[1]
Aggett, P.J. Physiology and metabolism of essential trace elements: An outline. Clin. Endocrinol. Metab., 1985, 14(3), 513-543.
[2]
Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol., 2011, 43(3), 246-253.
[3]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Novel chelators for cancer treatment: Where are we now? Antioxid. Redox Signal., 2013, 18(8), 973-1006.
[4]
Torti, S.V.; Torti, F.M. Ironing out cancer. Cancer Res., 2011, 71(5), 1511-1514.
[5]
Torti, S.V.; Torti, F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer, 2013, 13(5), 342-355.
[6]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[7]
Hertz, R.; Li, M.C.; Spencer, D.B. Effect of methotrexate therapy upon choriocarcinoma and chorioadenoma. Proc. Soc. Exp. Biol. Med., 1956, 93(2), 361-366.
[8]
Berdanier, C. D.; Berdanier, L. A.; Zempleni, J. Advanced
nutrition: Macronutrients, micronutrients, and metabolism. CRC Press: Baco Raton, 2008.
[9]
Frieden, E. The chemical elements of life. Sci. Am., 1972, 227(1), 52-60.
[10]
Andrews, N.C. Iron homeostasis: Insights from genetics and animal models. Nat. Rev. Genet., 2000, 1(3), 208-217.
[11]
Zhang, C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 2014, 5(10), 750-760.
[12]
Mackenzie, B.; Garrick, M.D. Iron Imports. II. Iron uptake at the apical membrane in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(6), G981-G986.
[13]
Miret, S.; Simpson, R.J.; McKie, A.T. Physiology and molecular biology of dietary iron absorption. Annu. Rev. Nutr., 2003, 23, 283-301.
[14]
Richardson, D.R.; Ponka, P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta, 1997, 1331(1), 1-40.
[15]
Dunn, L.L.; Suryo Rahmanto, Y.; Richardson, D.R. Iron uptake and metabolism in the new millennium. Trends Cell Biol., 2007, 17(2), 93-100.
[16]
Lansdown, A.B.G. The Carcinogenicity of Metals; RSC Publishing: Cambridge, 2013.
[17]
Harris, E.D. Copper homeostasis: The role of cellular transporters. Nutr. Rev., 2001, 59(9), 281-285.
[18]
Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother., 2003, 57(9), 386-398.
[19]
Finney, L.; Vogt, S.; Fukai, T.; Glesne, D. Copper and angiogenesis: Unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol., 2009, 36(1), 88-94.
[20]
Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Ellison, E.C.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(5), H1821-H1827.
[21]
Soncin, F.; Guitton, J.D.; Cartwright, T.; Badet, J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem. Biophys. Res. Commun., 1997, 236(3), 604-610.
[22]
Lowndes, S.A.; Harris, A.L. The role of copper in tumour angiogenesis. J. Mammary Gland Biol. Neoplasia, 2005, 10(4), 299-310.
[23]
Malkin, R.; Malmström, B.G. The state and function of copper in biological systems. Adv. Enzymol. Relat. Areas Mol. Biol., 1970, 3, 177-244.
[24]
Coleman, J.E. Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem., 1992, 61, 897-946.
[25]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278(1), 16-27.
[26]
Nemoto, K.; Kondo, Y.; Himeno, S.; Suzuki, Y.; Hara, S.; Akimoto, M.; Imura, N. Modulation of telomerase activity by zinc in human prostatic and renal cancer cells. Biochem. Pharmacol., 2000, 59(4), 401-405.
[27]
Bertini, I.; Luchinat, C. 2. The reaction pathways of zinc enzymes and related biological catalysts. Bioinorg. Chem., 1994, 37-106.
[28]
Sears, M.E. Chelation: Harnessing and enhancing heavy metal detoxification--a review. Sci. World J., 2013, 2013, 219840.
[29]
Fowler, B.A. General subcellular effects of lead, mercury, cadmium, and arsenic. Environ. Health Perspect., 1978, 22, 37-41.
[30]
Wu, F.; Wang, J.; Pu, C.; Qiao, L.; Jiang, C. Wilson’s disease: A comprehensive review of the molecular mechanisms. Int. J. Mol. Sci., 2015, 16(3), 6419-6431.
[31]
Toyokuni, S. Iron-induced carcinogenesis: The role of redox regulation. Free Radic. Biol. Med., 1996, 20(4), 553-566.
[32]
Toyokuni, S. Iron as a target of chemoprevention for longevity in humans. Free Radic. Res., 2011, 45(8), 906-917.
[33]
Toyokuni, S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci., 2009, 100(1), 9-16.
[34]
Chua, A.C.; Klopcic, B.; Lawrance, I.C.; Olynyk, J.K.; Trinder, D. Iron: An emerging factor in colorectal carcinogenesis. World J. Gastroenterol., 2010, 16(6), 663-672.
[35]
Toyokuni, S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch. Biochem. Biophys., 2016, 595, 46-49.
[36]
Knekt, P.; Reunanen, A.; Takkunen, H.; Aromaa, A.; Heliovaara, M.; Hakulinen, T. Body iron stores and risk of cancer. Int. J. Cancer, 1994, 56(3), 379-382.
[37]
Norat, T.; Lukanova, A.; Ferrari, P.; Riboli, E. Meat consumption and colorectal cancer risk: Dose-response meta-analysis of epidemiological studies. Int. J. Cancer, 2002, 98(2), 241-256.
[38]
Merk, K.; Mattsson, B.; Mattsson, A.; Holm, G.; Gullbring, B.; Bjorkholm, M. The incidence of cancer among blood donors. Int. J. Epidemiol., 1990, 19(3), 505-509.
[39]
Hsing, A.W.; McLaughlin, J.K.; Olsen, J.H.; Mellemkjar, L.; Wacholder, S.; Fraumeni, J.F., Jr Cancer risk following primary hemochromatosis: A population-based cohort study in Denmark. Int. J. Cancer, 1995, 60(2), 160-162.
[40]
Fracanzani, A.L.; Conte, D.; Fraquelli, M.; Taioli, E.; Mattioli, M.; Losco, A.; Fargion, S. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology, 2001, 33(3), 647-651.
[41]
Lagergren, K.; Wahlin, K.; Mattsson, F.; Alderson, D.; Lagergren, J. Haemochromatosis and gastrointestinal cancer. Int. J. Cancer, 2016, 8(139), 1740-1743.
[42]
Kato, J.; Kobune, M.; Nakamura, T.; Kuroiwa, G.; Takada, K.; Takimoto, R.; Sato, Y.; Fujikawa, K.; Takahashi, M.; Takayama, T.; Ikeda, T.; Niitsu, Y. Normalization of elevated hepatic 8-hydroxy-2′-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res., 2001, 61(24), 8697-8702.
[43]
Kato, J.; Miyanishi, K.; Kobune, M.; Nakamura, T.; Takada, K.; Takimoto, R.; Kawano, Y.; Takahashi, S.; Takahashi, M.; Sato, Y.; Takayama, T.; Niitsu, Y. Long-term phlebotomy with low-iron diet therapy lowers risk of development of hepatocellular carcinoma from chronic hepatitis C. J. Gastroenterol., 2007, 42(10), 830-836.
