[1]
Nuclear Receptors Nomenclature Committee. A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell, 1999, 97(100), 161-163.
[2]
Chen, Y.; Tang, Y.; Guo, C.; Wang, J.; Boral, D.; Nie, D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem. Pharmacol., 2012, 83(8), 1112-1126.
[3]
Germain, P.; Staels, B.; Dacquet, C.; Spedding, M.; Laudet, V. Overview of nomenclature of nuclear receptors. Pharmacol. Rev., 2006, 58(4), 685-704.
[4]
Fowler, A.M.; Solodin, N.; Preisler-Mashek, M.T.; Zhang, P.; Lee, A.V.; Alarid, E.T. Increases in estrogen receptor-alpha concentration in breast cancer cells promote serine 118/104/106-independent AF-1 transactivation and growth in the absence of estrogen. FASEB J., 2004, 18(1), 81-93.
[5]
Matthews, L.; Johnson, J.; Berry, A.; Trebble, P.; Cookson, A.; Spiller, D.; Rivers, C.; Norman, M.; White, M.; Ray, D. Cell cycle phase regulates glucocorticoid receptor function. PLoS One, 2011, 6(7), e22289.
[6]
Mavinakere, M.S.; Powers, J.M.; Subramanian, K.S.; Roggero, V.R.; Allison, L.A. Multiple Novel Signals Mediate Thyroid Hormone Receptor Nuclear Import and Export. J. Biol. Chem., 2012, 287(37), 31280-31297.
[7]
Necela, B.M.; Cidlowski, J.A. A single amino acid change in the first zinc finger of the DNA binding domain of the glucocorticoid receptor regulates differential promoter selectivity. J. Biol. Chem., 2004, 279(38), 39279-39288.
[8]
Jones, S.A.; Moore, L.B.; Shenk, J.L.; Wisely, G.B.; Hamilton, G.A.; McKee, D.D.; Tomkinson, N.C.; LeCluyse, E.L.; Lambert, M.H.; Willson, T.M.; Kliewer, S.A.; Moore, J.T. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol. Endocrinol., 2000, 14(1), 27-39.
[9]
Yang, J.; Singleton, D.W.; Shaughnessy, E.A.; Khan, S.A. The F-domain of estrogen receptor-alpha inhibits ligand induced receptor dimerization. Mol. Cell. Endocrinol., 2008, 295(1-2), 94-100.
[10]
Billas, I.; Moras, D. Allosteric controls of nuclear receptor function in the regulation of transcription. J. Mol. Biol., 2013, 425(13), 2317-2329.
[11]
Dasgupta, S.; Lonard, D.M.; O’Malley, B.W. Nuclear receptor coactivators: master regulators of human health and disease. Annu. Rev. Med., 2014, 65(3), 279-292.
[12]
Johnson, D.R.; Li, C-W.; Chen, L-Y.; Ghosh, J.C.; Chen, J.D. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT). Mol. Pharmacol., 2006, 69(1), 99-108.
[13]
Leonhardt, S.A.; Boonyaratanakornkit, V.; Edwards, D.P. Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids, 2003, 68(10-13), 761-770.
[14]
Marino, M.; Galluzzo, P.; Ascenzi, P. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics, 2006, 7(8), 497-508.
[15]
Hodgson, M.C.; Shen, H.C.; Hollenberg, A.N.; Balk, S.P. Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Mol. Cancer Ther., 2008, 7(10), 3187-3194.
[16]
Huq, M.D.M.; Gupta, P.; Tsai, N-P.; Wei, L-N. Modulation of testicular receptor 4 activity by mitogen-activated protein kinase-mediated phosphorylation. Mol. Cell. Proteomics, 2006, 5(11), 2072-2082.
[17]
Mani, S.; Huang, H.; Sundarababu, S.; Liu, W.; Kalpana, G.; Smith, A.B.; Horwitz, S.B. Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin. Cancer Res., 2005, 11(17), 6359-6369.
[18]
Thyroid Disorders. Basic Science and Clinical Practice., Imam, S. K., Ahmad, S. I., Eds.; Springer International
Publishing. 2016.
[19]
Kurose, K.; Saeki, M.; Tohkin, M.; Hasegawa, R. Thyroid hormone receptor mediates human MDR1 gene expression-Identification of the response region essential for gene expression. Arch. Biochem. Biophys., 2008, 474(1), 82-90.
[20]
Çetinkalp, S.; Karadeniz, M.; Erdoğan, M.; Eroğlu, Z.; Zengi, A.; Kosova, B.; Yilmaz, C.; Tezcanli, B.; Kabalak, T.; Özgen, A. Human Multidrug Resistance-1 Gene Expression Levels in Graves-Basedow Disease. Exp. Clin. Endocrinol. Diabetes, 2010, 118, 158-160.
[21]
Burk, O.; Brenner, S.S.; Hofmann, U.; Tegude, H.; Igel, S.; Schwab, M.; Eichelbaum, M.; Alscher, M.D. The impact of thyroid disease on the regulation, expression, and function of ABCB1 (MDR1/P glycoprotein) and consequences for the disposition of digoxin. Clin. Pharmacol. Ther., 2010, 88(5), 685-694.
[22]
Astapova, I.; Ramadoss, P. Costa-E-Sousa, R. H.; Ye, F.; Holtz, K. A.; Li, Y.; Niepel, M. W.; Cohen, D. E.; Hollenberg, A. N. Hepatic nuclear corepressor 1 regulates cholesterol absorption through a TRβ1-governed pathway. J. Clin. Invest., 2014, 124(5), 1976-1986.
[23]
Saeki, M.; Kurose, K.; Tohkin, M.; Hasegawa, R. Identification of the functional vitamin D response elements in the human MDR1 gene. Biochem. Pharmacol., 2008, 76(4), 531-542.
[24]
Tachibana, S.; Yoshinari, K.; Chikada, T.; Toriyabe, T.; Nagata, K.; Yamazoe, Y. Involvement of Vitamin D Receptor in the Intestinal Induction of Human ABCB1. Drug Metab. Dispos., 2009, 37(8), 1604-1610.
[25]
Fan, J.; Liu, S.; Du, Y.; Morrison, J.; Shipman, R.; Pang, K.S. Up-Regulation of Transporters and Enzymes by the Vitamin D Receptor Ligands, 1alpha, 25-Dihydroxyvitamin D3 and Vitamin D Analogs, in the Caco-2 Cell Monolayer. J. Pharmacol. Exp. Ther., 2009, 330(2), 389-402.
[26]
Durk, M.R.; Chan, G.N.Y.; Campos, C.R.; Peart, J.C.; Chow, E.C.Y.; Lee, E.; Cannon, R.E.; Bendayan, R.; Miller, D.S.; Pang, K.S. 1α,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells. J. Neurochem., 2012, 123(6), 944-953.
