6), 656-661.
[http://dx.doi.org/10.1038/9504] [PMID: 10371504]
[54]
Hammad, S.M.; Barth, J.L.; Knaak, C.; Argraves, W.S. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J. Biol. Chem., 2000, 275(16), 12003-12008.
[http://dx.doi.org/10.1074/jbc.275.16.12003] [PMID: 10766831]
[55]
Christensen, E.I.; Verroust, P.J.; Nielsen, R. Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch., 2009, 458(6), 1039-1048.
[http://dx.doi.org/10.1007/s00424-009-0685-8] [PMID: 19499243]
[56]
Spoelgen, R.; Hammes, A.; Anzenberger, U.; Zechner, D.; Andersen, O.M.; Jerchow, B.; Willnow, T.E. LRP2/megalin is required for patterning of the ventral telencephalon. Development, 2005, 132(2), 405-414.
[http://dx.doi.org/10.1242/dev.01580] [PMID: 15623804]
[57]
Devuyst, O.; Luciani, A. Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule. J. Physiol., 2015, 593(18), 4151-4164.
[http://dx.doi.org/10.1113/JP270087] [PMID: 25820368]
[58]
Moestrup, S.K.; Verroust, P.J. Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu. Rev. Nutr., 2001, 21, 407-428.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.407] [PMID: 11375443]
[59]
Nielsen, R.; Courtoy, P.J.; Jacobsen, C.; Dom, G.; Lima, W.R.; Jadot, M.; Willnow, T.E.; Devuyst, O.; Christensen, E.I. Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc. Natl. Acad. Sci. USA, 2007, 104(13), 5407-5412.
[http://dx.doi.org/10.1073/pnas.0700330104] [PMID: 17369355]
[60]
Zhuo, J.L.; Li, X.C. Proximal nephron. Compr. Physiol., 2013, 3(3), 1079-1123.
[http://dx.doi.org/10.1002/cphy.c110061] [PMID: 23897681]
[61]
Zhuang, Z.; Marshansky, V.; Breton, S.; Brown, D. Is caveolin involved in normal proximal tubule function? Presence in model PT systems but absence in situ. Am. J. Physiol. Renal Physiol., 2011, 300(1), F199-F206.
[http://dx.doi.org/10.1152/ajprenal.00513.2010] [PMID: 20980408]
[62]
Decorti, G.; Malusà, N.; Furlan, G.; Candussio, L.; Klugmann, F.B. Endocytosis of gentamicin in a proximal tubular renal cell line. Life Sci., 1999, 65(11), 1115-1124.
[http://dx.doi.org/10.1016/S0024-3205(99)00345-8] [PMID: 10503927]
[63]
Raghavan, V.; Rbaibi, Y.; Pastor-Soler, N.M.; Carattino, M.D.; Weisz, O.A. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8506-8511.
[http://dx.doi.org/10.1073/pnas.1402195111] [PMID: 24912170]
[64]
Hatae, T.; Ichimura, T.; Ishida, T.; Sakurai, T. Apical tubular network in the rat kidney proximal tubule cells studied by thick-section and scanning electron microscopy. Cell Tissue Res., 1997, 288(2), 317-325.
[http://dx.doi.org/10.1007/s004410050817] [PMID: 9082967]
[65]
Hurtado-Lorenzo, A.; Skinner, M.; El Annan, J.; Futai, M.; Sun-Wada, G-H.; Bourgoin, S.; Casanova, J.; Wildeman, A.; Bechoua, S.; Ausiello, D.A.; Brown, D.; Marshansky, V. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol., 2006, 8(2), 124-136.
[http://dx.doi.org/10.1038/ncb1348] [PMID: 16415858]
[66]
Gekle, M.; Völker, K.; Mildenberger, S.; Freudinger, R.; Shull, G.E.; Wiemann, M. NHE3 Na+/H+ exchanger supports proximal tubular protein reabsorption in vivo. Am. J. Physiol. Renal Physiol., 2004, 287(3), F469-F473.
[http://dx.doi.org/10.1152/ajprenal.00059.2004] [PMID: 15113744]
[67]
Scheel, O.; Zdebik, A.A.; Lourdel, S.; Jentsch, T.J. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature, 2005, 436(7049), 424-427.
[http://dx.doi.org/10.1038/nature03860] [PMID: 16034422]
[68]
Reed, A.A.C.; Loh, N.Y.; Terryn, S.; Lippiat, J.D.; Partridge, C.; Galvanovskis, J.; Williams, S.E.; Jouret, F.; Wu, F.T.F.; Courtoy, P.J.; Nesbit, M.A.; Rorsman, P.; Devuyst, O.; Ashcroft, F.M.; Thakker, R.V. CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent’s disease. Am. J. Physiol. Renal Physiol., 2010, 298(2), F365-F380.
[http://dx.doi.org/10.1152/ajprenal.00038.2009] [PMID: 19940036]
[69]
Anzenberger, U.; Bit-Avragim, N.; Rohr, S.; Rudolph, F.; Dehmel, B.; Willnow, T.E.; Abdelilah-Seyfried, S. Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J. Cell Sci., 2006, 119(Pt 10), 2127-2137.
[http://dx.doi.org/10.1242/jcs.02954] [PMID: 16638803]
[70]
Grant, B.D.; Donaldson, J.G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol., 2009, 10(9), 597-608.
[http://dx.doi.org/10.1038/nrm2755] [PMID: 19696797]
[71]
Rangel-Filho, A.; Lazar, J.; Moreno, C.; Geurts, A.; Jacob, H.J. Rab38 modulates proteinuria in model of hypertension-associated renal disease. J. Am. Soc. Nephrol., 2013, 24(2), 283-292.
[http://dx.doi.org/10.1681/ASN.2012090927] [PMID: 23291471]
[72]
Hosaka, K.; Takeda, T.; Iino, N.; Hosojima, M.; Sato, H.; Kaseda, R.; Yamamoto, K.; Kobayashi, A.; Gejyo, F.; Saito, A. Megalin and nonmuscle myosin heavy chain IIA interact with the adaptor protein Disabled-2 in proximal tubule cells. Kidney Int., 2009, 75(12), 1308-1315.
[http://dx.doi.org/10.1038/ki.2009.85] [PMID: 19340093]
[73]
Maurer, M.E.; Cooper, J.A. Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein. J. Cell Sci., 2005, 118(Pt 22), 5345-5355.
[http://dx.doi.org/10.1242/jcs.02650] [PMID: 16263760]
[74]
Morris, S.M.; Tallquist, M.D.; Rock, C.O.; Cooper, J.A. Dual roles for the Dab2 adaptor protein in embryonic development and kidney transport. EMBO J., 2002, 21(7), 1555-1564.
[http://dx.doi.org/10.1093/emboj/21.7.1555] [PMID: 11927540]
[75]
Nagai, J.; Christensen, E.I.; Morris, S.M.; Willnow, T.E.; Cooper, J.A.; Nielsen, R. Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. Am. J. Physiol. Renal Physiol., 2005, 289(3), F569-F576.
[http://dx.doi.org/10.1152/ajprenal.00292.2004] [PMID: 15870384]
[76]
Koral, K.; Erkan, E. PKB/Akt partners with Dab2 in albumin endocytosis. Am. J. Physiol. Renal Physiol., 2012, 302(8), F1013-F1024.
[http://dx.doi.org/10.1152/ajprenal.00289.2011] [PMID: 22218591]
[77]
Koral, K.; Li, H.; Ganesh, N.; Birnbaum, M.J.; Hallows, K.R.; Erkan, E. Akt recruits Dab2 to albumin endocytosis in the proximal tubule. Am. J. Physiol. Renal Physiol., 2014, 307(12), F1380-F1389.
[http://dx.doi.org/10.1152/ajprenal.00454.2014] [PMID: 25253241]
[78]
Burke, K.A.; Jauniaux, E.; Burton, G.J.; Cindrova-Davies, T. Expression and immunolocalisation of the endocytic receptors megalin and cubilin in the human yolk sac and placenta across gestation. Placenta, 2013, 34(11), 1105-1109.
[http://dx.doi.org/10.1016/j.placenta.2013.08.003] [PMID: 23978537]
[79]
Smith, B.T.; Mussell, J.C.; Fleming, P.A.; Barth, J.L.; Spyropoulos, D.D.; Cooley, M.A.; Drake, C.J.; Argraves, W.S. Targeted disruption of cubilin reveals essential developmental roles in the structure and function of endoderm and in somite formation. BMC Dev. Biol., 2006, 6, 30.