[44]
Krisai, P.; Leib, S.; Aeschbacher, S.; Kofler, T.; Assadian, M.; Maseli, A.; Todd, J.; Estis, J.; Risch, M.; Risch, L.; Conen, D. Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults. Eur. J. Intern. Med., 2016, 32, 31-37.
[45]
Lan, A.P.; Chen, J.; Chai, Z.F.; Hu, Y. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals, 2016, 4(29), 665-678.
[46]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[47]
Gupte, A.; Mumper, R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev., 2009, 35(1), 32-46.
[48]
Kuo, H.W.; Chen, S.F.; Wu, C.C.; Chen, D.R.; Lee, J.H. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol. Trace Elem. Res., 2002, 89(1), 1-11.
[49]
Denoyer, D.; Masaldan, S.; La Fontaine, S.; Cater, M.A. Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics, 2015, 7(11), 1459-1476.
[50]
Skrajnowska, D.; Bobrowska-Korczak, B.; Tokarz, A.; Bialek, S.; Jezierska, E.; Makowska, J. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis. Biol. Trace Elem. Res., 2013, 156(1-3), 271-278.
[51]
Brady, D.C.; Crowe, M.S.; Turski, M.L.; Hobbs, G.A.; Yao, X.; Chaikuad, A.; Knapp, S.; Xiao, K.; Campbell, S.L.; Thiele, D.J.; Counter, C.M. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501), 492-496.
[52]
Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19507-19512.
[53]
Yamane, Y.; Sakai, K.; Umeda, T.; Murata, N.; Ishizeki, S.; Ogihara, I.; Takahashi, A.; Iwasaki, I.; Ide, G. Suppressive effect of cupric acetate on DNA alkylation, DNA synthesis and tumorigenesis in the liver of dimethylnitrosamine-treated rats. Gan, 1984, 75(12), 1062-1069.
[54]
Fleisher, M.S.; Loeb, L. The influence of various substances on the growth of mouse carcinoma. J. Exp. Med., 1914, 20(5), 503-521.
[55]
Brewer, G.J.; Dick, R.D.; Grover, D.K.; LeClaire, V.; Tseng, M.; Wicha, M.; Pienta, K.; Redman, B.G.; Jahan, T.; Sondak, V.K.; Strawderman, M.; LeCarpentier, G.; Merajver, S.D. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clin. Cancer Res., 2000, 6(1), 1-10.
[56]
Goodman, V.L.; Brewer, G.J.; Merajver, S.D. Copper deficiency as an anti-cancer strategy. Endocr. Relat. Cancer, 2004, 11(2), 255-263.
[57]
Scharping, N.; Delgoffe, G. Tumor microenvironment metabolism: A new checkpoint for anti-tumor immunity. Vaccines (Basel), 2016, 4(4), 46.
[58]
Zitvogel, L.; Pitt, J.M.; Daillere, R.; Smyth, M.J.; Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer, 2016, 16(12), 759-773.
[59]
Jazayeri, S.; Feli, A.; Bitaraf, M.A.; Solaymani Dodaran, M.; Alikhani, M.; Hosseinzadeh-Attar, M.J. Effects of Copper Reduction on Angiogenesis-Related Factors in Recurrent Glioblastoma Cases. Asian Pac. J. Cancer Prev., 2016, 17(10), 4609-4614.
[60]
Bhuvanasundar, R.; John, A.; Sulochana, K.N.; Coral, K.; Deepa, P.R.; Umashankar, V. A molecular model of human Lysyl Oxidase (LOX) with optimal copper orientation in the catalytic cavity for induced fit docking studies with potential modulators. Bioinformation, 2014, 10(7), 406-412.
[61]
Gacheru, S.N.; Trackman, P.C.; Shah, M.A.; O’Gara, C.Y.; Spacciapoli, P.; Greenaway, F.T.; Kagan, H.M. Structural and catalytic properties of copper in lysyl oxidase. J. Biol. Chem., 1990, 265(31), 19022-19027.
[62]
Siglin, J.C.; Khare, L.; Stoner, G.D. Evaluation of dose and treatment duration on the esophageal tumorigenicity of N-nitrosomethylbenzylamine in rats. Carcinogenesis, 1995, 16(2), 259-265.
[63]
Abdulla, M.; Biorklund, A.; Mathur, A.; Wallenius, K. Zinc and copper levels in whole blood and plasma from patients with squamous cell carcinomas of head and neck. J. Surg. Oncol., 1979, 12(2), 107-113.
[64]
Costello, L.C.; Feng, P.; Milon, B.; Tan, M.; Franklin, R.B. Role of zinc in the pathogenesis and treatment of prostate cancer: Critical issues to resolve. Prostate Cancer Prostatic Dis., 2004, 7(2), 111-117.
[65]
Zaichick, V.; Sviridova, T.V.; Zaichick, S.V. Zinc in the human prostate gland: Normal, hyperplastic and cancerous. Int. Urol. Nephrol., 1997, 29(5), 565-574.
[66]
Gyorkey, F.; Min, K.W.; Huff, J.A.; Gyorkey, P. Zinc and magnesium in human prostate gland: Normal, hyperplastic, and neoplastic. Cancer Res., 1967, 27(8), 1348-1353.
[67]
Prasad, A.S.; Beck, F.W.J.; Snell, D.C.; Kucuk, O. Zinc in Cancer Prevention. Nutr. Cancer, 2009, 61(6), 879-887.
[68]
Prasad, A.S.; Kucuk, O. Zinc in cancer prevention. Cancer Metastasis Rev., 2002, 21(3-4), 291-295.
[69]
Beck, F.W.; Prasad, A.S.; Kaplan, J.; Fitzgerald, J.T.; Brewer, G.J. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am. J. Physiol., 1997, 272(6 Pt 1), E1002-E1007.
[70]
Dhawan, D.K.; Chadha, V.D. Zinc: A promising agent in dietary chemoprevention of cancer. Indian J. Med. Res., 2010, 132(6), 676-682.
[71]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[72]
Brookes, M.J.; Hughes, S.; Turner, F.E.; Reynolds, G.; Sharma, N.; Ismail, T.; Berx, G.; McKie, A.T.; Hotchin, N.; Anderson, G.J.; Iqbal, T.; Tselepis, C. Modulation of iron transport proteins in human colorectal carcinogenesis. Gut, 2006, 55(10), 1449-1460.
[73]
Lloyd, J.M.; O’Dowd, T.; Driver, M.; Tee, D.E. Demonstration of an epitope of the transferrin receptor in human cervical epithelium--a potentially useful cell marker. J. Clin. Pathol., 1984, 37(2), 131-135.
[74]
Jiang, X.P.; Elliott, R.L.; Head, J.F. Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res., 2010, 30(3), 759-765.
[75]
Seymour, G.J.; Walsh, M.D.; Lavin, M.F.; Strutton, G.; Gardiner, R.A. Transferrin receptor expression by human bladder transitional cell carcinomas. Urol. Res., 1987, 15(6), 341-344.