[27]
Chow, E.C.Y.; Durk, M.R.; Cummins, C.L.; Pang, K.S. 1α,25-Dihydroxyvitamin D3 up-regulates P-glycoprotein via the vitamin D receptor and not farnesoid X receptor in both fxr (-/-) and fxr (+/+) mice and increased renal and brain efflux of digoxin in mice in vivo. J. Pharmacol. Exp. Ther., 2011, 337(3), 846-859.
[28]
Maeng, H.; Durk, M.; Chow, E.C.Y.; Ghoneim, R.; Pang, K.S. 1α,25-Dihydroxyvitamin D3 on intestinal transporter function: Studies with the rat everted intestinal sac. Biopharm. Drug Dispos., 2011, 32(3), 112-125.
[29]
Arias, A.; Rigalli, J.P.; Villanueva, S.S.M.; Ruiz, M.L.; Luquita, M.G.; Perdomo, V.G.; Vore, M.; Catania, V.A.; Mottino, A.D. Regulation of expression and activity of multidrug resistance proteins MRP2 and MDR1 by estrogenic compounds in Caco-2 cells. Role in prevention of xenobiotic-induced cytotoxicity. Toxicology, 2014, 320(1), 46-55.
[30]
Xiao, C.Q.; Chen, R.; Lin, J.; Wang, G.; Chen, Y.; Tan, Z.R.; Zhou, H.H. Effect of genistein on the activities of cytochrome P450 3A and P-glycoprotein in Chinese healthy participants. Xenobiotica, 2012, 42(2), 173-178.
[31]
Zuloaga, K.L.; Swift, S.N.; Gonzales, R.J.; Wu, T.J.; Handa, R.J. The androgen metabolite, 5α-androstane-3β,17β-diol, decreases cytokine-induced cyclooxygenase-2, vascular cell adhesion molecule-1 expression, and P-glycoprotein expression in male human brain microvascular endothelial cells. Endocrinology, 2012, 153(12), 5949-5960.
[32]
Mahringer, A.; Fricker, G. BCRP at the Blood - Brain Barrier: Genomic Regulation by 17-Estradiol. Mol. Pharm., 2010, 7(5), 1835-1847.
[33]
Nickel, S.; Mahringer, A. The xenoestrogens ethinylestradiol and bisphenol A regulate BCRP at the blood-brain barrier of rats. Xenobiotica, 2014, 8254(11), 1-9.
[34]
Hartz, A.M.S.; Madole, E.K.; Miller, D.S.; Bauer, B. Estrogen Receptor β Signaling through Phosphatase and Tensin Homolog/Phosphoinositide 3-Kinase/Akt/Glycogen Synthase Kinase 3 Down-Regulates Blood-Brain Barrier Breast Cancer Resistance Protein. J. Pharmacol. Exp. Ther., 2010, 334(2), 467-476.
[35]
Koraïchi, F.; Inoubli, L.; Lakhdari, N.; Meunier, L.; Vega, A.; Mauduit, C.; Benahmed, M.; Prouillac, C.; Lecoeur, S. Neonatal exposure to zearalenone induces long term modulation of ABC transporter expression in testis. Toxicology, 2013, 310, 29-38.
[36]
Vähäkangas, K.; Myllynen, P. Drug transporters in the human blood-placental barrier. Br. J. Pharmacol., 2009, 158(3), 665-678.
[37]
Wang, H.; Zhou, L.; Gupta, A.; Vethanayagam, R.R.; Zhang, Y.; Unadkat, J.D.; Mao, Q. Regulation of BCRP/ABCG2 expression by progesterone and 17beta-estradiol in human placental BeWo cells. Am. J. Physiol. Endocrinol. Metab., 2006, 290, E798-E807.
[38]
Yasuda, S.; Kobayashi, M.; Itagaki, S.; Hirano, T.; Iseki, K. Response of the ABCG2 promoter in T47D cells and BeWo cells to sex hormone treatment. Mol. Biol. Rep., 2009, 36(7), 1889-1896.
[39]
Sieppi, E.; Vähäkangas, K.; Rautio, A.; Ietta, F.; Paulesu, L.; Myllynen, P. The xenoestrogens, bisphenol A and para-nonylphenol, decrease the expression of the ABCG2 transporter protein in human term placental explant cultures. Mol. Cell. Endocrinol., 2016, 429, 41-49.
[40]
Ruiz, M.L.; Rigalli, J.P.; Arias, A.; Villanueva, S.S.M.; Banchio, C.; Vore, M.; Mottino, A.D.; Catania, V.A. induction of hepatic multidrug resistance-associated protein 3 by ethynylestradiol is independent of cholestasis and mediated by estrogen receptor. Drug Metab. Dispos., 2013, 41(2), 275-280.
[41]
Ruiz, M.L.; Rigalli, J.P.; Arias, A.; Villanueva, S.S.M.; Banchio, C.; Vore, M.; Mottino, A.D.; Catania, V.A. Estrogen receptor-a mediates human multidrug resistance associated protein 3 induction by 17a-ethynylestradiol. Role of activator protein-1. Biochem. Pharmacol., 2013, 86(3), 401-409.
[42]
Miners, J.; Attwood, J.; Birkett, D. Influence of sex and oral contraceptive steroids on Paracetamol metabolism. Br. J. Clin. Pharmacol., 1983, 16, 503-509.
[43]
Song, X.; Vasilenko, A.; Chen, Y.; Valanejad, L.; Verma, R.; Yan, B.; Deng, R. Transcriptional dynamics of bile salt export pump during pregnancy: Mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology, 2014, 60(6), 1993-2007.
[44]
Chen, Y.; Vasilenko, A.; Song, X.; Valanejad, L.; Verma, R.; You, S.; Yan, B.; Shiffka, S.; Hargreaves, L.; Nadolny, C.; Deng, R. Estrogen and estrogen receptor-α-mediated transrepression of bile salt export pump. Mol. Endocrinol., 2015, 29(4), 6.
[45]
Yamamoto, Y.; Moore, R.; Hess, H.A.; Guo, G.L.; Gonzalez, F.J.; Korach, K.S.; Maronpot, R.R.; Negishi, M. Estrogen receptor α mediates 17α-ethynylestradiol causing hepatotoxicity. J. Biol. Chem., 2006, 281(24), 16625-16631.
[46]
Shi, J.F.; Yang, N.; Ding, H.J.; Zhang, J.X.; Hu, M.L.; Leng, Y.; Han, X.; Sun, Y.J. ERα directly activated the MDR1 transcription to increase paclitaxel-resistance of ERα-positive breast cancer cells in vitro and in vivo. Int. J. Biochem. Cell Biol., 2014, 53, 35-45.
[47]
Honorat, M.; Mesnier, A.; Vendrell, J.; Guitton, J.; Bieche, I.; Lidereau, R.; Kruh, G.D.; Dumontet, C.; Cohen, P.; Payen, L. ABCC11 expression is regulated by estrogen in MCF7 cells, correlated with estrogen receptor α expression in postmenopausal breast tumors and overexpressed in tamoxifen-resistant breast cancer cells. Endocr. Relat. Cancer, 2008, 15(1), 125-138.