[http://dx.doi.org/10.1186/1471-213X-6-30] [PMID: 16787536]
[80]
Assémat, E.; Vinot, S.; Gofflot, F.; Linsel-Nitschke, P.; Illien, F.; Châtelet, F.; Verroust, P.; Louvet-Vallée, S.; Rinninger, F.; Kozyraki, R. Expression and role of cubilin in the internalization of nutrients during the peri-implantation development of the rodent embryo. Biol. Reprod., 2005, 72(5), 1079-1086.
[http://dx.doi.org/10.1095/biolreprod.104.036913] [PMID: 15616221]
[81]
Tao, W.; Moore, R.; Meng, Y.; Smith, E.R.; Xu, X.X. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J. Lipid Res., 2016, 57(5), 809-817.
[http://dx.doi.org/10.1194/jlr.M063065] [PMID: 27005486]
[82]
Hammad, S.M.; Stefansson, S.; Twal, W.O.; Drake, C.J.; Fleming, P.; Remaley, A.; Brewer, H.B., Jr; Argraves, W.S. Cubilin, the endocytic receptor for intrinsic factor-vitamin B(12) complex, mediates high-density lipoprotein holoparticle endocytosis. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 10158-10163.
[http://dx.doi.org/10.1073/pnas.96.18.10158] [PMID: 10468579]
[83]
Lima, W.R.; Parreira, K.S.; Devuyst, O.; Caplanusi, A.; N’kuli, F.; Marien, B.; Van Der Smissen, P.; Alves, P.M.S.; Verroust, P.; Christensen, E.I.; Terzi, F.; Matter, K.; Balda, M.S.; Pierreux, C.E.; Courtoy, P.J. ZONAB promotes proliferation and represses differentiation of proximal tubule epithelial cells. J. Am. Soc. Nephrol., 2010, 21(3), 478-488.
[http://dx.doi.org/10.1681/ASN.2009070698] [PMID: 20133480]
[84]
Gremel, G.; Djureinovic, D.; Niinivirta, M.; Laird, A.; Ljungqvist, O.; Johannesson, H.; Bergman, J.; Edqvist, P.H.; Navani, S.; Khan, N.; Patil, T.; Sivertsson, Å.; Uhlén, M.; Harrison, D.J.; Ullenhag, G.J.; Stewart, G.D.; Pontén, F. A systematic search strategy identifies cubilin as independent prognostic marker for renal cell carcinoma. BMC Cancer, 2017, 17(1), 9.
[http://dx.doi.org/10.1186/s12885-016-3030-6] [PMID: 28052770]
[85]
Terryn, S.; Tanaka, K.; Lengelé, J.P.; Olinger, E. Dubois- Laforgue, D.; Garbay, S.; Kozyraki, R.; Van Der Smissen, P.; Christensen, E.I.; Courtoy, P.J.; Bellanné-Chantelot, C.; Timsit, J.; Pontoglio, M.; Devuyst, O. Tubular proteinuria in patients with HNF1 HNF1α mutations: HNF1α drives endocytosis in the proximal tubule. Kidney Int., 2016, 89(5), 1075-1089.
[http://dx.doi.org/10.1016/j.kint.2016.01.027] [PMID: 27083284]
[86]
Gekle, M.; Knaus, P.; Nielsen, R.; Mildenberger, S.; Freudinger, R.; Wohlfarth, V.; Sauvant, C.; Christensen, E.I. Transforming growth factor-beta1 reduces megalin- and cubilin-mediated endocytosis of albumin in proximal-tubule-derived opossum kidney cells. J. Physiol., 2003, 552(Pt 2), 471-481.
[http://dx.doi.org/10.1113/jphysiol.2003.048074] [PMID: 14561830]
[87]
Gimelbrant, A.; Hutchinson, J.N.; Thompson, B.R.; Chess, A. Widespread monoallelic expression on human autosomes. Science, 2007, 318(5853), 1136-1140.
[http://dx.doi.org/10.1126/science.1148910] [PMID: 18006746]
[88]
Han, H.; Cortez, C.C.; Yang, X.; Nichols, P.W.; Jones, P.A.; Liang, G. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum. Mol. Genet., 2011, 20(22), 4299-4310.
[http://dx.doi.org/10.1093/hmg/ddr356] [PMID: 21835883]
[89]
Cabezas, F.; Lagos, J.; Céspedes, C.; Vio, C.P.; Bronfman, M.; Marzolo, M-P. Megalin/LRP2 expression is induced by peroxisome proliferator-activated receptor -alpha and -gamma: implications for PPARs’ roles in renal function. PLoS One, 2011, 6(2) e16794
[http://dx.doi.org/10.1371/journal.pone.0016794] [PMID: 21311715]
[90]
Stenvinkel, P.; Karimi, M.; Johansson, S.; Axelsson, J.; Suliman, M.; Lindholm, B.; Heimbürger, O.; Barany, P.; Alvestrand, A.; Nordfors, L.; Qureshi, A.R.; Ekström, T.J.; Schalling, M. Impact of inflammation on epigenetic DNA methylation - a novel risk factor for cardiovascular disease? J. Intern. Med., 2007, 261(5), 488-499.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01777.x] [PMID: 17444888]
[91]
Marumo, T.; Hishikawa, K.; Yoshikawa, M.; Hirahashi, J.; Kawachi, S.; Fujita, T. Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am. J. Physiol. Renal Physiol., 2010, 298(1), F133-F141.
[http://dx.doi.org/10.1152/ajprenal.00400.2009] [PMID: 19906951]
[92]
Van Beneden, K.; Geers, C.; Pauwels, M.; Mannaerts, I.; Verbeelen, D.; van Grunsven, L.A.; Van den Branden, C. Valproic acid attenuates proteinuria and kidney injury. J. Am. Soc. Nephrol., 2011, 22(10), 1863-1875.
[http://dx.doi.org/10.1681/ASN.2010111196] [PMID: 21868496]
[93]
Holick, M.F. Bioavailability of vitamin D and its metabolites in black and white adults. N. Engl. J. Med., 2013, 369(21), 2047-2048.
[http://dx.doi.org/10.1056/NEJMe1312291] [PMID: 24256384]
[94]
Alsalem, J.A.; Patel, D.; Susarla, R.; Coca-Prados, M.; Bland, R.; Walker, E.A.; Rauz, S.; Wallace, G.R. Characterization of vitamin D production by human ocular barrier cells. Invest. Ophthalmol. Vis. Sci., 2014, 55(4), 2140-2147.
[http://dx.doi.org/10.1167/iovs.13-13019] [PMID: 24576880]
[95]
Park, H.; Wood, M.R.; Malysheva, O.V.; Jones, S.; Mehta, S.; Brannon, P.M.; Caudill, M.A. Placental vitamin D metabolism and its associations with circulating vitamin D metabolites in pregnant women. Am. J. Clin. Nutr., 2017, 106(6), 1439-1448.
[http://dx.doi.org/10.3945/ajcn.117.153429] [PMID: 29021285]
[96]
de Almeida, L.F.; Francescato, H.D.C.; da Silva, C.G.A.; Costa, R.S.; Coimbra, T.M. Calcitriol reduces kidney development disorders in rats provoked by losartan administration during lactation. Sci. Rep., 2017, 7(1), 11472.
[http://dx.doi.org/10.1038/s41598-017-11815-8] [PMID: 28904363]
[97]
Prabakaran, T.; Christensen, E.I.; Nielsen, R.; Verroust, P.J. Cubilin is expressed in rat and human glomerular podocytes. Nephrol. Dial. Transplant., 2012, 27(8), 3156-3159.
[http://dx.doi.org/10.1093/ndt/gfr794] [PMID: 22337902]
[98]
Gianesello, L.; Priante, G.; Ceol, M.; Radu, C.M.; Saleem, M.A.; Simioni, P.; Terrin, L.; Anglani, F.; Del Prete, D. Albumin uptake in human podocytes: a possible role for the cubilin-amnionless (CUBAM) complex. Sci. Rep., 2017, 7(1), 13705.
[http://dx.doi.org/10.1038/s41598-017-13789-z] [PMID: 29057905]
[99]
Lazzara, M.J.; Deen, W.M. Model of albumin reabsorption in the proximal tubule. Am. J. Physiol. Renal Physiol., 2007, 292(1), F430-F439.