[76]
Soyer, H.P.; Smolle, J.; Torne, R.; Kerl, H. Transferrin receptor expression in normal skin and in various cutaneous tumors. J. Cutan. Pathol., 1987, 14(1), 1-5.
[77]
Walker, R.A.; Day, S.J. Transferrin receptor expression in non-malignant and malignant human breast tissue. J. Pathol., 1986, 148(3), 217-224.
[78]
Yeh, C.J.; Taylor, C.G.; Faulk, W.P. Transferrin binding by peripheral blood mononuclear cells in human lymphomas, myelomas and leukemias. Vox Sang., 1984, 46(4), 217-223.
[79]
Omary, M.B.; Trowbridge, I.S.; Minowada, J. Human cell-surface glycoprotein with unusual properties. Nature, 1980, 286(5776), 888-891.
[80]
Habeshaw, J.A.; Lister, T.A.; Stansfeld, A.G.; Greaves, M.F. Correlation of transferrin receptor expression with histological class and outcome in non-Hodgkin lymphoma. Lancet, 1983, 1(8323), 498-501.
[81]
Boult, J.; Roberts, K.; Brookes, M.J.; Hughes, S.; Bury, J.P.; Cross, S.S.; Anderson, G.J.; Spychal, R.; Iqbal, T.; Tselepis, C. Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin. Cancer Res., 2008, 14(2), 379-387.
[82]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[83]
Kwok, J.C.; Richardson, D.R. The iron metabolism of neoplastic cells: Alterations that facilitate proliferation? Crit. Rev. Oncol. Hematol., 2002, 42(1), 65-78.
[84]
Prutki, M.; Poljak-Blazi, M.; Jakopovic, M.; Tomas, D.; Stipancic, I.; Zarkovic, N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett., 2006, 238(2), 188-196.
[85]
Elford, H.L.; Freese, M.; Passamani, E.; Morris, H.P. Ribonucleotide reductase and cell proliferation. I. Variations of ribonucleotide reductase activity with tumor growth rate in a series of rat hepatomas. J. Biol. Chem., 1970, 245(20), 5228-5233.
[86]
Takeda, E.; Weber, G. Role of ribonucleotide reductase in expression in the neoplastic program. Life Sci., 1981, 28(9), 1007-1014.
[87]
Cairo, G.; Recalcati, S. Iron-regulatory proteins: Molecular biology and pathophysiological implications. Expert Rev. Mol. Med., 2007, 9(33), 1-13.
[88]
Shpyleva, S.I.; Tryndyak, V.P.; Kovalchuk, O.; Starlard-Davenport, A.; Chekhun, V.F.; Beland, F.A.; Pogribny, I.P. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res. Treat., 2011, 126(1), 63-71.
[89]
Tan, M.G.; Kumarasinghe, M.P.; Wang, S.M.; Ooi, L.L.; Aw, S.E.; Hui, K.M. Modulation of iron-regulatory genes in human hepatocellular carcinoma and its physiological consequences. Exp. Biol. Med. (Maywood), 2009, 234(6), 693-702.
[90]
Vaughn, C.B.; Weinstein, R.; Bond, B.; Rice, R.; Vaughn, R.W.; McKendrick, A.; Ayad, G.; Rockwell, M.A.; Rocchio, R. Ferritin content in human cancerous and noncancerous colonic tissue. Cancer Invest., 1987, 5(1), 7-10.
[91]
Pinnix, Z.K.; Miller, L.D.; Wang, W.; D’Agostino, R., Jr; Kute, T.; Willingham, M.C.; Hatcher, H.; Tesfay, L.; Sui, G.; Di, X.; Torti, S.V.; Torti, F.M. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med., 2010, 2(43), 43ra56.
[92]
Yang, D.C.; Wang, F.; Elliott, R.L.; Head, J.F. Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res., 2001, 21(1B), 541-549.
[93]
Holmstrom, P.; Gafvels, M.; Eriksson, L.C.; Dzikaite, V.; Hultcrantz, R.; Eggertsen, G.; Stal, P. Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver Int., 2006, 26(8), 976-985.
[94]
Kamai, T.; Tomosugi, N.; Abe, H.; Arai, K.; Yoshida, K. Increased serum hepcidin-25 level and increased tumor expression of hepcidin mRNA are associated with metastasis of renal cell carcinoma. BMC Cancer, 2009, 9, 270.
[95]
Furusato, B.; Shaheduzzaman, S.; Petrovics, G.; Dobi, A.; Seifert, M.; Ravindranath, L.; Nau, M.E.; Werner, T.; Vahey, M.; McLeod, D.G.; Srivastava, S.; Sesterhenn, I.A. Transcriptome analyses of benign and malignant prostate epithelial cells in formalin-fixed paraffin-embedded whole-mounted radical prostatectomy specimens. Prostate Cancer Prostatic Dis., 2008, 11(2), 194-197.
[96]
Hubert, N.; Hentze, M.W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12345-12350.
[97]
Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol., 2013, 10(4), 219-226.
[98]
Li, M.; Zhang, Y.; Liu, Z.; Bharadwaj, U.; Wang, H.; Wang, X.; Zhang, S.; Liuzzi, J.P.; Chang, S.M.; Cousins, R.J.; Fisher, W.E.; Brunicardi, F.C.; Logsdon, C.D.; Chen, C.; Yao, Q. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18636-18641.
[99]
Chen, Q.; Zhang, Z.; Yang, Q.; Shan, G.; Yu, X.; Kong, C. The role of zinc transporter ZIP4 in prostate carcinoma. Urol. Oncol., 2012, 30(6), 906-911.
[100]
Franklin, R.B.; Feng, P.; Milon, B.; Desouki, M.M.; Singh, K.K.; Kajdacsy-Balla, A.; Bagasra, O.; Costello, L.C. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol. Cancer, 2005, 4, 32.
[101]
Desouki, M.M.; Geradts, J.; Milon, B.; Franklin, R.B.; Costello, L.C. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol. Cancer, 2007, 6, 37-37.
[102]
Fotiou, K.; Vaiopoulos, G.; Lilakos, K.; Giannopoulos, A.; Mandalenaki, K.; Marinos, G.; Koritsiadis, G.; Sourdis, J.; Konstantinidou, E.; Konstantopoulos, K. Serum ceruloplasmin as a marker in prostate cancer. Minerva Urol. Nefrol., 2007, 59(4), 407-411.
[103]
Senra Varela, A.; Lopez Saez, J.J.; Quintela Senra, D. Serum ceruloplasmin as a diagnostic marker of cancer. Cancer Lett., 1997, 121(2), 139-145.
[104]
Denoyer, D.; Pearson, H.B.; Clatworthy, S.A.; Smith, Z.M.; Francis, P.S.; Llanos, R.M.; Volitakis, I.; Phillips, W.A.; Meggyesy, P.M.; Masaldan, S.; Cater, M.A. Copper as a target for prostate cancer therapeutics: Copper-ionophore pharmacology and altering systemic copper distribution. Oncotarget, 2016, 24(7), 37064-37080.