[48]
Ma, X.J.; Wang, Z.; Ryan, P.D.; Isakoff, S.J.; Barmettler, A.; Fuller, A.; Muir, B.; Mohapatra, G.; Salunga, R.; Tuggle, J.T.; Tran, Y.; Tran, D.; Tassin, A.; Amon, P.; Wang, W.; Wang, W.; Enright, E.; Stecker, K.; Estepa-Sabal, E.; Smith, B.; Younger, J.; Balis, U.; Michaelson, J.; Bhan, A.; Habin, K.; Baer, T.M.; Brugge, J.; Haber, D.A.; Erlander, M.G.; Sgroi, D.C. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell, 2004, 5(6), 607-616.
[49]
Zhang, Y.; Zhou, G.; Wang, H.; Zhang, X.; Wei, F.; Cai, Y.; Yin, D. Transcriptional upregulation of breast cancer resistance protein by 17beta-estradiol in ERalpha-positive MCF-7 breast cancer cells. Oncology, 2006, 71(5-6), 446-455.
[50]
Zhang, Y.; Wang, H.; Wei, L.; Li, G.; Yu, J.; Gao, Y.; Gao, P.; Zhang, X.; Wei, F.; Yin, D.; Zhou, G. Transcriptional modulation of BCRP gene to reverse multidrug resistance by toremifene in breast adenocarcinoma cells. Breast Cancer Res. Treat., 2010, 123(3), 679-689.
[51]
Pradhan, M.; Bembinster, L.A.; Baumgarten, S.C.; Frasor, J. Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NFκB cooperativity at adjacent response elements. J. Biol. Chem., 2010, 285(41), 31100-31106.
[52]
Li, W.; Jia, M.; Qin, X.; Hu, J.; Zhang, X.; Zhou, G. Harmful effect of ERβ on BCRP-mediated drug resistance and cell proliferation in ERα/PR-negative breast cancer. FEBS J., 2013, 280(23), 6128-6140.
[53]
Imai, Y.; Ishikawa, E.; Asada, S.; Sugimoto, Y. Estrogen-Mediated Post transcriptional Down-regulation of Breast Cancer Resistance Protein/ABCG2. Cancer Res., 2005, 65(2), 1-5.
[54]
Kauffmann, H.M.; Pfannschmidt, S.; Zöller, H.; Benz, A.; Vorderstemann, B.; Webster, J.I.; Schrenk, D. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology, 2002, 171(2-3), 137-146.
[55]
Haenisch, S.; Laechelt, S.; Bruckmueller, H.; Werk, A.; Noack, A.; Bruhn, O.; Remmler, C.; Cascorbi, I. Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol. Pharmacol., 2011, 80(2), 314-320.
[56]
Phillips, M.C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem., 2014, 289(35), 24020-24029.
[57]
Wang, H.; Liu, Y.; Zhu, L.; Wang, W.; Wan, Z.; Chen, F.; Wu, Y.; Zhou, J.; Yuan, Z. 17β-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor α-dependent pathway. Int. J. Mol. Med., 2014, 33(3), 550-558.
[58]
Lu, N.Z.; Cidlowski, J.A. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol., 2006, 16(6), 301-307.
[59]
Pavek, P.; Cerveny, L.; Svecova, L.; Brysch, M.; Libra, A.; Vrzal, R.; Nachtigal, P.; Staud, F.; Ulrichova, J.; Fendrich, Z.; Dvorak, Z. Examination of glucocorticoid receptor α-mediated transcriptional regulation of P-glycoprotein, CYP3A4, and CYP2C9 genes in placental trophoblast cell lines. Placenta, 2007, 28(10), 1004-1011.
[60]
Martin, P.; Riley, R.; Back, D.J.; Owen, A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br. J. Pharmacol., 2008, 153(4), 805-819.
[61]
Narang, V.S.; Fraga, C.; Kumar, N.; Shen, J.; Throm, S.; Stewart, C.F.; Waters, C.M. Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood-brain barrier. Am. J. Physiol. Cell Physiol., 2008, 295(2), C440-C450.
[62]
Honorat, M.; Mesnier, A.; Pietro, A., Di.; Lin, V.; Cohen, P.; Dumontet, C.; Payen, L. Dexamethasone down-regulates ABCG2 expression levels in breast cancer cells. Biochem. Biophys. Res. Commun., 2008, 375(3), 308-314.
[63]
Piekarz, R.L.; Cohen, D.; Horwitz, S.B. Progesterone regulates the murine multidrug resistance mdr1b gene. J. Biol. Chem., 1993, 268, 7613-7616.
[64]
Axiotis, C.; Guarch, R.; Merino, M.; Laporte, N.; Neumann, R. P-glycoprotein expression is increased in human secretory and gestational endometrium. Lab. Invest., 1991, 65(5), 577-581.
[65]
Fukuda, H.; He, P.J.; Yokota, K.; Soh, T.; Yamauchi, N.; Hattori, M.A. Progesterone-dependent and -independent expression of the multidrug resistance type I gene in porcine granulosa cells. Mol. Cell. Biochem., 2007, 298(1-2), 179-186.
[66]
Wang, H.; Lee, E.; Zhou, L.; Leung, P.C.K.; Ross, D.D.; Unadkat, J.D.; Mao, Q. Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells. Mol. Pharmacol., 2008, 73(3), 845-854.
[67]
Klaassen, C.D.; Aleksunes, L.M. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation. Pharmacol. Rev., 2014, 62(1), 1-96.
[68]
Wu, X.; Zhang, X.; Sun, L.; Zhang, H.; Li, L.; Wang, X.; Li, W.; Su, P.; Hu, J.; Gao, P.; Zhou, G. Progesterone Negatively Regulates BCRP in Progesterone Receptor-Positive Human Breast Cancer Cells. Cell. Physiol. Biochem., 2013, 32, 344-354.
[69]
Wu, X.; Zhang, X.; Zhang, H.; Su, P.; Li, W.; Li, L.; Wang, Y.; Liu, W.; Gao, P.; Zhou, G. Progesterone receptor downregulates breast cancer resistance protein expression via binding to the progesterone response element in breast cancer. Cancer Sci., 2012, 103(5), 959-967.
[70]
Maher, J.M.; Cheng, X.; Tanaka, Y.; Scheffer, G.L.; Klaassen, C.D. Hormonal regulation of renal multidrug resistance-associated proteins 3 and 4 (Mrp3 and Mrp4) in mice. Biochem. Pharmacol., 2006, 71(10), 1470-1478.
[71]
Cai, C.; Omwancha, J.; Hsieh, C-L.; Shemshedini, L. Androgen induces expression of the multidrug resistance protein gene MRP4 in prostate cancer cells. Prostate Cancer Prostatic Dis., 2007, 10(1), 39-45.