[http://dx.doi.org/10.1152/ajprenal.00010.2006] [PMID: 16954345]
[100]
Schmieder, R.E.; Mann, J.F.E.; Schumacher, H.; Gao, P.; Mancia, G.; Weber, M.A.; McQueen, M.; Koon, T.; Yusuf, S. ONTARGET Investigators. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J. Am. Soc. Nephrol., 2011, 22(7), 1353-1364.
[http://dx.doi.org/10.1681/ASN.2010091001] [PMID: 21719791]
[101]
Bohrer, M.P.; Baylis, C.; Humes, H.D.; Glassock, R.J.; Robertson, C.R.; Brenner, B.M. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J. Clin. Invest., 1978, 61(1), 72-78.
[http://dx.doi.org/10.1172/JCI108927] [PMID: 618914]
[102]
Rippe, B.; Öberg, C.M. Counterpoint: Defending pore theory. Perit. Dial. Int., 2015, 35(1), 9-13.
[http://dx.doi.org/10.3747/pdi.2014.00110] [PMID: 25700458]
[103]
Moeller, M.J.; Tenten, V. Renal albumin filtration: alternative models to the standard physical barriers. Nat. Rev. Nephrol., 2013, 9(5), 266-277.
[http://dx.doi.org/10.1038/nrneph.2013.58] [PMID: 23528417]
[104]
Dechadilok, P.; Deen, W.M. Electrostatic and electrokinetic effects on hindered convection in pores. J. Colloid Interface Sci., 2009, 338(1), 135-144.
[http://dx.doi.org/10.1016/j.jcis.2009.06.018] [PMID: 19589534]
[105]
Peti-Peterdi, J. Independent two-photon measurements of albumin GSC give low values. Am. J. Physiol. Renal Physiol., 2009, 296(6), F1255-F1257.
[http://dx.doi.org/10.1152/ajprenal.00144.2009] [PMID: 19297453]
[106]
Tanner, G.A. Glomerular sieving coefficient of serum albumin in the rat: a two-photon microscopy study. Am. J. Physiol. Renal Physiol., 2009, 296(6), F1258-F1265.
[http://dx.doi.org/10.1152/ajprenal.90638.2008] [PMID: 19211688]
[107]
Sandoval, R.M.; Wagner, M.C.; Patel, M.; Campos-Bilderback, S.B.; Rhodes, G.J.; Wang, E.; Wean, S.E.; Clendenon, S.S.; Molitoris, B.A. Multiple factors influence glomerular albumin permeability in rats. J. Am. Soc. Nephrol., 2012, 23(3), 447-457.
[http://dx.doi.org/10.1681/ASN.2011070666] [PMID: 22223875]
[108]
Kim, H.J.; Moradi, H.; Yuan, J.; Norris, K.; Vaziri, N.D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal Physiol., 2009, 296(6), F1297-F1306.
[http://dx.doi.org/10.1152/ajprenal.90761.2008] [PMID: 19357177]
[109]
Theilig, F.; Kriz, W.; Jerichow, T.; Schrade, P.; Hähnel, B.; Willnow, T.; Le Hir, M.; Bachmann, S. Abrogation of protein uptake through megalin-deficient proximal tubules does not safeguard against tubulointerstitial injury. J. Am. Soc. Nephrol., 2007, 18(6), 1824-1834.
[http://dx.doi.org/10.1681/ASN.2006111266] [PMID: 17460141]
[110]
Fang, L.; Xie, D.; Wu, X.; Cao, H.; Su, W.; Yang, J. Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells. PLoS One, 2013, 8(8) e72344
[http://dx.doi.org/10.1371/journal.pone.0072344] [PMID: 23977286]
[111]
Ruggiero, C.; Elks, C.M.; Kruger, C.; Cleland, E.; Addison, K.; Noland, R.C.; Stadler, K. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am. J. Physiol. Renal Physiol., 2014, 306(8), F896-F906.
[http://dx.doi.org/10.1152/ajprenal.00484.2013] [PMID: 24500687]
[112]
Liu, D.; Wen, Y.; Tang, T-T.; Lv, L-L.; Tang, R-N.; Liu, H.; Ma, K-L.; Crowley, S.D.; Liu, B-C. Megalin/cubulinlysosome- mediated albumin reabsorption is involved in the tubular cell activation of nlrp3 inflammasome and tubulointerstitial inflammation. J. Biol. Chem., 2015, 290(29), 18018-18028.
[http://dx.doi.org/10.1074/jbc.M115.662064] [PMID: 26025362]
[113]
Jheng, H-F.; Tsai, P-J.; Chuang, Y-L.; Shen, Y-T.; Tai, T.A.; Chen, W-C.; Chou, C-K.; Ho, L-C.; Tang, M-J.; Lai, K.T.A.; Sung, J.M.; Tsai, Y.S. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis. Model. Mech., 2015, 8(10), 1311-1321.
[http://dx.doi.org/10.1242/dmm.019398] [PMID: 26398934]
[114]
Sun, J.; Hultenby, K.; Axelsson, J.; Nordström, J.; He, B.; Wernerson, A.; Lindström, K. Proximal tubular expression patterns of megalin and cubilin in proteinuric nephropathies. Kidney Int. Rep., 2017, 2(4), 721-732.
[http://dx.doi.org/10.1016/j.ekir.2017.02.012] [PMID: 29142988]
[115]
Long, K.R.; Shipman, K.E.; Rbaibi, Y.; Menshikova, E.V.; Ritov, V.B.; Eshbach, M.L.; Jiang, Y.; Jackson, E.K.; Baty, C.J.; Weisz, O.A. Proximal tubule apical endocytosis is modulated by fluid shear stress via an mTOR-dependent pathway. Mol. Biol. Cell, 2017, 28(19), 2508-2517.
[http://dx.doi.org/10.1091/mbc.e17-04-0211] [PMID: 28720662]
[116]
Grahammer, F.; Ramakrishnan, S.K.; Rinschen, M.M.; Larionov, A.A.; Syed, M.; Khatib, H.; Roerden, M.; Sass, J.O.; Helmstaedter, M.; Osenberg, D.; Kühne, L.; Kretz, O.; Wanner, N.; Jouret, F.; Benzing, T.; Artunc, F.; Huber, T.B.; Theilig, F. mTOR regulates endocytosis and nutrient transport in proximal tubular cells. J. Am. Soc. Nephrol., 2017, 28(1), 230-241.
[http://dx.doi.org/10.1681/ASN.2015111224] [PMID: 27297946]
[117]
Gleixner, E.M.; Canaud, G.; Hermle, T.; Guida, M.C.; Kretz, O.; Helmstädter, M.; Huber, T.B.; Eimer, S.; Terzi, F.; Simons, M. V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Rep., 2014, 8(1), 10-19.
[http://dx.doi.org/10.1016/j.celrep.2014.05.035] [PMID: 24953654]
[118]
Leheste, J.R.; Rolinski, B.; Vorum, H.; Hilpert, J.; Nykjaer, A.; Jacobsen, C.; Aucouturier, P.; Moskaug, J.O.; Otto, A.; Christensen, E.I.; Willnow, T.E. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am. J. Pathol., 1999, 155(4), 1361-1370.
[http://dx.doi.org/10.1016/S0002-9440(10)65238-8] [PMID: 10514418]
[119]
Weyer, K.; Storm, T.; Shan, J.; Vainio, S.; Kozyraki, R.; Verroust, P.J.; Christensen, E.I.; Nielsen, R. Mouse model of proximal tubule endocytic dysfunction. Nephrol. Dial. Transplant., 2011, 26(11), 3446-3451.
[http://dx.doi.org/10.1093/ndt/gfr525] [PMID: 21926402]
[120]
Tenten, V.; Menzel, S.; Kunter, U.; Sicking, E-M.; van Roeyen, C.R.C.; Sanden, S.K.; Kaldenbach, M.; Boor, P.; Fuss, A.; Uhlig, S.; Lanzmich, R.; Willemsen, B.; Dijkman, H.; Grepl, M.; Wild, K.; Kriz, W.; Smeets, B.; Floege, J.; Moeller, M.J. Albumin is recycled from the primary urine by tubular transcytosis. J. Am. Soc. Nephrol., 2013, 24(12), 1966-1980.