[105]
Ionescu, J.G.; Novotny, J.; Stejskal, V.; Latsch, A.; Blaurock-Busch, E.; Eisenmann-Klein, M. Increased levels of transition metals in breast cancer tissue. Neuroendocrinol. Lett., 2006, 27(Suppl. 1), 36-39.
[106]
Sarita, P.; Naga Raju, G.J.; Pradeep, A.S.; Rautray, T.R.; Seetharami Reddy, B.; Bhuloka Reddy, S.; Vijayan, V. Analysis of trace elements in blood sera of breast cancer patients by particle induced X-ray emission. J. Radioanal. Nucl. Chem., 2012, 294(3), 355-361.
[107]
Martinez-Finley, E.J.; Chakraborty, S.; Fretham, S.J.; Aschner, M. Cellular transport and homeostasis of essential and nonessential metals. Metallomics, 2012, 4(7), 593-605.
[108]
Grattan, B.J.; Freake, H.C. Zinc and cancer: Implications for LIV-1 in breast cancer. Nutrients, 2012, 4(7), 648-675.
[109]
Vyoral, D.; Hradilek, A.; Neuwirt, J. Transferrin and iron distribution in subcellular fractions of K562 cells in the early stages of transferrin endocytosis. Biochim. Biophys. Acta, 1992, 1137(2), 148-154.
[110]
O’Donnell, K.A.; Yu, D.; Zeller, K.I.; Kim, J.W.; Racke, F.; Thomas-Tikhonenko, A.; Dang, C.V. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol. Cell. Biol., 2006, 26(6), 2373-2386.
[111]
Whitnall, M.; Howard, J.; Ponka, P.; Richardson, D.R. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc. Natl. Acad. Sci. USA, 2006, 103(40), 14901-14906.
[112]
Yuan, J.; Lovejoy, D.B.; Richardson, D.R. Novel di-2-pyridyl-derived iron chelators with marked and selective antitumor activity: In vitro and in vivo assessment. Blood, 2004, 104(5), 1450-1458.
[113]
Lovejoy, D.B.; Sharp, D.M.; Seebacher, N.; Obeidy, P.; Prichard, T.; Stefani, C.; Basha, M.T.; Sharpe, P.C.; Jansson, P.J.; Kalinowski, D.S.; Bernhardt, P.V.; Richardson, D.R. Novel second-generation di-2-pyridylketone thiosemicarbazones show synergism with standard chemotherapeutics and demonstrate potent activity against lung cancer xenografts after oral and intravenous administration in vivo. J. Med. Chem., 2012, 55(16), 7230-7244.
[114]
Kalinowski, D.S.; Richardson, D.R. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol. Rev., 2005, 57(4), 547-583.
[115]
Ceci, A.; Felisi, M.; De Sanctis, V.; De Mattia, D. Pharmacotherapy of iron overload in thalassaemic patients. Expert Opin. Pharmacother., 2003, 4(10), 1763-1774.
[116]
Ding, X.; Xie, H.; Kang, Y.J. The significance of copper chelators in clinical and experimental application. J. Nutr. Biochem., 2011, 22(4), 301-310.
[117]
Wadler, S.; Makower, D.; Clairmont, C.; Lambert, P.; Fehn, K.; Sznol, M. Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, administered by 96-hour intravenous continuous infusion. J. Clin. Oncol., 2004, 22(9), 1553-1563.
[118]
Knox, J.J.; Hotte, S.J.; Kollmannsberger, C.; Winquist, E.; Fisher, B.; Eisenhauer, E.A. Phase II study of Triapine in patients with metastatic renal cell carcinoma: A trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC IND.161). Invest. New Drugs, 2007, 25(5), 471-477.
[119]
Redman, B.G.; Esper, P.; Pan, Q.; Dunn, R.L.; Hussain, H.K.; Chenevert, T.; Brewer, G.J.; Merajver, S.D. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin. Cancer Res., 2003, 9(5), 1666-1672.
[120]
Kalinowski, D.S.; Stefani, C.; Toyokuni, S.; Ganz, T.; Anderson, G.J.; Subramaniam, N.V.; Trinder, D.; Olynyk, J.K.; Chua, A.; Jansson, P.J.; Sahni, S.; Lane, D.J.; Merlot, A.M.; Kovacevic, Z.; Huang, M.L.; Lee, C.S.; Richardson, D.R. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochim. Biophys. Acta, 2016, 1863(4), 727-748.
[121]
Richardson, D.R. Iron chelators as therapeutic agents for the treatment of cancer. Crit. Rev. Oncol. Hematol., 2002, 42(3), 267-281.
[122]
Richardson, D.R. Potential of iron chelators as effective antiproliferative agents. Can. J. Physiol. Pharmacol., 1997, 75(10-11), 1164-1180.
[123]
Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem., 2009, 52(17), 5271-5294.
[124]
Lovejoy, D.B.; Jansson, P.J.; Brunk, U.T.; Wong, J.; Ponka, P.; Richardson, D.R. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res., 2011, 71(17), 5871-5880.
[125]
Kalinowski, D.S.; Stefani, C.; Toyokuni, S.; Ganz, T.; Anderson, G.J.; Subramaniam, N.V.; Trinder, D.; Olynyk, J.K.; Chua, A.; Jansson, P.J.; Sahni, S.; Lane, D.J.; Merlot, A.M.; Kovacevic, Z.; Huang, M.L.; Lee, C.S.; Richardson, D.R. Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochim. Biophys. Acta, 2016, 1863(4), 727-748.
[126]
Pippard, M.J.; Letsky, E.A.; Callender, S.T.; Weatherall, D.J. Prevention of iron loading in transfusion-dependent thalassemia. Lancet, 1978, 1(8075), 1178-1181.
[127]
Brittenham, G.M.; Griffith, P.M.; Nienhuis, A.W.; McLaren, C.E.; Young, N.S.; Tucker, E.E.; Allen, C.J.; Farrell, D.E.; Harris, J.W. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N. Engl. J. Med., 1994, 331(9), 567-573.
[128]
Dayani, P.N.; Bishop, M.C.; Black, K.; Zeltzer, P.M. Desferoxamine (DFO)--mediated iron chelation: Rationale for a novel approach to therapy for brain cancer. J. Neurooncol., 2004, 67(3), 367-377.
[129]
Donfrancesco, A.; Deb, G.; Dominici, C.; Pileggi, D.; Castello, M.A.; Helson, L. Effects of a single course of deferoxamine in neuroblastoma patients. Cancer Res., 1990, 50(16), 4929-4930.
[130]
Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood, 1997, 89(3), 739-761.
[131]
Blatt, J.; Stitely, S. Antineuroblastoma activity of desferoxamine in human cell lines. Cancer Res., 1987, 47(7), 1749-1750.
[132]
Simonart, T.; Boelaert, J.R.; Mosselmans, R.; Andrei, G.; Noel, J.C.; De Clercq, E.; Snoeck, R. Antiproliferative and apoptotic effects of iron chelators on human cervical carcinoma cells. Gynecol. Oncol., 2002, 85(1), 95-102.