[72]
Ho, L.; Kench, J.G.; Handelsman, D.J.; Scheffer, G.L.; Stricker, P.D.; Grygiel, J.G.; Sutherland, R.L.; Henshall, S.M.; Allen, J.D.; Horvath, L.G. Androgen regulation of multidrug resistance-associated protein 4 (MRP4/ABCC4) in prostate cancer. Prostate, 2008, 68(13), 1421-1429.
[73]
Suzuki, T.; Zhao, Y.L.; Nadai, M.; Naruhashi, K.; Shimizu, A.; Takagi, K.; Takagi, K.; Hasegawa, T. Gender-related differences in expression and function of hepatic P-glycoprotein and multidrug resistance-associated protein (Mrp2) in rats. Life Sci., 2006, 79(5), 455-461.
[74]
di Masi, A.; Marinis, E De .; Ascenzi, P.; Marino, M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol. Aspects Med., 2009, 30(5), 297-343.
[75]
Tocchetti, G.N.; Rigalli, J.P.; Arana, M.R.; Villanueva, S.S.M.; Mottino, A.D. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol. Appl. Pharmacol., 2016, 303, 45-57.
[76]
Lemmen, J.; Tozakidis, I.E.P.; Galla, H.J. Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood-brain barrier. Brain Res., 2013, 1491, 1-13.
[77]
Albermann, N.; Schmitz-Winnenthal, F.H.; Z’graggen, K.; Volk, C.; Hoffmann, M.M.; Haefeli, W.E.; Weiss, J. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem. Pharmacol., 2005, 70(6), 949-958.
[78]
Teng, S.; Piquette-Miller, M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br. J. Pharmacol., 2007, 151(3), 367-376.
[79]
Bauer, B.; Yang, X.; Hartz, A.M.S.; Olson, E.R.; Zhao, R.; Kalvass, J.C.; Pollack, G.M.; Miller, D.S. In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. Mol. Pharmacol., 2006, 70(4), 1212-1219.
[80]
Bauer, B.; Hartz, A.M.S.; Lucking, J.R.; Yang, X.; Pollack, G.M.; Miller, D.S. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTp, at the blood-brain barrier. J. Cereb. Blood Flow Metab., 2008, 28, 1222-1234.
[81]
Geick, A.; Eichelbaum, M.; Burk, O. Nuclear Receptor Response Elements Mediate Induction of Intestinal MDR1 by Rifampin. J. Biol. Chem., 2001, 276(18), 14581-14587.
[82]
Kast, H.R.; Goodwin, B.; Tarr, P.T.; Jones, S.A.; Anisfeld, A.M.; Stoltz, C.M.; Tontonoz, P.; Kliewer, S.; Willson, T.M.; Edwards, P.A. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem., 2002, 277(4), 2908-2915.
[83]
Greiner, B.; Eichelbaum, M.; Fritz, P.; Kreichgauer, H.P.; Von Richter, O.; Zundler, J.; Kroemer, H.K. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest., 1999, 104(2), 147-153.
[84]
Drescher, S.; Glaeser, H.; Mürdter, T.; Hitzl, M.; Eichelbaum, M.; Fromm, M.F. P-glycoprotein-mediated intestinal and biliary digoxin transport in humans. Clin. Pharmacol. Ther., 2003, 73(3), 223-231.
[85]
Fromm, M.F.; Kauffmann, H.M.; Fritz, P.; Burk, O.; Kroemer, H.K.; Warzok, R.W.; Eichelbaum, M.; Siegmund, W.; Schrenk, D. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol., 2000, 157(5), 1575-1580.
[86]
Fromm, M.F.; Eckhardt, K.; Li, S.; Schanzle, G.; Hofmann, U.; Mikus, G.; Eichelbaum, M. Loss of analgesic effect of morphine due to coadministration of rifampicin. Pain, 1997, 72, 261-267.
[87]
van de Wetering, K.; Zelcer, N.; Kuil, A.; Feddema, W.; Hillebrand, M.; Vlaming, M. L. H.; Schinkel, A. H.; Beijnen, J. H.; Borst, P. Multidrug resistance proteins 2 and
3 provide alternative routes for hepatic excretion of
morphine-glucuronides. Mol. Pharmacol, 2007, 72, [2),
387-394.
[88]
Naesens, M.; Kuypers, D.R.J.; Streit, F.; Armstrong, V.W.; Oellerich, M.; Verbeke, K.; Vanrenterghem, Y. Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: Implications for drug exposure in renal allograft recipients. Clin. Pharmacol. Ther., 2006, 80(5), 509-521.
[89]
Moore, L.B.; Goodwin, B.; Jones, S.; Wisely, G.; Serabjit-Singh, C.; Willson, T.; Collins, J.; Kliewer, S.St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7500-7502.
[90]
Dürr, D.; Stieger, B.; Kullak-Ublick, G.A.; Rentsch, K.M.; Steinert, H.C.; Meier, P.J.; Fattinger, K. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol. Ther., 2000, 68(6), 598-604.
[91]
Dresser, G.K.; Schwarz, U.I.; Wilkinson, G.R.; Kim, R.B. Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clin. Pharmacol. Ther., 2003, 73(1), 41-50.
[92]
Schwarz, U.I.; Hanso, H.; Oertel, R.; Miehlke, S.; Kuhlisch, E.; Glaeser, H.; Hitzl, M.; Dresser, G.K.; Kim, R.B.; Kirch, W. Induction of intestinal P-glycoprotein by St John’s wort reduces the oral bioavailability of talinolol. Clin. Pharmacol. Ther., 2007, 81(5), 669-678.
[93]
Bauer, S.; Störmer, E.; Johne, A.; Krüger, H.; Budde, K.; Neumayer, H.; Roots, I.; Mai, I. Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. Br. J. Clin. Pharmacol., 2003, 55(2), 203-211.
[94]
Ruschitzka, F.; Meier, P.J.; Turina, M.; Lüscher, T.F.; Noll, G. Acute heart transplant rejection due to Saint John’s wort. Lancet, 2000, 355(9203), 548-549.
[95]
Shibayama, Y.; Ikeda, R.; Motoya, T.; Yamada, K.St. John’s Wort (Hypericum perforatum) induces overexpression of multidrug resistance protein 2 (MRP2) in rats: A 30-day ingestion study. Food Chem. Toxicol., 2004, 42(6), 995-1002.
[96]
Gupta, A.; Mugundu, G.; Desai, P.B.; Thummel, K.E.; Unadkat, J.D. Intestinal human colon adenocarcinoma cell line, LS180, is an excellent model to study PXR-but not CAR-mediated CYP3A4 and MDR1 induction: studies with Anti-HIV Protease Inhibitors. Drug Metab. Dispos., 2008, 36(6), 1172-1180.
[97]
Weiss, J.; Haefeli, W.E. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int. J. Antimicrob. Agents, 2013, 41(5), 484-487.