[http://dx.doi.org/10.1681/ASN.2013010018] [PMID: 23970123]
[121]
Aseem, O.; Smith, B.T.; Cooley, M.A.; Wilkerson, B.A.; Argraves, K.M.; Remaley, A.T.; Argraves, W.S. Cubilin maintains blood levels of HDL and albumin. J. Am. Soc. Nephrol., 2014, 25(5), 1028-1036.
[http://dx.doi.org/10.1681/ASN.2013060671] [PMID: 24357674]
[122]
Hvidberg, V.; Jacobsen, C.; Strong, R.K.; Cowland, J.B.; Moestrup, S.K.; Borregaard, N. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett., 2005, 579(3), 773-777.
[http://dx.doi.org/10.1016/j.febslet.2004.12.031] [PMID: 15670845]
[123]
Hermle, T.; Braun, D.A.; Helmstädter, M.; Huber, T.B.; Hildebrandt, F. Modeling monogenic human nephrotic syndrome in the drosophila garland cell nephrocyte. J. Am. Soc. Nephrol., 2017, 28(5), 1521-1533.
[http://dx.doi.org/10.1681/ASN.2016050517] [PMID: 27932481]
[124]
Marshall, V.A.; Johnson, K.J.; Moore, N.P.; Rasoulpour, R.J.; Tornesi, B.; Carney, E.W. Comparative response of rat and rabbit conceptuses in vitro to inhibitors of histiotrophic nutrition. Birth Defects Res. B Dev. Reprod. Toxicol., 2015, 104(1), 1-10.
[http://dx.doi.org/10.1002/bdrb.21134] [PMID: 25652268]
[125]
Gelineau-van Waes, J.; Maddox, J.R.; Smith, L.M.; van Waes, M.; Wilberding, J.; Eudy, J.D.; Bauer, L.K.; Finnell, R.H. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genomics, 2008, 9, 156.
[http://dx.doi.org/10.1186/1471-2164-9-156] [PMID: 18400109]
[126]
Bauer, R.; Plieschnig, J.A.; Finkes, T.; Riegler, B.; Hermann, M.; Schneider, W.J. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J. Biol. Chem., 2013, 288(2), 1088-1098.
[http://dx.doi.org/10.1074/jbc.M112.393090] [PMID: 23209291]
[127]
Ishida, T.; Hatae, T.; Nishi, N.; Araki, N.; Hamasaki, M. Immunocytochemical analysis of cubilin-mediated endocytosis of high density lipoproteins (HDL) in epithelial cells of the rat visceral yolk sac. Cell Tissue Res., 2004, 318(3), 533-543.
[http://dx.doi.org/10.1007/s00441-004-0962-y] [PMID: 15578272]
[128]
Tam, P.P.L.; Loebel, D.A.F. Gene function in mouse embryogenesis: get set for gastrulation. Nat. Rev. Genet., 2007, 8(5), 368-381.
[http://dx.doi.org/10.1038/nrg2084] [PMID: 17387317]
[129]
Fyfe, J.C.; Hemker, S.L.; Venta, P.J.; Fitzgerald, C.A.; Outerbridge, C.A.; Myers, S.L.; Giger, U. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs. Mol. Genet. Metab., 2013, 109(4), 390-396.
[http://dx.doi.org/10.1016/j.ymgme.2013.05.006] [PMID: 23746554]
[130]
Fyfe, J.C.; Hemker, S.L.; Venta, P.J.; Stebbing, B.; Giger, U. Selective intestinal cobalamin malabsorption with proteinuria (Imerslund-Gräsbeck syndrome) in juvenile Beagles. J. Vet. Intern. Med., 2014, 28(2), 356-362.
[http://dx.doi.org/10.1111/jvim.12284] [PMID: 24433284]
[131]
Drögemüller, M.; Jagannathan, V.; Howard, J.; Bruggmann, R.; Drögemüller, C.; Ruetten, M.; Leeb, T.; Kook, P.H. A frameshift mutation in the cubilin gene (CUBN) in Beagles with Imerslund-Gräsbeck syndrome (selective cobalamin malabsorption). Anim. Genet., 2014, 45(1), 148-150.
[http://dx.doi.org/10.1111/age.12094] [PMID: 24164695]
[132]
Owczarek-Lipska, M.; Jagannathan, V.; Drögemüller, C.; Lutz, S.; Glanemann, B.; Leeb, T.; Kook, P.H. A frameshift mutation in the cubilin gene (CUBN) in Border Collies with Imerslund-Gräsbeck syndrome (selective cobalamin malabsorption). PLoS One, 2013, 8(4) e61144
[http://dx.doi.org/10.1371/journal.pone.0061144] [PMID: 23613799]
[133]
Grasbeck, R.; Gordin, R.; Kantero, I.; Kuhlback, B. Selective vitamin B12 malabsorption and proteinuria in young people. A syndrome. Acta Med. Scand., 1960, 167, 289-296.
[http://dx.doi.org/10.1111/j.0954-6820.1960.tb03549.x] [PMID: 13828999]
[134]
Gräsbeck, R.; Tanner, S.M. Juvenile selective vitamin B12 malabsorption: 50 years after its description-10 years of genetic testing. Pediatr. Res., 2011, 70(3), 222-228.
[http://dx.doi.org/10.1203/PDR.0b013e3182242124] [PMID: 21623254]
[135]
Broch, H.; Imerslund, O.; Monn, E.; Hovig, T.; Seip, M. Imerslund-Gräsbeck anemia. A long-term follow-up study. Acta Paediatr. Scand., 1984, 73(2), 248-253.
[http://dx.doi.org/10.1111/j.1651-2227.1984.tb09937.x] [PMID: 6741523]
[136]
Storm, T.; Zeitz, C.; Cases, O.; Amsellem, S.; Verroust, P.J.; Madsen, M.; Benoist, J.F.; Passemard, S.; Lebon, S.; Jønsson, I.M.; Emma, F.; Koldsø, H.; Hertz, J.M.; Nielsen, R.; Christensen, E.I.; Kozyraki, R. Detailed investigations of proximal tubular function in Imerslund-Gräsbeck syndrome. BMC Med. Genet., 2013, 14, 111.
[http://dx.doi.org/10.1186/1471-2350-14-111] [PMID: 24156255]
[137]
Aminoff, M.; Carter, J.E.; Chadwick, R.B.; Johnson, C.; Gräsbeck, R.; Abdelaal, M.A.; Broch, H.; Jenner, L.B.; Verroust, P.J.; Moestrup, S.K.; de la Chapelle, A.; Krahe, R. Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat. Genet., 1999, 21(3), 309-313.
[http://dx.doi.org/10.1038/6831] [PMID: 10080186]
[138]
Tanner, S.M.; Sturm, A.C.; Baack, E.C.; Liyanarachchi, S.; de la Chapelle, A. Inherited cobalamin malabsorption. Mutations in three genes reveal functional and ethnic patterns. Orphanet J. Rare Dis., 2012, 7, 56.
[http://dx.doi.org/10.1186/1750-1172-7-56] [PMID: 22929189]
[139]
Montgomery, E.; Sayer, J.A.; Baines, L.A.; Hynes, A.M.; Vega-Warner, V.; Johnson, S.; Goodship, J.A.; Otto, E.A. Novel compound heterozygous mutations in AMN cause Imerslund-Gräsbeck syndrome in two half-sisters: a case report. BMC Med. Genet., 2015, 16, 35.
[http://dx.doi.org/10.1186/s12881-015-0181-2] [PMID: 26040326]
[140]
Tanner, S.M.; Li, Z.; Bisson, R.; Acar, C.; Oner, C.; Oner, R.; Cetin, M.; Abdelaal, M.A.; Ismail, E.A.; Lissens, W.; Krahe, R.; Broch, H.; Gräsbeck, R.; de la Chapelle, A. Genetically heterogeneous selective intestinal malabsorption of vitamin B12: founder effects, consanguinity, and high clinical awareness explain aggregations in Scandinavia and the Middle East. Hum. Mutat., 2004, 23(4), 327-333.
[http://dx.doi.org/10.1002/humu.20014] [PMID: 15024727]
[141]
Kristiansen, M.; Aminoff, M.; Jacobsen, C.; de La Chapelle, A.; Krahe, R.; Verroust, P.J.; Moestrup, S.K. Cubilin P1297L mutation associated with hereditary megaloblastic anemia 1 causes impaired recognition of intrinsic factor-vitamin B(12) by cubilin. Blood, 2000, 96(2), 405-409.