[133]
Brard, L.; Granai, C.O.; Swamy, N. Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce apoptosis in ovarian carcinoma. Gynecol. Oncol., 2006, 100(1), 116-127.
[134]
Hoke, E.M.; Maylock, C.A.; Shacter, E. Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin. Free Radic. Biol. Med., 2005, 39(3), 403-411.
[135]
Becton, D.L.; Roberts, B. Antileukemic effects of deferoxamine on human myeloid leukemia cell lines. Cancer Res., 1989, 49(17), 4809-4812.
[136]
Gharagozloo, M.; Khoshdel, Z.; Amirghofran, Z. The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: A comparison with desferrioxamine. Eur. J. Pharmacol., 2008, 589(1-3), 1-7.
[137]
Bomford, A.; Isaac, J.; Roberts, S.; Edwards, A.; Young, S.; Williams, R. The effect of desferrioxamine on transferrin receptors, the cell cycle and growth rates of human leukaemic cells. Biochem. J., 1986, 236(1), 243-249.
[138]
Fan, L.; Iyer, J.; Zhu, S.; Frick, K.K.; Wada, R.K.; Eskenazi, A.E.; Berg, P.E.; Ikegaki, N.; Kennett, R.H.; Frantz, C.N. Inhibition of N-myc expression and induction of apoptosis by iron chelation in human neuroblastoma cells. Cancer Res., 2001, 61(3), 1073-1079.
[139]
Simonart, T.; Degraef, C.; Andrei, G.; Mosselmans, R.; Hermans, P.; Van Vooren, J.P.; Noel, J.C.; Boelaert, J.R.; Snoeck, R.; Heenen, M. Iron chelators inhibit the growth and induce the apoptosis of Kaposi’s sarcoma cells and of their putative endothelial precursors. J. Invest. Dermatol., 2000, 115(5), 893-900.
[140]
Shao, J.; Zhou, B.; Di Bilio, A.J.; Zhu, L.; Wang, T.; Qi, C.; Shih, J.; Yen, Y. A ferrous-triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol. Cancer Ther., 2006, 5(3), 586-592.
[141]
Blatt, J.; Taylor, S.R.; Kontoghiorghes, G.J. Comparison of activity of deferoxamine with that of oral iron chelators against human neuroblastoma cell lines. Cancer Res., 1989, 49(11), 2925-2927.
[142]
Brodie, C.; Siriwardana, G.; Lucas, J.; Schleicher, R.; Terada, N.; Szepesi, A.; Gelfand, E.; Seligman, P. Neuroblastoma sensitivity to growth inhibition by deferrioxamine: Evidence for a block in G1 phase of the cell cycle. Cancer Res., 1993, 53(17), 3968-3975.
[143]
Liang, S.X.; Richardson, D.R. The effect of potent iron chelators on the regulation of p53: Examination of the expression, localization and DNA-binding activity of p53 and the transactivation of WAF1. Carcinogenesis, 2003, 24(10), 1601-1614.
[144]
Nurtjahja-Tjendraputra, E.; Fu, D.; Phang, J.M.; Richardson, D.R. Iron chelation regulates cyclin D1 expression via the proteasome: A link to iron deficiency-mediated growth suppression. Blood, 2007, 109(9), 4045-4054.
[145]
Cavanaugh, P.G.; Jia, L.; Zou, Y.; Nicolson, G.L. Transferrin receptor overexpression enhances transferrin responsiveness and the metastatic growth of a rat mammary adenocarcinoma cell line. Breast Cancer Res. Treat., 1999, 56(3), 203-217.
[146]
Becton, D.L.; Bryles, P. Deferoxamine inhibition of human neuroblastoma viability and proliferation. Cancer Res., 1988, 48(24 Pt 1), 7189-7192.
[147]
Lederman, H.M.; Cohen, A.; Lee, J.W.; Freedman, M.H.; Gelfand, E.W. Deferoxamine: A reversible S-phase inhibitor of human lymphocyte proliferation. Blood, 1984, 64(3), 748-753.
[148]
Donfrancesco, A.; De Bernardi, B.; Carli, M.; Mancini, A.; Nigro, M.; De Sio, L.; Casale, F.; Bagnulo, S.; Helson, L.; Deb, G. Deferoxamine followed by cyclophosphamide, etoposide, carboplatin, thiotepa, induction regimen in advanced neuroblastoma: Preliminary results. Italian Neuroblastoma Cooperative Group. Eur. J. Cancer, 1995, 31A(4), 612-615.
[149]
Estrov, Z.; Tawa, A.; Wang, X.H.; Dube, I.D.; Sulh, H.; Cohen, A.; Gelfand, E.W.; Freedman, M.H. In vitro and in vivo effects of deferoxamine in neonatal acute leukemia. Blood, 1987, 69(3), 757-761.
[150]
Hann, H.W.; Stahlhut, M.W.; Rubin, R.; Maddrey, W.C. Antitumor effect of deferoxamine on human hepatocellular carcinoma growing in athymic nude mice. Cancer, 1992, 70(8), 2051-2056.
[151]
Wang, F.; Elliott, R.L.; Head, J.F. Inhibitory effect of deferoxamine mesylate and low iron diet on the 13762NF rat mammary adenocarcinoma. Anticancer Res., 1999, 19(1A), 445-450.
[152]
Dreicer, R.; Kemp, J.D.; Stegink, L.D.; Cardillo, T.; Davis, C.S.; Forest, P.K.; See, W.A. A phase II trial of deferoxamine in patients with hormone-refractory metastatic prostate cancer. Cancer Invest., 1997, 15(4), 311-317.
[153]
Yamasaki, T.; Terai, S.; Sakaida, I. Deferoxamine for advanced hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(6), 576-578.
[154]
Blatt, J. Deferoxamine in children with recurrent neuroblastoma. Anticancer Res., 1994, 14(5B), 2109-2112.
[155]
Kemp, J.D.; Cardillo, T.; Stewart, B.C.; Kehrberg, E.; Weiner, G.; Hedlund, B.; Naumann, P.W. Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate and IgG monoclonal antibodies against the transferrin receptor. Cancer Res., 1995, 55(17), 3817-3824.
[156]
Selig, R.A.; White, L.; Gramacho, C.; Sterling-Levis, K.; Fraser, I.W.; Naidoo, D. Failure of iron chelators to reduce tumor growth in human neuroblastoma xenografts. Cancer Res., 1998, 58(3), 473-478.
[157]
Kontoghiorghes, G.J.; Pattichi, K.; Hadjigavriel, M.; Kolnagou, A. Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfus. Sci., 2000, 23(3), 211-223.
[158]
Chaston, T.B.; Lovejoy, D.B.; Watts, R.N.; Richardson, D.R. Examination of the antiproliferative activity of iron chelators: Multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin. Cancer Res., 2003, 9(1), 402-414.
[159]
Finch, R.A.; Liu, M.; Grill, S.P.; Rose, W.C.; Loomis, R.; Vasquez, K.M.; Cheng, Y.; Sartorelli, A.C. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem. Pharmacol., 2000, 59(8), 983-991.