[98]
Chan, G.N.Y.; Patel, R.; Cummins, C.L.; Bendayan, R. Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells. Antimicrob. Agents Chemother., 2013, 57(9), 4481-4488.
[99]
Luo, G.; Cunningham, M.; Kim, S.; Burn, T.I.M.; Lin, J.; Sinz, M.; Hamilton, G.; Rizzo, C.; Jolley, S.; Gilbert, D.; Downey, A.; Mudra, D.; Graham, R.; Carroll, K.; Xie, J.; Madan, A.; Parkinson, A.; Christ, D.; Selling, B.; Lecluyse, E.; Gan, L. Cyp3a4 induction by drugs: Correlation between a pregnane x receptor reporter gene assay and Cyp3a4 expression in human hepatocytes. Drug Metab. Dispos., 2002, 30(7), 795-804.
[100]
Giessmann, T.; May, K.; Modess, C.; Wegner, D.; Hecker, U.; Zschiesche, M.; Dazert, P.; Grube, M.; Schroeder, E.; Warzok, R.; Cascorbi, I.; Kroemer, H.K.; Siegmund, W. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin. Pharmacol. Ther., 2004, 76(3), 192-200.
[101]
Rigalli, J.P.; Ruiz, M.L.; Perdomo, V.G.; Villanueva, S.S.M.; Mottino, A.D.; Catania, V.A. Pregnane X receptor mediates the induction of P-glycoprotein by spironolactone in HepG2 cells. Toxicology, 2011, 285(1-2), 18-24.
[102]
Ghanem, C.I.; Gomez, P.C.; Arana, M.C.; Perassolo, M.; Delli Carpini, G.; Luquita, M.G.; Veggi, L.M.; Catania, V.A.; Bengochea, L.A.; Mottino, A.D. Induction of rat intestinal P-glycoprotein by spironolactone and its effect on absorption of orally administered digoxin. J. Pharmacol. Exp. Ther., 2006, 318(3), 1146-1152.
[103]
Satsu, H.; Hiura, Y.; Mochizuki, K.; Hamada, M.; Shimizu, M. Activation of Pregnane X Receptor and Induction of MDR1 by Dietary Phytochemicals Activation of Pregnane X Receptor and Induction of MDR1 by Dietary Phytochemicals. J. Agric. Food Chem., 2008, 56, 5366-5373.
[104]
Theile, D.; Hohmann, N.; Kiemel, D.; Gattuso, G.; Barreca, D.; Mikus, G.; Haefeli, W.E.; Schwenger, V.; Weiss, J. Clementine juice has the potential for drug interactions - In vitro comparison with grapefruit and mandarin juice. Eur. J. Pharm. Sci., 2017, 97, 247-256.
[105]
Rühl, R.; Sczech, R.; Landes, N.; Pfluger, P.; Kluth, D.; Schweigert, F.J. Carotenoids and their metabolites are naturally occurring activators of gene expression via the pregnane X receptor. Eur. J. Nutr., 2004, 43(6), 336-343.
[106]
Podszun, M.C.; Jakobi, M.; Birringer, M.; Weiss, J.; Frank, J. The long chain α-tocopherol metabolite α-13′-COOH and γ- tocotrienol induce P-glycoprotein expression and activity by activation of the pregnane X receptor in the intestinal cell line LS180. Mol. Nutr. Food Res., 2017, 61(3), 1-9.
[107]
Qiang, F.; Kang, K.; Han, H. Repeated dosing of piperine induced gene expression of P-glycoprotein via stimulated pregnane-X-receptor activity and altered pharmacokinetics of diltiazem in rats. Biopharm. Drug Dispos., 2012, 33, 446-454.
[108]
Harmsen, S.; Meijerman, I.; Febus, C.L.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H.M. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother. Pharmacol., 2010, 66, 765-771.
[109]
Harmsen, S.; Meijerman, I.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H.M. PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors. Eur. J. Pharm. Sci., 2013, 48(4-5), 644-649.
[110]
Jiang, H.; Chen, K.; He, J.; Pan, F.; Li, J.; Chen, J.; Chen, W.; Liang, H. Association of pregnane X receptor with multidrug resistance-related protein 3 and its role in human colon cancer chemoresistance. J. Gastrointest. Surg., 2009, 13(10), 1831-1838.
[111]
Chen, Y.; Tang, Y.; Chen, S.; Nie, D. Regulation of drug resistance by human pregnane X receptor in breast cancer. Cancer Biol. Ther., 2009, 8(13), 1265-1272.
[112]
Chen, Y.; Tang, Y.; Wang, M.T.; Zeng, S.; Nie, D. Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res., 2007, 67(21), 10361-10367.
[113]
Chen, Y.; Huang, W.; Chen, F.; Hu, G.; Li, F.; Li, J.; Xuan, A. Pregnane X receptors regulate CYP2C8 and P-glycoprotein to impact on the resistance of NSCLC cells to Taxol. Cancer Med., 2016, 5(12), 3564-3571.
[114]
Healan-Greenberg, C.; Waring, J.F.; Kempf, D.J.; Blomme, E.A.G.; Tirona, R.G.; Kim, R.B. A human immunodeficiency virus protease inhibitor is a novel functional inhibitor of human pregnane X receptor. Drug Metab. Dispos., 2008, 36(3), 500-507.
[115]
Svecova, L.; Vrzal, R.; Burysek, L.; Anzenbacherova, E.; Cerveny, L.; Grim, J.; Trejtnar, F.; Kunes, J.; Pour, M.; Staud, F.; Anzenbacher, P.; Dvorak, Z.; Pavek, P. Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab. Dispos., 2008, 36(2), 339-348.
[116]
Fuchs, I.; Hafner-Blumenstiel, V.; Markert, C.; Burhenne, J.; Weiss, J.; Haefeli, W.E.; Mikus, G. Effect of the CYP3A inhibitor ketoconazole on the PXR-mediated induction of CYP3A activity. Eur. J. Clin. Pharmacol., 2013, 69(3), 507-513.
[117]
Mooiman, K.D.; Maas-Bakker, R.F.; Moret, E.E.; Beijnen, J.H.; Schellens, J.H.M.; Meijerman, I. Milk thistle’s active components silybin and isosilybin: Novel inhibitors of PXR-mediated CYP3A4 induction. Drug Metab. Dispos., 2013, 41(8), 1494-1504.
[118]
Lim, Y.P.; Ma, C.Y.; Liu, C.L.; Lin, Y.H.; Hu, M.L.; Chen, J.J.; Hung, D.Z.; Hsieh, W.T.; Huang, J.D. Sesamin: A naturally occurring lignan inhibits CYP3A4 by antagonizing the pregnane X receptor activation. Evidence-based Complement. Altern. Med., 2012, 2012, 242810.
[119]
Deng, R.; Xu, C.; Chen, X.; Chen, P.; Wang, Y.; Zhou, X.; Jin, J.; Niu, L.; Ying, M.; Huang, M.; Bi, H. Resveratrol Suppresses the Inducible Expression of CYP3A4 Through the Pregnane X Receptor. J. Pharmacol. Sci., 2014, 126(2), 146-154.