[http://dx.doi.org/10.1182/blood.V96.2.405] [PMID: 10887099]
[142]
Vivante, A.; Hwang, D.Y.; Kohl, S.; Chen, J.; Shril, S.; Schulz, J.; van der Ven, A.; Daouk, G.; Soliman, N.A.; Kumar, A.S.; Senguttuvan, P.; Kehinde, E.O.; Tasic, V.; Hildebrandt, F. Exome sequencing discerns syndromes in patients from consanguineous families with congenital anomalies of the kidneys and urinary tract. J. Am. Soc. Nephrol., 2017, 28(1), 69-75.
[http://dx.doi.org/10.1681/ASN.2015080962] [PMID: 27151922]
[143]
Ovunc, B.; Otto, E.A.; Vega-Warner, V.; Saisawat, P.; Ashraf, S.; Ramaswami, G.; Fathy, H.M.; Schoeb, D.; Chernin, G.; Lyons, R.H.; Yilmaz, E.; Hildebrandt, F. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. J. Am. Soc. Nephrol., 2011, 22(10), 1815-1820.
[http://dx.doi.org/10.1681/ASN.2011040337] [PMID: 21903995]
[144]
Reznichenko, A.; Snieder, H.; van den Born, J.; de Borst, M.H.; Damman, J.; van Dijk, M.C.R.F.; van Goor, H.; Hepkema, B.G.; Hillebrands, J.L.; Leuvenink, H.G.D.; Niesing, J.; Bakker, S.J.; Seelen, M.; Navis, G. REGaTTA (REnal GeneTics TrAnsplantation) Groningen group. CUBN as a novel locus for end-stage renal disease: insights from renal transplantation. PLoS One, 2012, 7(5) e36512
[http://dx.doi.org/10.1371/journal.pone.0036512] [PMID: 22574174]
[145]
Böger, C.A.; Chen, M.H.; Tin, A.; Olden, M.; Köttgen, A.; de Boer, I.H.; Fuchsberger, C.; O’Seaghdha, C.M.; Pattaro, C.; Teumer, A.; Liu, C.T.; Glazer, N.L.; Li, M.; O’Connell, J.R.; Tanaka, T.; Peralta, C.A.; Kutalik, Z.; Luan, J.; Zhao, J.H.; Hwang, S.J.; Akylbekova, E.; Kramer, H.; van der Harst, P.; Smith, A.V.; Lohman, K.; de Andrade, M.; Hayward, C.; Kollerits, B.; Tönjes, A.; Aspelund, T.; Ingelsson, E.; Eiriksdottir, G.; Launer, L.J.; Harris, T.B.; Shuldiner, A.R.; Mitchell, B.D.; Arking, D.E.; Franceschini, N.; Boerwinkle, E.; Egan, J.; Hernandez, D.; Reilly, M.; Townsend, R.R.; Lumley, T.; Siscovick, D.S.; Psaty, B.M.; Kestenbaum, B.; Haritunians, T.; Bergmann, S.; Vollenweider, P.; Waeber, G.; Mooser, V.; Waterworth, D.; Johnson, A.D.; Florez, J.C.; Meigs, J.B.; Lu, X.; Turner, S.T.; Atkinson, E.J.; Leak, T.S.; Aasarød, K.; Skorpen, F.; Syvänen, A.C.; Illig, T.; Baumert, J.; Koenig, W.; Krämer, B.K.; Devuyst, O.; Mychaleckyj, J.C.; Minelli, C.; Bakker, S.J.; Kedenko, L.; Paulweber, B.; Coassin, S.; Endlich, K.; Kroemer, H.K.; Biffar, R.; Stracke, S.; Völzke, H.; Stumvoll, M.; Mägi, R.; Campbell, H.; Vitart, V.; Hastie, N.D.; Gudnason, V.; Kardia, S.L.; Liu, Y.; Polasek, O.; Curhan, G.; Kronenberg, F.; Prokopenko, I.; Rudan, I.; Arnlöv, J.; Hallan, S.; Navis, G.; Parsa, A.; Ferrucci, L.; Coresh, J.; Shlipak, M.G.; Bull, S.B.; Paterson, N.J.; Wichmann, H.E.; Wareham, N.J.; Loos, R.J.; Rotter, J.I.; Pramstaller, P.P.; Cupples, L.A.; Beckmann, J.S.; Yang, Q.; Heid, I.M.; Rettig, R.; Dreisbach, A.W.; Bochud, M.; Fox, C.S.; Kao, W.H. CKDGen Consortium. CUBN is a gene locus for albuminuria. J. Am. Soc. Nephrol., 2011, 22(3), 555-570.
[http://dx.doi.org/10.1681/ASN.2010060598] [PMID: 21355061]
[146]
Santer, R.; Schneppenheim, R.; Suter, D.; Schaub, J.; Steinmann, B. Fanconi-Bickel syndrome--the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur. J. Pediatr., 1998, 157(10), 783-797.
[http://dx.doi.org/10.1007/s004310050937] [PMID: 9809815]
[147]
Mihout, F.; Devuyst, O.; Bensman, A.; Brocheriou, I.; Ridel, C.; Wagner, C.A.; Mohebbi, N.; Boffa, J.J.; Plaisier, E.; Ronco, P. Acute metabolic acidosis in a GLUT2-deficient patient with Fanconi-Bickel syndrome: new pathophysiology insights. Nephrol. Dial. Transplant., 2014, 29(Suppl. 4), iv113-iv116.
[http://dx.doi.org/10.1093/ndt/gfu018] [PMID: 25165176]
[148]
Devuyst, O. Dent’s disease: chloride-proton exchange controls proximal tubule endocytosis. Nephrol. Dial. Transplant., 2010, 25(12), 3832-3835.
[http://dx.doi.org/10.1093/ndt/gfq556] [PMID: 20819956]
[149]
Loi, M. Lowe syndrome. Orphanet J. Rare Dis., 2006, 1, 16.
[http://dx.doi.org/10.1186/1750-1172-1-16] [PMID: 16722554]
[150]
Noakes, C.J.; Lee, G.; Lowe, M. The PH domain proteins IPIP27A and B link OCRL1 to receptor recycling in the endocytic pathway. Mol. Biol. Cell, 2011, 22(5), 606-623.
[http://dx.doi.org/10.1091/mbc.e10-08-0730] [PMID: 21233288]
[151]
Oltrabella, F.; Pietka, G.; Ramirez, I.B.R.; Mironov, A.; Starborg, T.; Drummond, I.A.; Hinchliffe, K.A.; Lowe, M. The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule. PLoS Genet., 2015, 11(4) e1005058
[http://dx.doi.org/10.1371/journal.pgen.1005058] [PMID: 25838181]
[152]
Al-Tassan, N.A.; Whiffin, N.; Hosking, F.J.; Palles, C.; Farrington, S.M.; Dobbins, S.E.; Harris, R.; Gorman, M.; Tenesa, A.; Meyer, B.F.; Wakil, S.M.; Kinnersley, B.; Campbell, H.; Martin, L.; Smith, C.G.; Idziaszczyk, S.; Barclay, E.; Maughan, T.S.; Kaplan, R.; Kerr, R.; Kerr, D.; Buchanan, D.D.; Win, A.K.; Hopper, J.; Jenkins, M.; Lindor, N.M.; Newcomb, P.A.; Gallinger, S.; Conti, D.; Schumacher, F.; Casey, G.; Dunlop, M.G.; Tomlinson, I.P.; Cheadle, J.P.; Houlston, R.S. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci. Rep., 2015, 5, 10442.
[http://dx.doi.org/10.1038/srep10442] [PMID: 25990418]
[153]
Galamb, O.; Sipos, F.; Spisák, S.; Galamb, B.; Krenács, T.; Valcz, G.; Tulassay, Z.; Molnár, B. Cell. Oncol., 2009, 31(1), 19-29.
[http://dx.doi.org/10.3233/clo-2009-0458] [PMID: 19096147]
[154]
Schohn, H.; Guéant, J.L.; Leheup, B.; Saunier, M.; Grignon, G.; Nicolas, J.P. Intrinsic factor receptor during fetal development of the human intestine. Biochem. J., 1992, 286(Pt 1), 153-156.