[160]
Shao, J.; Zhou, B.; Zhu, L.; Qiu, W.; Yuan, Y.C.; Xi, B.; Yen, Y. In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase. Cancer Res., 2004, 64(1), 1-6.
[161]
Tanaka, H.; Arakawa, H.; Yamaguchi, T.; Shiraishi, K.; Fukuda, S.; Matsui, K.; Takei, Y.; Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 2000, 404(6773), 42-49.
[162]
Kalinowski, D.S.; Richardson, D.R. Iron chelators and differing modes of action and toxicity: The changing face of iron chelation therapy. Chem. Res. Toxicol., 2007, 20(5), 715-720.
[163]
Yu, Y.; Suryo Rahmanto, Y.; Hawkins, C.L.; Richardson, D.R. The potent and novel thiosemicarbazone chelators di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone affect crucial thiol systems required for ribonucleotide reductase activity. Mol. Pharmacol., 2011, 79(6), 921-931.
[164]
Murren, J.; Modiano, M.; Clairmont, C.; Lambert, P.; Savaraj, N.; Doyle, T.; Sznol, M. Phase I and pharmacokinetic study of triapine, a potent ribonucleotide reductase inhibitor, administered daily for five days in patients with advanced solid tumors. Clin. Cancer Res., 2003, 9(11), 4092-4100.
[165]
Feun, L.; Modiano, M.; Lee, K.; Mao, J.; Marini, A.; Savaraj, N.; Plezia, P.; Almassian, B.; Colacino, E.; Fischer, J.; MacDonald, S. Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother. Pharmacol., 2002, 50(3), 223-229.
[166]
Nutting, C.M.; van Herpen, C.M.; Miah, A.B.; Bhide, S.A.; Machiels, J.P.; Buter, J.; Kelly, C.; de Raucourt, D.; Harrington, K.J. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann. Oncol., 2009, 20(7), 1275-1279.
[167]
Attia, S.; Kolesar, J.; Mahoney, M.R.; Pitot, H.C.; Laheru, D.; Heun, J.; Huang, W.; Eickhoff, J.; Erlichman, C.; Holen, K.D. A phase 2 consortium (P2C) trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) for advanced adenocarcinoma of the pancreas. Invest. New Drugs, 2008, 26(4), 369-379.
[168]
Yen, Y.; Margolin, K.; Doroshow, J.; Fishman, M.; Johnson, B.; Clairmont, C.; Sullivan, D.; Sznol, M. A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother. Pharmacol., 2004, 54(4), 331-342.
[169]
Schelman, W.R.; Morgan-Meadows, S.; Marnocha, R.; Lee, F.; Eickhoff, J.; Huang, W.; Pomplun, M.; Jiang, Z.; Alberti, D.; Kolesar, J.M.; Ivy, P.; Wilding, G.; Traynor, A.M. A phase I study of Triapine in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2009, 63(6), 1147-1156.
[170]
Ma, B.; Goh, B.C.; Tan, E.H.; Lam, K.C.; Soo, R.; Leong, S.S.; Wang, L.Z.; Mo, F.; Chan, A.T.; Zee, B.; Mok, T. A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Invest. New Drugs, 2008, 26(2), 169-173.
[171]
Traynor, A.M.; Lee, J.W.; Bayer, G.K.; Tate, J.M.; Thomas, S.P.; Mazurczak, M.; Graham, D.L.; Kolesar, J.M.; Schiller, J.H. A phase II trial of triapine (NSC# 663249) and gemcitabine as second line treatment of advanced non-small cell lung cancer: Eastern Cooperative Oncology Group Study 1503. Invest. New Drugs, 2010, 28(1), 91-97.
[172]
Mackenzie, M.J.; Saltman, D.; Hirte, H.; Low, J.; Johnson, C.; Pond, G.; Moore, M.J. A Phase II study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma. A trial of the Princess Margaret hospital Phase II consortium. Invest. New Drugs, 2007, 25(6), 553-558.
[173]
Yee, K.W.L.; Cortes, J.; Ferrajoli, A.; Garcia-Manero, G.; Verstovsek, S.; Wierda, W.; Thomas, D.; Faderl, S.; King, I.; O’Brien, S.M.; Jeha, S.; Andreeff, M.; Cahill, A.; Sznol, M.; Giles, F.J. Triapine and cytarabine is an active combination in patients with acute leukemia or myelodysplastic syndrome. Leuk. Res., 2006, 30(7), 813-822.
[174]
Lovejoy, D.B.; Richardson, D.R. Iron chelators as anti-neoplastic agents: Current developments and promise of the PIH class of chelators. Curr. Med. Chem., 2003, 10(12), 1035-1049.
[175]
Gao, J.; Richardson, D.R. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression. Blood, 2001, 98(3), 842-850.
[176]
Darnell, G.; Richardson, D.R. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: The effect of the ligands on molecular targets involved in proliferation. Blood, 1999, 94(2), 781-792.
[177]
Richardson, D.R.; Milnes, K. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents II: The mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone. Blood, 1997, 89(8), 3025-3038.
[178]
Richardson, D.R.; Tran, E.H.; Ponka, P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood, 1995, 86(11), 4295-4306.
[179]
Becker, E.M.; Lovejoy, D.B.; Greer, J.M.; Watts, R.; Richardson, D.R. Identification of the di-pyridyl ketone isonicotinoyl hydrazone (PKIH) analogues as potent iron chelators and anti-tumour agents. Br. J. Pharmacol., 2003, 138(5), 819-830.
[180]
Kovacevic, Z.; Chikhani, S.; Lovejoy, D.B.; Richardson, D.R. Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: A new strategy for the treatment of pancreatic cancer. Mol. Pharmacol., 2011, 80(4), 598-609.
[181]
Jansson, P.J.; Yamagishi, T.; Arvind, A.; Seebacher, N.; Gutierrez, E.; Stacy, A.; Maleki, S.; Sharp, D.; Sahni, S.; Richardson, D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp). J. Biol. Chem., 2015, 290(15), 9588-9603.
[182]
Jansson, P.J.; Kalinowski, D.S.; Lane, D.J.; Kovacevic, Z.; Seebacher, N.A.; Fouani, L.; Sahni, S.; Merlot, A.M.; Richardson, D.R. The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the “Triad of Death” in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacol. Res., 2015, 100, 255-260.
[183]
Jansson, P.J.; Hawkins, C.L.; Lovejoy, D.B.; Richardson, D.R. The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: An EPR study. J. Inorg. Biochem., 2010, 104(11), 1224-1228.
[184]
Seebacher, N.A.; Lane, D.J.; Jansson, P.J.; Richardson, D.R. Glucose modulation induces lysosome formation and increases lysosomotropic drug sequestration via the p-glycoprotein drug transporter. J. Biol. Chem., 2016, 291(8), 3796-3820.