[120]
Kwatra, D.; Venugopal, A.; Standing, D.; Ponnurangam, S.; Dhar, A.; Mitra, A.; Anant, S. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance. J. Pharm. Sci., 2013, 102(12), 4444-4454.
[121]
Doricakova, A.; Vrzal, R. A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes. Toxicology, 2015, 337, 72-78.
[122]
Burk, O.; Arnold, K.A.; Geick, A.; Tegude, H.; Eichelbaum, M. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol. Chem., 2005, 386(6), 503-513.
[123]
Korjamo, T.; Mönkkönen, J.; Uusitalo, J.; Turpeinen, M.; Pelkonen, O.; Honkakoski, P. Metabolic and efflux properties of Caco-2 cells stably transfected with nuclear receptors. Pharm. Res., 2006, 23(9), 1991-2001.
[124]
Burk, O.; Arnold, K.A.; Nussler, A.K.; Schaeffeler, E.; Efimova, E.; Avery, B.A.; Avery, M.A.; Fromm, M.F.; Eichelbaum, M. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharmacol., 2005, 67(6), 1954-1965.
[125]
Li, Y.; Wang, Q.; Yao, X.; Li, Y. Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways. Eur. J. Pharmacol., 2010, 640(1-3), 46-54.
[126]
Jigorel, E.; Le Vee, M.; Boursier-Neyret, C.; Parmentier, Y.; Fardel, O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab. Dispos., 2006, 34(10), 1756-1763.
[127]
Maher, J.M.; Cheng, X.; Slitt, A.L.; Dieter, M.Z.; Klaassen, C.D. Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab. Dispos., 2005, 33(7), 956-962.
[128]
Aleksunes, L.M.; Klaassen, C.D. Coordinated regulation of hepatic phase-I and -II drug metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARalpha-, and Nrf2-null mice. Drug Metab. Dispos., 2012, 40(7), 1366-1379.
[129]
Xiong, H.; Yoshinari, K.; Brouwer, K.L.R.; Negishi, M. Role of constitutive androstane receptor in the in vivo induction of Mrp3 And CYP2B1/2 by phenobarbital. Drug Metab. Dispos., 2002, 30(8), 918-923.
[130]
Cerveny, L.; Svecova, L.; Anzenbacherova, E.; Vrzal, R.; Staud, F.; Dvorak, Z.; Ulrichova, J.; Anzenbacher, P.; Pavek, P. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab. Dispos., 2007, 35(7), 1032-1041.
[131]
Wang, X.; Sykes, D.B.; Miller, D.S. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. Mol. Pharmacol., 2010, 78(3), 376-383.
[132]
Zhang, J.; Huang, W.; Chua, S.S.; Wei, P.; Moore, D.D. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science, 2002, 298(5592), 422-424.
[133]
Slosky, L.M.; Thompson, B.J.; Sanchez-Covarrubias, L.; Zhang, Y.; Laracuente, M-L.; Vanderah, T.W.; Ronaldson, P.T.; Davis, T.P. Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol. Pharmacol., 2013, 84(5), 774-786.
[134]
Lemmen, J.; Tozakidis, I.E.P.; Bele, P.; Galla, H.J. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation. Brain Res., 2013, 1501, 68-80.
[135]
Assem, M.; Schuetz, E.G.; Leggas, M.; Sun, D.; Yasuda, K.; Reid, G.; Zelcer, N.; Adachi, M.; Strom, S.; Evans, R.M.; Moore, D.D.; Borst, P.; Schuetz, J.D. Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice. J. Biol. Chem., 2004, 279(21), 22250-22257.
[136]
Chai, J.; Luo, D.; Wu, X.; Wang, H.; He, Y.; Li, Q.; Zhang, Y.; Chen, L.; Peng, Z.H.; Xiao, T.; Wang, R.; Chen, W. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis. J. Gastrointest. Surg., 2011, 15(6), 996-1004.
[137]
Sberna, A.L.; Assem, M.; Gautier, T.; Grober, J.; Guiu, B.; Jeannin, A.; Pais De Barros, J.P.; Athias, A.; Lagrost, L.; Masson, D. Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. J. Hepatol., 2011, 55(1), 154-161.
[138]
Huang, W.; Zhang, J.; Chua, S.S.; Qatanani, M.; Han, Y.; Granata, R.; Moore, D.D. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proc. Natl. Acad. Sci. USA, 2003, 100(7), 4156-4161.
[139]
Tian, J.; Feng, Y.; Fu, H.; Xie, H.Q.; Jiang, J.X.; Zhao, B. The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals. Environ. Sci. Technol., 2015, 49(16), 9518-9531.
[140]
Tan, K.P.; Wang, B.; Yang, M.; Boutros, P.C.; Macaulay, J.; Xu, H.; Chuang, A.I.; Kosuge, K.; Yamamoto, M.; Takahashi, S.; Wu, A.M.L.; Ross, D.D.; Harper, P.A.; Ito, S. Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol. Pharmacol., 2010, 78(2), 175-185.
[141]
Ebert, B.; Seidel, A.; Lampen, A. Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Carcinogenesis, 2005, 26(10), 1754-1763.
[142]
Tompkins, L.M.; Li, H.; Li, L.; Lynch, C.; Xie, Y.; Nakanishi, T.; Ross, D.D.; Wang, H. A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is involved in the induction of BCRP/ABCG2 in LS174T cells. Biochem. Pharmacol., 2010, 80(11), 1754-1761.
[143]
Halwachs, S.; Wassermann, L.; Lindner, S.; Zizzadoro, C.; Honscha, W. Fungicide prochloraz and environmental pollutant dioxin induce the ABCG2 transporter in bovine mammary epithelial cells by the arylhydrocarbon receptor signaling pathway. Toxicol. Sci., 2013, 131(2), 491-501.
[144]
Han, Y.; Sugiyama, Y. Expression and regulation of breast cancer resistance protein and multidrug resistance associated protein 2 in BALB/c mice. Biol. Pharm. Bull., 2006, 29(5), 1032-1035.
[145]
Theile, D.; Allendorf, D.; Köhler, B.C.; Jassowicz, A.; Weiss, J. Obatoclax as a perpetrator in drug-drug interactions and its efficacy in multidrug resistance cell lines. J. Pharm. Pharmacol., 2015, 67(11), 1575-1584.
[146]
To, K.K.W.; Robey, R.; Zhan, Z.; Bangiolo, L.; Bates, S.E. Upregulation of ABCG2 by Romidepsin via the Aryl Hydrocarbon Receptor Pathway. Mol. Cancer Res., 2011, 9(4), 516.
[147]
Xu, S.; Weerachayaphorn, J.; Cai, S-Y.; Soroka, C.J.; Boyer, J.L. Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(1), G126-G135.