[http://dx.doi.org/10.1042/bj2860153] [PMID: 1325778]
[155]
Steegenga, W.T.; de Wit, N.J.; Boekschoten, M.V.; Ijssennagger, N.; Lute, C.; Keshtkar, S.; Bromhaar, M.M.G.; Kampman, E.; de Groot, L.C.; Muller, M. Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice. BMC Med. Genomics, 2012, 5, 38.
[http://dx.doi.org/10.1186/1755-8794-5-38] [PMID: 22929163]
[156]
Zhao, L.; Wei, Y.; Song, A.; Li, Y. Association study between genome-wide significant variants of vitamin B12 metabolism and gastric cancer in a han Chinese population. IUBMB Life, 2016, 68(4), 303-310.
[http://dx.doi.org/10.1002/iub.1485] [PMID: 26959381]
[157]
Niinivirta, M.; Enblad, G.; Edqvist, P-H.; Pontén, F.; Dragomir, A.; Ullenhag, G.J. Tumoral cubilin is a predictive marker for treatment of renal cancer patients with sunitinib and sorafenib. J. Cancer Res. Clin. Oncol., 2017, 143(6), 961-970.
[http://dx.doi.org/10.1007/s00432-017-2365-y] [PMID: 28260162]
[158]
Liu, J.; Zhang, L.; Li, Z.; Jin, L.; Zhang, Y.; Ye, R.; Liu, J.; Ren, A. Prevalence and trend of neural tube defects in five counties in Shanxi province of Northern China, 2000 to 2014. Birth Defects Res. A Clin. Mol. Teratol., 2016, 106(4), 267-274.
[http://dx.doi.org/10.1002/bdra.23486] [PMID: 26879384]
[159]
Czeizel, A.E. Periconceptional folic acid and multivitamin supplementation for the prevention of neural tube defects and other congenital abnormalities. Birth Defects Res. A Clin. Mol. Teratol., 2009, 85(4), 260-268.
[http://dx.doi.org/10.1002/bdra.20563] [PMID: 19161162]
[160]
Sabatino, J.A.; Stokes, B.A.; Zohn, I.E. Prevention of neural tube defects in Lrp2 mutant mouse embryos by folic acid supplementation. Birth Defects Res., 2017, 109(1), 16-26.
[http://dx.doi.org/10.1002/bdra.23589] [PMID: 27883261]
[161]
Guéant, J.L.; Hambaba, L.; Vidailhet, M.; Schaefer, C.; Wahlstedt, V.; Nicolas, J.P. Concentration and physicochemical characterisation of unsaturated cobalamin binding proteins in amniotic fluid. Clin. Chim. Acta, 1989, 181(2), 151-161.
[http://dx.doi.org/10.1016/0009-8981(89)90182-4] [PMID: 2736778]
[162]
Pangilinan, F.; Molloy, A.M.; Mills, J.L.; Troendle, J.F.; Parle-McDermott, A.; Signore, C.; O’Leary, V.B.; Chines, P.; Seay, J.M.; Geiler-Samerotte, K.; Mitchell, A.; VanderMeer, J.E.; Krebs, K.M.; Sanchez, A.; Cornman-Homonoff, J.; Stone, N.; Conley, M.; Kirke, P.N.; Shane, B.; Scott, J.M.; Brody, L.C. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. BMC Med. Genet., 2012, 13, 62.
[http://dx.doi.org/10.1186/1471-2350-13-62] [PMID: 22856873]
[163]
Hazra, A.; Kraft, P.; Lazarus, R.; Chen, C.; Chanock, S.J.; Jacques, P.; Selhub, J.; Hunter, D.J. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum. Mol. Genet., 2009, 18(23), 4677-4687.
[http://dx.doi.org/10.1093/hmg/ddp428] [PMID: 19744961]
[164]
Franke, B.; Vermeulen, S.H.H.M.; Steegers-Theunissen, R.P.M.; Coenen, M.J.; Schijvenaars, M.M.V.A.P.; Scheffer, H.; den Heijer, M.; Blom, H.J. An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res. A Clin. Mol. Teratol., 2009, 85(3), 216-226.
[http://dx.doi.org/10.1002/bdra.20556] [PMID: 19161160]
[165]
Martinelli, M.; Carinci, F.; Morselli, P.G.; Palmieri, A.; Girardi, A.; Riberti, C.; Scapoli, L. No association between polymorphisms in cubilin, a gene of the homocysteine metabolism and the risk of non-syndromic cleft lip with or without cleft palate. Int. J. Immunopathol. Pharmacol., 2011, 24(2)(Suppl.), 11-14.
[http://dx.doi.org/10.1177/03946320110240S203] [PMID: 21781439]
[166]
Li, F.; Watkins, D.; Rosenblatt, D.S. Vitamin B(12) and birth defects. Mol. Genet. Metab., 2009, 98(1-2), 166-172.
[http://dx.doi.org/10.1016/j.ymgme.2009.06.004] [PMID: 19586788]
[167]
Randaccio, L.; Geremia, S.; Demitri, N.; Wuerges, J. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules, 2010, 15(5), 3228-3259.
[http://dx.doi.org/10.3390/molecules15053228] [PMID: 20657474]
[168]
Kräutler, B. Biochemistry of B12-cofactors in human metabolism. Subcell. Biochem., 2012, 56, 323-346.
[http://dx.doi.org/10.1007/978-94-007-2199-9_17] [PMID: 22116707]
[169]
Carmel, R. Efficacy and safety of fortification and supplementation with vitamin B12: biochemical and physiological effects. Food Nutr. Bull., 2008, 29(2)(Suppl.), S177-S187.
[http://dx.doi.org/10.1177/15648265080292S121] [PMID: 18709891]
[170]
Allen, L.H. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr., 2009, 89(2), 693S-696S.
[http://dx.doi.org/10.3945/ajcn.2008.26947A] [PMID: 19116323]
[171]
Stabler, S.P. Clinical practice. Vitamin B12 deficiency. N. Engl. J. Med., 2013, 368(2), 149-160.
[http://dx.doi.org/10.1056/NEJMcp1113996] [PMID: 23301732]
[172]
Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; Ueland, P.M.; Yajnik, C. Vitamin B12 deficiency. Nat. Rev. Dis. Primers, 2017, 3, 17040.
[http://dx.doi.org/10.1038/nrdp.2017.40] [PMID: 28660890]
[173]
Allen, R.H.; Stabler, S.P.; Lindenbaum, J. Relevance of vitamins, homocysteine and other metabolites in neuropsychiatric disorders. Eur. J. Pediatr., 1998, 157(Suppl. 2), S122-S126.
[http://dx.doi.org/10.1007/PL00014295] [PMID: 9587039]
[174]
Smith, A.D.; Refsum, H. Vitamin B-12 and cognition in the elderly. Am. J. Clin. Nutr., 2009, 89(2), 707S-711S.
[http://dx.doi.org/10.3945/ajcn.2008.26947D] [PMID: 19116332]
[175]
Morkbak, A.L.; Poulsen, S.S.; Nexo, E. Haptocorrin in humans. Clin. Chem. Lab. Med., 2007, 45(12), 1751-1759.
[http://dx.doi.org/10.1515/CCLM.2007.343] [PMID: 17990953]
[176]
Fedosov, S.N. Physiological and molecular aspects of cobalamin transport. Subcell. Biochem., 2012, 56, 347-367.
[http://dx.doi.org/10.1007/978-94-007-2199-9_18] [PMID: 22116708]
[177]
Quadros, E.V. Advances in the understanding of cobalamin assimilation and metabolism. Br. J. Haematol., 2010, 148(2), 195-204.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07937.x] [PMID: 19832808]
[178]
Wuerges, J.; Geremia, S.; Fedosov, S.N.; Randaccio, L. Vitamin B12 transport proteins: crystallographic analysis of beta-axial ligand substitutions in cobalamin bound to transcobalamin. IUBMB Life, 2007, 59(11), 722-729.
[http://dx.doi.org/10.1080/15216540701673413] [PMID: 17943552]
[179]
Russell-Jones, G.J.; Alpers, D.H. Vitamin B12 transporters. Pharm. Biotechnol., 1999, 12, 493-520.
[http://dx.doi.org/10.1007/0-306-46812-3_17] [PMID: 10742986]
[180]
Nakamura, K.; Sagawa, N.; Mori, T. The sources and biochemical characteristics of cobalamin-binders in human amniotic fluid. Asia Oceania J. Obstet. Gynaecol., 1993, 19(3), 343-353.