[185]
Stacy, A.E.; Palanimuthu, D.; Bernhardt, P.V.; Kalinowski, D.S.; Jansson, P.J.; Richardson, D.R. Structure-activity relationships of di-2-pyridylketone, 2-benzoylpyridine, and 2-acetylpyridine thiosemicarbazones for overcoming pgp-mediated drug resistance. J. Med. Chem., 2016, 59(18), 8601-8620.
[186]
Seebacher, N.A.; Richardson, D.R.; Jansson, P.J. A mechanism for overcoming P-glycoprotein-mediated drug resistance: Novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis., 2016, 7(12), e2510.
[187]
Seebacher, N.; Lane, D.J.; Richardson, D.R.; Jansson, P.J. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic. Biol. Med., 2016, 96, 432-445.
[188]
Merlot, A.M.; Shafie, N.H.; Yu, Y.; Richardson, V.; Jansson, P.J.; Sahni, S.; Lane, D.J.; Kovacevic, Z.; Kalinowski, D.S.; Richardson, D.R. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44-mT): Activation of PERK/eIF2alpha, IRE1alpha, ATF6 and calmodulin kinase. Biochem. Pharmacol., 2016, 109, 27-47.
[189]
Noulsri, E.; Richardson, D.R.; Lerdwana, S.; Fucharoen, S.; Yamagishi, T.; Kalinowski, D.S.; Pattanapanyasat, K. Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells. Am. J. Hematol., 2009, 84(3), 170-176.
[190]
Le, N.T.; Richardson, D.R. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: A link between iron metabolism and proliferation. Blood, 2004, 104(9), 2967-2975.
[191]
Liu, W.; Yue, F.; Zheng, M.; Merlot, A.; Bae, D.H.; Huang, M.; Lane, D.; Jansson, P.; Lui, G.Y.; Richardson, V.; Sahni, S.; Kalinowski, D.; Kovacevic, Z.; Richardson, D.R. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6(11), 8851-8874.
[192]
Moussa, R.S.; Kovacevic, Z.; Richardson, D.R. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget, 2015, 6(30), 29694-29711.
[193]
Gutierrez, E.; Richardson, D.R.; Jansson, P.J. The anticancer agent di-2-pyridylketone 4, 4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms persistant induction of autophagosome synthesis and impairment of lysosomal integrity. J. Biol. Chem., 2014, 289(48), 33568-33589.
[194]
Sahni, S.; Bae, D-H.; Lane, D.J.; Kovacevic, Z.; Kalinowski, D.S.; Jansson, P.J.; Richardson, D.R. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J. Biol. Chem., 2014, 289(14), 9692-9709.
[195]
Kenific, C.M.; Thorburn, A.; Debnath, J. Autophagy and metastasis: Another double-edged sword. Curr. Opin. Cell Biol., 2010, 22(2), 241-245.
[196]
Morselli, E.; Galluzzi, L.; Kepp, O.; Marino, G.; Michaud, M.; Vitale, I.; Maiuri, M.C.; Kroemer, G. Oncosuppressive functions of autophagy. Antioxid. Redox Signal., 2011, 14(11), 2251-2269.
[197]
Tsuchihara, K.; Fujii, S.; Esumi, H. Autophagy and cancer: Dynamism of the metabolism of tumor cells and tissues. Cancer Lett., 2009, 278(2), 130-138.
[198]
Yang, X.; Yu, D-D.; Yan, F.; Jing, Y-Y.; Han, Z-P.; Sun, K.; Liang, L.; Hou, J.; Wei, L-X. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci., 2015, 5(1), 1.
[199]
Krishan, S.; Richardson, D.R.; Sahni, S. The anticancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (dp44mt), up-regulates the AMPK-dependent energy homeostasis pathway in cancer cells. Biochem Biophys Acta Mol Cell Res, 1863, 2016(12), 2916-2933.
[200]
Krishan, S.; Richardson, D.R.; Sahni, S. AMP kinase (PRKAA1). J. Clin. Pathol., 2014, 67(9), 758-763.
[201]
Krishan, S.; Richardson, D.R.; Sahni, S. Adenosine monophosphate–activated kinase and its key role in catabolism: Structure, regulation, biological activity, and pharmacological activation. Mol. Pharmacol., 2015, 87(3)
[202]
3G6o3tt-e3s7m7.a n, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[203]
Yamagishi, T.; Sahni, S.; Sharp, D.M.; Arvind, A.; Jansson, P.J.; Richardson, D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem., 2013, 288(44), 31761-31771.
[204]
Zamora, J.M.; Beck, W.T. Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem. Pharmacol., 1986, 35(23), 4303-4310.
[205]
Gutierrez, E.M.; Seebacher, N.A.; Arzuman, L.; Kovacevic, Z.; Lane, D.J.; Richardson, V.; Merlot, A.M.; Lok, H.; Kalinowski, D.S.; Sahni, S.; Jansson, P.J.; Richardson, D.R. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44-mT). Biochim. Biophys. Acta, 2016, 1863(7 Pt A), 1665-1681.
[206]
Appelqvist, H.; Waster, P.; Kagedal, K.; Ollinger, K. The lysosome: From waste bag to potential therapeutic target. J. Mol. Cell Biol., 2013, 5(4), 214-226.
[207]
Merlot, A.M.; Pantarat, N.; Menezes, S.V.; Sahni, S.; Richardson, D.R.; Kalinowski, D.S. Cellular uptake of the antitumor agent Dp44mT occurs via a carrier/receptor-mediated mechanism. Mol. Pharmacol., 2013, 84(6), 911-924.
[208]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol., 2014, 5, 299.
[209]
Kovacevic, Z.; Menezes, S.V.; Sahni, S.; Kalinowski, D.S.; Bae, D.H.; Lane, D.J.; Richardson, D.R. The metastasis suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), down-regulates the ErbB family of receptors to inhibit downstream oncogenic signaling pathways. J. Biol. Chem., 2016, 291(3), 1029-1052.
[210]
Pugh, C.W.; Ratcliffe, P.J. The von Hippel–Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol., 2003, 13(1), 83-89.
[211]
Lane, D.J.; Saletta, F.; Suryo Rahmanto, Y.; Kovacevic, Z.; Richardson, D.R. N-myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion. PLoS One, 2013, 8(2), e57273.
[212]
Dong, Z.; Arnold, R.J.; Yang, Y.; Park, M.H.; Hrncirova, P.; Mechref, Y.; Novotny, M.V.; Zhang, J.T. Modulation of differentiation-related gene 1 expression by cell cycle blocker mimosine, revealed by proteomic analysis. Mol. Cell. Proteomics, 2005, 4(7), 993-1001.
[213]
Dixon, K.M.; Lui, G.Y.L.; Kovacevic, Z.; Zhang, D.; Yao, M.; Chen, Z.; Dong, Q.; Assinder, S.J.; Richardson, D.R. Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer, 2013, 108(2), 409-419.
[214]
Dixon, K.M.; Lui, G.Y.; Kovacevic, Z.; Zhang, D.; Yao, M.; Chen, Z.; Dong, Q.; Assinder, S.J.; Richardson, D.R. Dp44mT targets the AKT, TGF-beta and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer, 2013, 108(2), 409-419.
[215]
Wangpu, X.; Lu, J.; Xi, R.; Yue, F.; Sahni, S.; Park, K.C.; Menezes, S.; Huang, M.L.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. Targeting the metastasis suppressor, N-Myc downstream regulated gene-1, with novel di-2-pyridylketone thiosemicarbazones: Suppression of tumor cell migration and cell-collagen adhesion by inhibiting focal adhesion kinase/paxillin signaling. Mol. Pharmacol., 2016, 89(5), 521-540.
[216]
Sun, J.; Zhang, D.; Zheng, Y.; Zhao, Q.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: Regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway. Mol. Pharmacol., 2013, 83(2), 454-469.
[217]
Chen, Z.; Zhang, D.; Yue, F.; Zheng, M.; Kovacevic, Z.; Richardson, D.R. The iron chelators Dp44mT and DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J. Biol. Chem., 2012, 287(21), 17016-17028.
[218]
Liu, W.; Xing, F.; Iiizumi-Gairani, M.; Okuda, H.; Watabe, M.; Pai, S.K.; Pandey, P.R.; Hirota, S.; Kobayashi, A.; Mo, Y-Y.; Fukuda, K.; Li, Y.; Watabe, K. N-myc downstream regulated gene 1 modulates Wnt-β-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol. Med., 2012, 4(2), 93-108.
[219]
Li, P.; Zheng, X.; Shou, K.; Niu, Y.; Jian, C.; Zhao, Y.; Yi, W.; Hu, X.; Yu, A. The iron chelator Dp44mT suppresses osteosarcoma’s proliferation, invasion and migration: In vitro and in vivo. Am. J. Transl. Res., 2016, 8(12), 5370-5385.
[220]
Guo, Z.L.; Richardson, D.R.; Kalinowski, D.S.; Kovacevic, Z.; Tan-Un, K.C.; Chan, G.C. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J. Hematol. Oncol., 2016, 9(1), 98.
[221]
Kalinowski, D.S.; Yu, Y.; Sharpe, P.C.; Islam, M.; Liao, Y.T.; Lovejoy, D.B.; Kumar, N.; Bernhardt, P.V.; Richardson, D.R. Design, synthesis, and characterization of novel iron chelators: Structure-activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. J. Med. Chem., 2007, 50(15), 3716-3729.
[222]
Yu, Y.; Suryo Rahmanto, Y.; Richardson, D.R. Bp44mT: An orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy. Br. J. Pharmacol., 2012, 165(1), 148-166.
[223]
Merlot, A.M.; Pantarat, N.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R. Membrane transport and intracellular sequestration of novel thiosemicarbazone chelators for the treatment of cancer. Mol. Pharmacol., 2010, 78(4), 675-684.
[224]
French, F.A.; Freedlander, B.L. Carcinostatic action of polycarbonyl compounds and their derivatives. IV. Glyoxal bis (thiosemicarbazone) and derivatives. Cancer Res., 1958, 18(11), 1290-1300.
[225]
Stefani, C.; Al-Eisawi, Z.; Jansson, P.J.; Kalinowski, D.S.; Richardson, D.R. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J. Inorg. Biochem., 2015, 152, 20-37.
[226]
Cater, M.A.; Pearson, H.B.; Wolyniec, K.; Klaver, P.; Bilandzic, M.; Paterson, B.M.; Bush, A.I.; Humbert, P.O.; La Fontaine, S.; Donnelly, P.S.; Haupt, Y. Increasing intracellular bioavailable copper selectively targets prostate cancer cells. ACS Chem. Biol., 2013, 8(7), 1621-1631.
[227]
Petering, H.G.; Buskirk, H.H.; Crim, J.A. The effect of dietary mineral supplements of the rat on the antitumor activity of 3-ethoxy-2-oxobutyraldehyde bis(thiosemi-carbazone). Cancer Res., 1967, 27(6), 1115-1121.
[228]
Dehdashti, F.; Grigsby, P.W.; Lewis, J.S.; Laforest, R.; Siegel, B.A.; Welch, M.J. Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J. Nucl. Med., 2008, 49(2), 201-205.
[229]
Dehdashti, F.; Grigsby, P.W.; Mintun, M.A.; Lewis, J.S.; Siegel, B.A.; Welch, M.J. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: Relationship to therapeutic response-a preliminary report. Int. J. Radiat. Oncol. Biol. Phys., 2003, 55(5), 1233-1238.
[230]
Dearling, J.L.; Lewis, J.S.; Mullen, G.E.; Rae, M.T.; Zweit, J.; Blower, P.J. Design of hypoxia-targeting radiopharmaceuticals: Selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur. J. Nucl. Med., 1998, 25(7), 788-792.
[231]
Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev., 2011, 40(5), 3005-3018.
[232]
Lewis, J.; Laforest, R.; Buettner, T.; Song, S.; Fujibayashi, Y.; Connett, J.; Welch, M. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): An agent for radiotherapy. Proc. Natl. Acad. Sci. USA, 2001, 98(3), 1206-1211.
[233]
Anderson, C.J.; Ferdani, R. Copper-64 radiopharmaceuticals for PET imaging of cancer: Advances in preclinical and clinical research. Cancer Biother. Radiopharm., 2009, 24(4), 379-393.
[234]
John, E.K.; Green, M.A. Structure-activity relationships for metal-labeled blood flow tracers: Comparison of keto aldehyde bis(thiosemicarbazonato)copper(II) derivatives. J. Med. Chem., 1990, 33(6), 1764-1770.
[235]
Dearling, J.L.; Lewis, J.S.; Mullen, G.E.; Welch, M.J.; Blower, P.J. Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: Structure-activity relationships. J. Biol. Inorg. Chem., 2002, 7(3), 249-259.
[236]
Palanimuthu, D.; Shinde, S.V.; Somasundaram, K.; Samuelson, A.G. In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J. Med. Chem., 2013, 56(3), 722-734.
[237]
Richardson, D.R.; Sharpe, P.C.; Lovejoy, D.B.; Senaratne, D.; Kalinowski, D.S.; Islam, M.; Bernhardt, P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem., 2006, 49(22), 6510-6521.
[238]
Quach, P.; Gutierrez, E.; Basha, M.T.; Kalinowski, D.S.; Sharpe, P.C.; Lovejoy, D.B.; Bernhardt, P.V.; Jansson, P.J.; Richardson, D.R. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: Identification of novel thiosemicarbazones and therapeutics that prevent this effect. Mol. Pharmacol., 2012, 82(1), 105-114.
[239]
Basha, M.T.; Bordini, J.; Richardson, D.R.; Martinez, M.; Bernhardt, P.V. Kinetico-mechanistic studies on methemoglobin generation by biologically active thiosemicarbazone iron(III) complexes. J. Inorg. Biochem., 2016, 162, 326-333.
[240]
Potuckova, E.; Jansova, H.; Machacek, M.; Vavrova, A.; Haskova, P.; Tichotova, L.; Richardson, V.; Kalinowski, D.S.; Richardson, D.R.; Simunek, T. Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. PLoS One, 2014, 9(2), e88754.