[148]
Wang, X.; Hawkins, B.T.; Miller, D.S. Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. FASEB J., 2011, 25(2), 644-652.
[149]
Hanada, K.; Nakai, K.; Tanaka, H.; Suzuki, F.; Kumada, H.; Ohno, Y.; Ozawa, S.; Ogata, H. Effect of nuclear receptor downregulation on hepatic expression of cytochrome P450 and transporters in chronic hepatitis C in association with fibrosis development. Drug Metab. Pharmacokinet., 2012, 27(3), 301-306.
[150]
DiNatale, B.C.; Smith, K.; John, K.; Krishnegowda, G.; Amin, S.G.; Perdew, G.H. Ah Receptor Antagonism Represses Head and Neck Tumor Cell Aggressive Phenotype. Mol. Cancer Res., 2012, 10(10), 1369-1379.
[151]
To, K.K.W.; Yu, L.; Liu, S.; Fu, J.; Cho, C.H. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol. Carcinog., 2012, 51(6), 449-464.
[152]
Derosa, G.; Sahebkar, A.; Maffioli, P. The Role of Various Peroxisome Proliferator-Activated Receptors and Their Ligands in Clinical Practice. J. Cell. Physiol., 2017, 9999, 1-9.
[153]
Kok, T.; Wolters, H.; Bloks, V.W.; Havinga, R.; Jansen, P.L.M.; Staels, B.; Kuipers, F. Induction of hepatic ABC transporter expression is part of the PPARα-mediated fasting response in the mouse. Gastroenterology, 2003, 124(1), 160-171.
[154]
Xia, X.; Jung, D.; Webb, P.; Zhang, A.; Zhang, B.; Li, L.; Ayers, S.D.; Gabbi, C.; Ueno, Y.; Gustafsson, J.Å.; Alpini, G.; Moore, D.D.; Lesage, G.D. Liver X receptor β and peroxisome proliferator-activated receptor δ regulate cholesterol transport in murine cholangiocytes. Hepatology, 2012, 56(6), 2288-2296.
[155]
Aleksunes, L.M.; Xu, J.; Lin, E.; Wen, X.; Goedken, M.J.; Slitt, A.L. Pregnancy represses induction of efflux transporters in livers of type I diabetic mice. Pharm. Res., 2013, 30(9), 2209-2220.
[156]
Moffit, J.S.; Aleksunes, L.M.; Maher, J.M.; Scheffer, G.L.; Klaassen, C.D.; Manautou, J.E. Induction of hepatic transporters multidrug resistance-associated proteins (Mrp) 3 and 4 by clofibrate is regulated by peroxisome proliferator-activated receptor alpha. J. Pharmacol. Exp. Ther., 2006, 317(2), 537-545.
[157]
Bigo, C.; Kaeding, J.; El Husseini, D.; Rudkowska, I.; Verreault, M.; Vohl, M.C.; Barbier, O. PPARα: A master regulator of bilirubin homeostasis. PPAR Res., 2014, 2014, 747014.
[158]
More, V.R.; Campos, C.R.; Evans, R. a; Oliver, K. D.; Chan, G. N.; Miller, D. S.; Cannon, R. E. PPAR-α, a lipid-sensing transcription factor, regulates blood-brain barrier efflux transporter expression. J. Cereb. Blood Flow Metab., 2017, 37(4), 1199-1212.
[159]
Hoque, M.T.; Robillard, K.R.; Bendayan, R. Regulation of breast cancer resistance protein by peroxisome proliferator-activated receptor α in human brain microvessel endothelial cells. Mol. Pharmacol., 2012, 81(4), 598-609.
[161]
Ma, Z.; Deng, C.; Hu, W.; Zhou, J.; Fan, C.; Di, S.; Liu, D.; Yang, Y.; Wang, D. Liver X receptors and their agonists: Targeting for cholesterol homeostasis and cardiovascular diseases. Curr. Issues Mol. Biol., 2017, 22, 41-64.
[162]
Huwait, E.A.; Greenow, K.R.; Singh, N.N.; Ramji, D.P. A novel role for c-Jun N-terminal kinase and phosphoinositide 3-kinase in the liver X receptor-mediated induction of macrophage gene expression. Cell. Signal., 2011, 23(3), 542-549.
[163]
Huwait, E.A.; Singh, N.N.; Michael, D.R.; Davies, T.S.; Moss, J.W.E.; Ramji, D.P. Protein kinase C is involved in the induction of ATP-binding cassette transporter A1 expression by liver X receptor/retinoid X receptor agonist in human macrophages. J. Cell. Biochem., 2015, 116(9), 2032-2038.
[164]
Murthy, S.; Born, E.; Mathur, S.N.; Field, F.J. LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. J. Lipid Res., 2002, 43(7), 1054-1064.
[165]
Akanuma, S. ichi; Hori, S.; Ohtsuki, S.; Fujiyoshi, M.; Terasaki, T. Expression of nuclear receptor mRNA and liver X receptor-mediated regulation of ABC transporter A1 at rat blood-brain barrier. Neurochem. Int., 2008, 52(4-5), 669-674.
[166]
Chisaki, I.; Kobayashi, M.; Itagaki, S.; Hirano, T.; Iseki, K. Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver. Biochim. Biophys. Acta, 2009, 1788(11), 2396-2403.
[167]
Parks, D.; Blanchard, S.; Bledsoe, R.; Chandra, G.; Consler, T.; Kliewer, S.; Stimmel, J.; Willson, T.; Zavacki, A.; Moore, D.; Lehmann, J. Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science, 1999, 284, 1365-1368.
[168]
Lu, T.T.; Repa, J.J.; Mangelsdorf, D.J. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J. Biol. Chem., 2001, 276(41), 37735-37738.
[169]
Sinal, C.J.; Tohkin, M.; Miyata, M.; Ward, J.M.; Lambert, G.; Gonzalez, F.J. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell, 2000, 102(6), 731-744.
[170]
Schuetz, E.G.; Strom, S.; Yasuda, K.; Lecureur, V.; Assem, M.; Brimer, C.; Lamba, J.; Kim, R.B.; Ramachandran, V.; Komoroski, B.J.; Venkataramanan, R.; Cai, H.; Sinal, C.J.; Gonzalez, F.J.; Schuetz, J.D. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J. Biol. Chem., 2001, 276(42), 39411-39418.
[171]
Ananthanarayanan, M.; Balasubramanian, N.; Makishima, M.; Mangelsdorf, D.J.; Suchy, F.J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem., 2001, 276(31), 28857-28865.
[172]
Plass, J.R.M.; Mol, O.; Heegsma, J.; Geuken, M.; Faber, K.N.; Jansen, P.L.M.; Müller, M. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology, 2002, 35(3), 589-596.