[http://dx.doi.org/10.1111/j.1447-0756.1993.tb00393.x] [PMID: 8250769]
[181]
Gräsbeck, R. Hooked to vitamin B12 since 1955: a historical perspective. Biochimie, 2013, 95(5), 970-975.
[http://dx.doi.org/10.1016/j.biochi.2012.12.007] [PMID: 23274132]
[182]
Fedosov, S.N.; Fedosova, N.U.; Kräutler, B.; Nexø, E.; Petersen, T.E. Mechanisms of discrimination between cobalamins and their natural analogues during their binding to the specific B12-transporting proteins. Biochemistry, 2007, 46(21), 6446-6458.
[http://dx.doi.org/10.1021/bi062063l] [PMID: 17487979]
[183]
Fedosov, S.N.; Fedosova, N.U.; Berglund, L.; Moestrup, S.K.; Nexø, E.; Petersen, T.E. Assembly of the intrinsic factor domains and oligomerization of the protein in the presence of cobalamin. Biochemistry, 2004, 43(47), 15095-15102.
[http://dx.doi.org/10.1021/bi048924c] [PMID: 15554717]
[184]
Rutsch, F.; Gailus, S.; Miousse, I.R.; Suormala, T.; Sagné, C.; Toliat, M.R.; Nürnberg, G.; Wittkampf, T.; Buers, I.; Sharifi, A.; Stucki, M.; Becker, C.; Baumgartner, M.; Robenek, H.; Marquardt, T.; Höhne, W.; Gasnier, B.; Rosenblatt, D.S.; Fowler, B.; Nürnberg, P. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat. Genet., 2009, 41(2), 234-239.
[http://dx.doi.org/10.1038/ng.294] [PMID: 19136951]
[185]
Coelho, D.; Kim, J.C.; Miousse, I.R.; Fung, S.; du Moulin, M.; Buers, I.; Suormala, T.; Burda, P.; Frapolli, M.; Stucki, M.; Nürnberg, P.; Thiele, H.; Robenek, H.; Höhne, W.; Longo, N.; Pasquali, M.; Mengel, E.; Watkins, D.; Shoubridge, E.A.; Majewski, J.; Rosenblatt, D.S.; Fowler, B.; Rutsch, F.; Baumgartner, M.R. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat. Genet., 2012, 44(10), 1152-1155.
[http://dx.doi.org/10.1038/ng.2386] [PMID: 22922874]
[186]
Froese, D.S.; Gravel, R.A. Genetic disorders of vitamin B12 metabolism: eight complementation groups--eight genes. Expert Rev. Mol. Med., 2010, 12 e37
[http://dx.doi.org/10.1017/S1462399410001651] [PMID: 21114891]
[187]
Beedholm-Ebsen, R.; van de Wetering, K.; Hardlei, T.; Nexø, E.; Borst, P.; Moestrup, S.K. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood, 2010, 115(8), 1632-1639.
[http://dx.doi.org/10.1182/blood-2009-07-232587] [PMID: 19897579]
[188]
Quadros, E.V.; Nakayama, Y.; Sequeira, J.M. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood, 2009, 113(1), 186-192.
[http://dx.doi.org/10.1182/blood-2008-05-158949] [PMID: 18779389]
[189]
Alam, A.; Woo, J.S.; Schmitz, J.; Prinz, B.; Root, K.; Chen, F.; Bloch, J.S.; Zenobi, R.; Locher, K.P. Structural basis of transcobalamin recognition by human CD320 receptor. Nat. Commun., 2016, 7, 12100.
[http://dx.doi.org/10.1038/ncomms12100] [PMID: 27411955]
[190]
Velkova, A.; Diaz, J.E.L.; Pangilinan, F.; Molloy, A.M.; Mills, J.L.; Shane, B.; Sanchez, E.; Cunningham, C.; McNulty, H.; Cropp, C.D.; Bailey-Wilson, J.E.; Wilson, A.F.; Brody, L.C. The FUT2 secretor variant p.Trp154Ter influences serum vitamin B12 concentration via holo-haptocorrin, but not holo-transcobalamin, and is associated with haptocorrin glycosylation. Hum. Mol. Genet., 2017, 26(24), 4975-4988.
[http://dx.doi.org/10.1093/hmg/ddx369] [PMID: 29040465]
[191]
Amagasaki, T.; Green, R.; Jacobsen, D.W. Expression of transcobalamin II receptors by human leukemia K562 and HL-60 cells. Blood, 1990, 76(7), 1380-1386.
[http://dx.doi.org/10.1182/blood.V76.7.1380.1380] [PMID: 2169922]
[192]
Moestrup, S.K.; Birn, H.; Fischer, P.B.; Petersen, C.M.; Verroust, P.J.; Sim, R.B.; Christensen, E.I.; Nexø, E. Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc. Natl. Acad. Sci. USA, 1996, 93(16), 8612-8617.
[http://dx.doi.org/10.1073/pnas.93.16.8612] [PMID: 8710919]
[193]
Haggarty, P. B-vitamins, genotype and disease causality. Proc. Nutr. Soc., 2007, 66(4), 539-547.
[http://dx.doi.org/10.1017/S0029665107005861] [PMID: 17961275]
[194]
Surendran, S.; Adaikalakoteswari, A.; Saravanan, P.; Shatwaan, I.A.; Lovegrove, J.A.; Vimaleswaran, K.S. An update on vitamin B12-related gene polymorphisms and B12 status. Genes Nutr., 2018, 13, 2.
[http://dx.doi.org/10.1186/s12263-018-0591-9] [PMID: 29445423]
[195]
Pickard, J.M.; Maurice, C.F.; Kinnebrew, M.A.; Abt, M.C.; Schenten, D.; Golovkina, T.V.; Bogatyrev, S.R.; Ismagilov, R.F.; Pamer, E.G.; Turnbaugh, P.J.; Chervonsky, A.V. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature, 2014, 514(7524), 638-641.
[http://dx.doi.org/10.1038/nature13823] [PMID: 25274297]
[196]
Nongmaithem, S.S.; Joglekar, C.V.; Krishnaveni, G.V.; Sahariah, S.A.; Ahmad, M.; Ramachandran, S.; Gandhi, M.; Chopra, H.; Pandit, A.; Potdar, R.D.; Fall, C.H.D.; Yajnik, C.S.; Chandak, G.R. GWAS identifies population-specific new regulatory variants in FUT6 associated with plasma B12 concentrations in Indians. Hum. Mol. Genet., 2017, 26(13), 2589.
[http://dx.doi.org/10.1093/hmg/ddx156] [PMID: 28481999]
[197]
Chery, C.; Hehn, A.; Mrabet, N.; Oussalah, A.; Jeannesson, E.; Besseau, C.; Alberto, J.M.; Gross, I.; Josse, T.; Gérard, P.; Guéant-Rodriguez, R.M.; Freund, J.N.; Devignes, J.; Bourgaud, F.; Peyrin-Biroulet, L.; Feillet, F.; Guéant, J.L. Gastric intrinsic factor deficiency with combined GIF heterozygous mutations and FUT2 secretor variant. Biochimie, 2013, 95(5), 995-1001.
[http://dx.doi.org/10.1016/j.biochi.2013.01.022] [PMID: 23402911]
[198]
Chalasani, K.B.; Russell-Jones, G.J.; Jain, A.K.; Diwan, P.V.; Jain, S.K. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J. Control. Release, 2007, 122(2), 141-150.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.019] [PMID: 17707540]
[199]
Waibel, R.; Treichler, H.; Schaefer, N.G.; van Staveren, D.R.; Mundwiler, S.; Kunze, S.; Küenzi, M.; Alberto, R.; Nüesch, J.; Knuth, A.; Moch, H.; Schibli, R.; Schubiger, P.A. New derivatives of vitamin B12 show preferential targeting of tumors. Cancer Res., 2008, 68(8), 2904-2911.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6771] [PMID: 18413759]
[200]
Petrus, A.K.; Allis, D.G.; Smith, R.P.; Fairchild, T.J.; Doyle, R.P. Exploring the implications of vitamin B12 conjugation to insulin on insulin receptor binding. ChemMedChem, 2009, 4(3), 421-426.