[173]
Gomez-Ospina, N.; Potter, C.; Xiao, R.; Manickam, K.; Kim, M.; Kim, K.; Shneider, B.; Picarsic, J.; Jacobson, T.; Zhang, J.; He, W.; Liu, P.; Knisely, A.; Finegold, M.; Muzny, D.; Boerwinkle, E.; Lupski, J.; Plon, S.; Gibbs, R.; Eng, C.; Yang, Y.; Washington, G.; Porteus, M.; Berquist, W.; Kambham, N.; Singh, R.; Xia, F.; Enns, G.; Moore, D. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat. Commun., 2016, 7, 1-8.
[174]
Geier, A.; Dietrich, C.G.; Voigt, S.; Ananthanarayanan, M.; Lammert, F.; Schmitz, A.; Trauner, M.; Wasmuth, H.E.; Boraschi, D.; Balasubramaniyan, N.; Suchy, F.J.; Matern, S.; Gartung, C. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289, G831-G841.
[175]
Abu-Hayyeh, S.; Papacleovoulou, G.; Lövgren-Sandblom, A.; Tahir, M.; Oduwole, O.; Jamaludin, N.A.; Ravat, S.; Nikolova, V.; Chambers, J.; Selden, C.; Rees, M.; Marschall, H.U.; Parker, M.G.; Williamson, C. Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology, 2013, 57(2), 716-726.
[176]
Balasubramaniyan, N.; Luo, Y.; Sun, A.Q.; Suchy, F.J. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J. Biol. Chem., 2013, 288(19), 13850-13862.
[177]
Chen, Y.; Song, X.; Valanejad, L.; Vasilenko, A.; More, V.; Qiu, X.; Chen, W.; Lai, Y.; Slitt, A.; Stoner, M.; Yan, B.; Deng, R. Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology, 2013, 57(4), 1530-1541.
[178]
Deng, R.; Yang, D.; Yang, J.; Yan, B. Oxysterol 22 (R)-hydroxycholesterol induces the expression of the bile salt export pump through nuclear receptor farsenoid X receptor but not liver X receptor. J. Pharmacol. Exp. Ther., 2006, 317(1), 317-325.
[179]
Zhao, A.; Yu, J.; Lew, J-L.; Huang, L.; Wright, S.D.; Cui, J. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol., 2004, 23(8), 519-526.
[180]
Swales, K.E.; Korbonits, M.; Carpenter, R.; Walsh, D.T.; Warner, T.D.; Bishop-Bailey, D. The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res., 2006, 66(20), 10120-10126.
[181]
Herraez, E.; Gonzalez-Sanchez, E.; Vaquero, J.; Romero, M.R.; Serrano, M.A.; Marin, J.J.G.; Briz, O. Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Mol. Pharm., 2012, 9(9), 2565-2576.
[182]
Uray, I.P.; Dmitrovsky, E.; Brown, P.H. Retinoids and rexinoids in cancer prevention: From laboratory to clinic. Semin. Oncol., 2016, 43(1), 49-64.
[183]
Breier, A.; Stetka, J.; Bohacova, V.; Macejova, D.; Brtko, J.; Sulova, Z. Effect of 9-cis retinoic acid and all-trans retinoic acid in combination with verapamil on P-glycoprotein expression in L1210 cells. Neoplasma, 2014, 61(5), 553-565.
[184]
Stromskaya, T.P.; Rybalkina, E.Y.; Shtil, A.A.; Zabotina, T.N.; Filippova, N.A.; Stavrovskaya, A.A. Influence of exogenous RAR alpha gene on MDR1 expression and P-glycoprotein function in human and rodent cell lines. Br. J. Cancer, 1998, 77(11), 1718-1725.
[185]
Denson, L.A.; Bohan, A.; Held, M.A.; Boyer, J.L. Organ-specific alterations in RARα:RXRα abundance regulate rat Mrp2 (Abcc2) expression in obstructive cholestasis. Gastroenterology, 2002, 123(2), 599-607.
[186]
Hessel, S.; Lampen, A. All-trans retinoic acid enhances the transport of phase II metabolites of benzo[a]pyrene by inducing the Breast Cancer Resistance Protein expression in Caco-2 cells. Toxicol. Lett., 2010, 197(2), 151-155.
[187]
Costet, P.; Lalanne, F.; Gerbod-Giannone, M.C.; Molina, J.R.; Fu, X.; Lund, E.G.; Gudas, L.J.; Tall, A.R. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol. Cell. Biol., 2003, 23(21), 7756-7766.
[188]
Germain, P.; Chambon, P.; Eichele, G.; Evans, R.M.; Lazar, M. a; Leid, M.; De Lera, A. R.; Lotan, R.; Mangelsdorf, D. J.; Gronemeyer, H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev., 2006, 58(4), 760-772.
[189]
Chen, J.; Costa, L.G.; Guizzetti, M. Retinoic Acid Isomers Up-Regulate ATP Binding Cassette A1 and G1 and Cholesterol Efflux in Rat Astrocytes: Implications for Their Therapeutic and Teratogenic Effects. J. Pharmacol. Exp. Ther., 2011, 338(3), 870-878.
[190]
Sun, Y.; Fan, J.; Zhu, Z.; Guo, X.; Zhou, T.; Duan, W.; Shen, X. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer’s disease model mice. Eur. J. Pharmacol., 2015, 762(1), 202-213.
[191]
Hoeke, M.O.; Plass, J.R.M.; Heegsma, J.; Geuken, M.; van Rijsbergen, D.; Baller, J.F.W.; Kuipers, F.; Moshage, H.; Jansen, P.L.M.; Faber, K.N. Low retinol levels differentially modulate bile salt-induced expression of human and mouse hepatic bile salt transporters. Hepatology, 2009, 49(1), 151-159.
[192]
Cermanova, J.; Kadova, Z.; Zagorova, M.; Hroch, M.; Tomsik, P.; Nachtigal, P.; Kudlackova, Z.; Pavek, P.; Dubecka, M.; Ceckova, M.; Staud, F.; Laho, T.; Micuda, S. Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms. Toxicol. Appl. Pharmacol., 2015, 285(1), 12-22.
[193]
Liu, Y.; Binz, J.; Numerick, M.J.; Dennis, S.; Luo, G.; Desai, B.; MacKenzie, K.I.; Mansfield, T.A.; Kliewer, S.A.; Goodwin, B.; Jones, S.A. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J. Clin. Invest., 2003, 112(11), 1678-1687.
[195]
Chen, P.; Li, J.; Fan, X.; Zeng, H.; Deng, R.; Li, D.; Huang, M.; Bi, H. Oleanolic acid attenuates obstructive cholestasis in bile duct-ligated mice, possibly via activation of NRF2-MRPs and FXR antagonism. Eur. J. Pharmacol., 2015, 765, 131-139.
[196]
Plat, J.; Mensink, R.P. Increased intestinal ABCA1 expression contributes to the decrease in cholesterol absorption after plant stanol consumption. FASEB J., 2002, 16(10), 1248-1253.
[197]
De Smet, E.; Mensink, R.P.; Plat, J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol. Nutr. Food Res., 2012, 56(7), 1058-1072.