[http://dx.doi.org/10.1002/cmdc.200800346] [PMID: 19101970]
[201]
Kuda-Wedagedara, A.N.W.; Workinger, J.L.; Nexo, E.; Doyle, R.P.; Viola-Villegas, N. 89Zr-cobalamin PET Tracer: synthesis, cellular uptake, and use for tumor imaging. ACS Omega, 2017, 2(10), 6314-6320.
[http://dx.doi.org/10.1021/acsomega.7b01180] [PMID: 29104950]
[202]
Zelder, F. Recent trends in the development of vitamin B12 derivatives for medicinal applications. Chem. Commun. (Camb.), 2015, 51(74), 14004-14017.
[http://dx.doi.org/10.1039/C5CC04843E] [PMID: 26287029]
[203]
Kunze, S.; Zobi, F.; Kurz, P.; Spingler, B.; Alberto, R. Vitamin B12 as a ligand for technetium and rhenium complexes. Angew. Chem. Int. Ed. Engl., 2004, 43(38), 5025-5029.
[http://dx.doi.org/10.1002/anie.200460923] [PMID: 15384109]
[204]
Vortherms, A.R.; Kahkoska, A.R.; Rabideau, A.E.; Zubieta, J.; Andersen, L.L.; Madsen, M.; Doyle, R.P. A water soluble vitamin B12-ReI fluorescent conjugate for cell uptake screens: use in the confirmation of cubilin in the lung cancer line A549. Chem. Commun. (Camb.), 2011, 47(35), 9792-9794.
[http://dx.doi.org/10.1039/c1cc13615a] [PMID: 21818500]
[205]
Viola-Villegas, N.; Rabideau, A.E.; Bartholomä, M.; Zubieta, J.; Doyle, R.P. Targeting the cubilin receptor through the vitamin B(12) uptake pathway: cytotoxicity and mechanistic insight through fluorescent Re(I) delivery. J. Med. Chem., 2009, 52(16), 5253-5261.
[http://dx.doi.org/10.1021/jm900777v] [PMID: 19627091]
[206]
Bagnato, J.D.; Eilers, A.L.; Horton, R.A.; Grissom, C.B. Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J. Org. Chem., 2004, 69(26), 8987-8996.
[http://dx.doi.org/10.1021/jo049953w] [PMID: 15609930]
[207]
Carmel, R. Extreme elevation of serum transcobalamin I in patients with metastatic cancer. N. Engl. J. Med., 1975, 292(6), 282-284.
[http://dx.doi.org/10.1056/NEJM197502062920603] [PMID: 1053806]
[208]
Sah, B.R.; Schibli, R.; Waibel, R.; von Boehmer, L.; Bläuenstein, P.; Nexo, E.; Johayem, A.; Fischer, E.; Müller, E.; Soyka, J.D.; Knuth, A.K.; Haerle, S.K.; Schubiger, P.A.; Schaefer, N.G.; Burger, I.A. Tumor imaging in patients with advanced tumors using a new (99m) Tc-radiolabeled vitamin B12 derivative. J. Nucl. Med., 2014, 55(1), 43-49.
[http://dx.doi.org/10.2967/jnumed.113.122499] [PMID: 24337606]
[209]
Durand, E.; Prigent, A. The basics of renal imaging and function studies. Q. J. Nucl. Med., 2002, 46(4), 249-267.
[PMID: 12411866]
[210]
Weyer, K.; Nielsen, R.; Petersen, S.V.; Christensen, E.I.; Rehling, M.; Birn, H. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J. Nucl. Med., 2013, 54(1), 159-165.
[http://dx.doi.org/10.2967/jnumed.112.110528] [PMID: 23232279]
[211]
Akerström, B.; Lögdberg, L.; Berggård, T.; Osmark, P.; Lindqvist, A. alpha(1)-Microglobulin: a yellow-brown lipocalin. Biochim. Biophys. Acta, 2000, 1482(1-2), 172-184.
[http://dx.doi.org/10.1016/S0167-4838(00)00157-6] [PMID: 11058759]
[212]
Lee, B.H.; Lee, S.H.; Choi, H.J.; Kang, H.G.; Oh, S.W.; Lee, D.S.; Ha, I.S.; Choi, Y.; Cheong, H.I. Decreased renal uptake of (99m)Tc-DMSA in patients with tubular proteinuria. Pediatr. Nephrol., 2009, 24(11), 2211-2216.
[http://dx.doi.org/10.1007/s00467-009-1238-2] [PMID: 19579036]
[213]
Carmel, R.; Green, R.; Rosenblatt, D.S.; Watkins, D. Update on Cobalamin, Folate, and Homocysteine. Hematol. Am. Soc. Hematol. Educ. Program, 2003, 62-81.
[http://dx.doi.org/10.1182/asheducation-2003.1.62] [PMID: 14633777]
[214]
Toohey, J.I. Vitamin B12 and methionine synthesis: a critical review. Is nature’s most beautiful cofactor misunderstood? Biofactors, 2006, 26(1), 45-57.
[http://dx.doi.org/10.1002/biof.5520260105] [PMID: 16614482]
[215]
Hannibal, L.; Kim, J.; Brasch, N.E.; Wang, S.; Rosenblatt, D.S.; Banerjee, R.; Jacobsen, D.W. Processing of alkylcobalamins in mammalian cells: A role for the MMACHC (cblC) gene product. Mol. Genet. Metab., 2009, 97(4), 260-266.
[http://dx.doi.org/10.1016/j.ymgme.2009.04.005] [PMID: 19447654]
[216]
Coelho, D.; Suormala, T.; Stucki, M.; Lerner-Ellis, J.P.; Rosenblatt, D.S.; Newbold, R.F.; Baumgartner, M.R.; Fowler, B. Gene identification for the cblD defect of vitamin B12 metabolism. N. Engl. J. Med., 2008, 358(14), 1454-1464.
[http://dx.doi.org/10.1056/NEJMoa072200] [PMID: 18385497]
[217]
Miousse, I.R.; Watkins, D.; Coelho, D.; Rupar, T.; Crombez, E.A.; Vilain, E.; Bernstein, J.A.; Cowan, T.; Lee-Messer, C.; Enns, G.M.; Fowler, B.; Rosenblatt, D.S. Clinical and molecular heterogeneity in patients with the cblD inborn error of cobalamin metabolism. J. Pediatr., 2009, 154(4), 551-556.
[http://dx.doi.org/10.1016/j.jpeds.2008.10.043] [PMID: 19058814]
[218]
Yu, H.C.; Sloan, J.L.; Scharer, G.; Brebner, A.; Quintana, A.M.; Achilly, N.P.; Manoli, I.; Coughlin, C.R., II; Geiger, E.A.; Schneck, U.; Watkins, D.; Suormala, T.; Van Hove, J.L.; Fowler, B.; Baumgartner, M.R.; Rosenblatt, D.S.; Venditti, C.P.; Shaikh, T.H. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am. J. Hum. Genet., 2013, 93(3), 506-514.
[http://dx.doi.org/10.1016/j.ajhg.2013.07.022] [PMID: 24011988]
[219]
Quintana, A.M.; Yu, H.C.; Brebner, A.; Pupavac, M.; Geiger, E.A.; Watson, A.; Castro, V.L.; Cheung, W.; Chen, S.H.; Watkins, D.; Pastinen, T.; Skovby, F.; Appel, B.; Rosenblatt, D.S.; Shaikh, T.H. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum. Mol. Genet., 2017, 26(15), 2838-2849.
[http://dx.doi.org/10.1093/hmg/ddx157] [PMID: 28449119]
[220]
Guéant, J.L.; Chéry, C.; Oussalah, A.; Nadaf, J.; Coelho, D.; Josse, T.; Flayac, J.; Robert, A.; Koscinski, I.; Gastin, I.; Filhine-Tresarrieu, P.; Pupavac, M.; Brebner, A.; Watkins, D.; Pastinen, T.; Montpetit, A.; Hariri, F.; Tregouët, D.; Raby, B.A.; Chung, W.K.; Morange, P.E.; Froese, D.S.; Baumgartner, M.R.; Benoist, J.F.; Ficicioglu, C.; Marchand, V.; Motorin, Y.; Bonnemains, C.; Feillet, F.; Majewski, J.; Rosenblatt, D.S. APRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat. Commun., 2018, 9(1), 67.
[http://dx.doi.org/10.1038/s41467-017-02306-5] [PMID: 29302025]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy