Review Article

Acid-Sensing Ion Channels Structural Aspects, Pathophysiological Importance and Experimental Mutational Data Available Across Various Species to Target Human ASIC1

Author(s): Anurag Singh Chauhan, Ganesh Chandra Sahoo*, Manas Ranjan Dikhit and Pradeep Das*

Volume 20, Issue 1, 2019

Page: [111 - 121] Pages: 11

DOI: 10.2174/1389450119666180820103316

Price: $65

Abstract

The H+-gated (proton) currents are widely present in brain sensory neuronal system and various studies identified the structural units and deciphered the physiological and pathological function of ion channels. The normal neuron requires an optimal pH to carry out its functions. In acidosis, the ASICs (Acid-sensing Ion Channels) are activated in both the CNS (central nervous system) and PNS (peripheral nervous system). ASICs are related to degenerin channels (DEGs), epithelial sodium cation channels (ENaCs), and FMRF-amide (Phe-Met-Arg-Phe-NH2)-gated channels (FaNaC). Its activation leads physiologically to pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. It detects the level of acid fluctuation in the extracellular environment and responds to acidic pH by increasing the rate of membrane depolarization. It conducts cations like Na+ (Sodium) and Ca2+ (Calcium) ions across the membrane upon protonation. The ASICs subtypes are characterized by differing biophysical properties and pH sensitivities. The subtype ASIC1 is involved in various CNS diseases and therefore focusing on its specific functional properties will guide in drug design methods. The review highlights the cASIC1 (Chicken ASIC1) crystal structures, involvement in physiological environment and limitations of currently available inhibitors. In addition, it details the mutational data available to design an inhibitor against hASIC1 (Human ASIC1).

Keywords: Acid- sensing ion channels, human ASIC1, hASIC1 inhibitor, hASIC1 mutation, H+-gated (proton), CNS diseases.

Graphical Abstract

[1]
Krusek J, Dittert I, Hendrych T, Hník P, et al. Activation and modulation of ligand-gated ion channels. Physiol Res 2004; 53(Suppl. 1): S103-13.
[2]
Chu XP, Papasian CJ, Wang JQ, Xiong ZG, et al. Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential. Int J Physiol Pathophysiol Pharmacol 2011; 3(4): 288-309.
[3]
Kreple CJ, Lu Y, Taugher RJ, et al. Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci 2014; 17(8): 1083-91.
[4]
Askwith CC, Benson CJ, Welsh MJ, et al. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci USA 2001; 98(11): 6459-63.
[5]
Ugawa S, Yamamoto T, Ueda T, et al. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Neurosci 2003; 23(9): 3616-22.
[6]
Ettaiche M, Deval E, Cougnon M, et al. Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci 2006; 26(21): 5800-9.
[7]
Ettaiche M, Guy N, Hofman P, et al. Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 2004; 24(5): 1005-12.
[8]
Wu LJ, Duan B, Mei YD, et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 2004; 279(42): 43716-24.
[9]
Immke DC, E.W. McCleskey. ASIC3: a lactic acid sensor for cardiac pain. Scientific World Journal 2001; 1: 510-2.
[10]
Sutherland SP, Benson CJ, Adelman JP, et al. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 2001; 98(2): 711-6.
[11]
Wemmie JA, Chen J, Askwith CC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002; 34(3): 463-77.
[12]
Ziemann AE, Schnizler MK, Albert GW, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 2008; 11(7): 816-22.
[13]
Kweon HJ and, B.C. Suh. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 2013; 46(6): 295-304.
[14]
Yermolaieva O, Leonard AS, Schnizler MK, et al. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA 2004; 101(17): 6752-7.
[15]
Coryell MW, Wunsch AM, Haenfler JM, et al. Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 2009; 29(17): 5381-8.
[16]
Wong HK, Bauer PO, Kurosawa M, et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet 2008; 17(20): 3223-35.
[17]
Wemmie JA, R.J. Taugher and, C.J. Kreple. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 2013; 14(7): 461-71.
[18]
Xiong ZG, Zhu XM, Chu XP, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 2004; 118(6): 687-98.
[19]
Dwyer JM, Rizzo SJ, Neal SJ, et al. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology (Berl) 2009; 203(1): 41-52.
[20]
Goudarzi M, Zarghami Z, Salavati-Niasari M. Novel and solvent-free cochineal-assisted synthesis of Ag–Al2O3 nanocomposites via solid-state thermal decomposition route: characterization and photocatalytic activity assessment. J Mater Sci Mater Electron 2016; 27: 9789-97.
[21]
Mojgan Goudarzi MS-N. Mohammadhassan Motaghedifard, Seyed Mostafa Hosseinpour-Mashkani, Semiconductive Tl2O3 nanoparticles: Facile synthesis in liquid phase, characterization and its applications as photocatalytic substrate and electrochemical sensor. Journal of Molecular Liquids 2016; 219: 720-7.
[22]
Goudarzi M, Ghanbari D, Salavati-Niasari M, et al. Synthesis and Characterization of Al(OH)3, Al2O3 Nanoparticles and Polymeric Nanocomposites. J Cluster Sci 2016; 27(1): 25-38.
[23]
Goudarzi M, Mir N, Mousavi-Kamazani M, et al. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci Rep 2016; 6: 32539.
[24]
Mehdi Mousavi-Kamazani MS-N. Mojgan Goudarzi,Zabihullah Zarghami, Hydrothermal synthesis of CdIn2S4 nanostructures using new starting reagent for elevating solar cells efficiency. Journal of Molecular Liquids 2017; 242: 653-61.
[25]
Maysinger D. Ji J1, Hutter E1, et al.Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front Neurosci 2015; 9: 480.
[26]
Mazzocchi N, De Ceglia R, Mazza D, et al. Fluorescence-based automated screening assay for the study of the pH-sensitive channel ASIC1a. J Biomol Screen 2016; 21(4): 372-80.
[27]
Qiang M, Dong X, Zha Z, et al. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc Natl Acad Sci USA 2018.
[28]
Saez NJ, Saez SS, Jonas EJ, et al. Spider-venom peptides as therapeutics. Toxins (Basel) 2010; 2(12): 2851-71.
[29]
Wei X, Chen X, Ying M, et al. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 2014; 4(3): 193-201.
[30]
Mukhopadhyay M, Singh A, Sachchidanand S, et al. Quercetin inhibits acid-sensing ion channels through a putative binding site in the central vestibular region. Neuroscience 2017; 348: 264-72.
[31]
M. Goudarzi. M.B.A.M.S.-N., Synthesis, characterization and degradation of organic dye over Co3O4 nanoparticles prepared from new binuclear complex precursors. RSC Advances 2014; 4(87): 46517-20.
[32]
Dhawan S, R. Kapil and, B. Singh. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 2011; 63(3): 342-51.
[33]
Gonzales EB, N. Sumien. Acidity and acid-sensing ion channels in the normal and Alzheimer’s disease brain. J Alzheimers Dis 2017; 57(4): 1137-44.
[34]
Li M, Inoue K, Branigan D, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab 2010; 30(6): 1247-60.
[35]
Mojgan Goudarzi MS-N. Controllable synthesis of new Tl2S2O3 nanostructures via hydrothermal process; characterization and investigation photocatalytic activity for degradation of some anionic dyes. Journal of Molecular Liquids 2016; 219: 851-7.
[36]
Chu XP, Xiong ZG. Acid-sensing ion channels in pathological conditions. Adv Exp Med Biol 2013; 961: 419-31.
[37]
Bohlen CJ, Chesler AT, Sharif-Naeini R, et al. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 2011; 479(7373): 410-4.
[38]
Diochot S, Baron A, Salinas M, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 2012; 490(7421): 552-5.
[39]
Wang W, et al. Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem 2006; 281(5): 2497-505.
[40]
Voilley N, de Weille J, Mamet J, et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 2001; 21(20): 8026-33.
[41]
Escoubas P, Bernard C, Lambeau G, et al. Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci 2003; 12(7): 1332-43.
[42]
Wang W, Ye SD, Zhou KQ, et al. High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron. J Neurosci Res 2012; 90(1): 267-77.
[43]
Dorofeeva NA, Barygin OI, Staruschenko A, et al. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J Neurochem 2008; 106(1): 429-41.
[44]
Mango D, Barbato G, Piccirilli S, et al. Electrophysiological and metabolic effects of CHF5074 in the hippocampus: protection against in vitro ischemia. Pharmacol Res 2014; 81: 83-90.
[45]
Kuduk SD, Chang RK, Di Marco CN, et al. Identification of non-amidine inhibitors of acid-sensing ion channel-3 (ASIC3). Bioorg Med Chem Lett 2011; 21(14): 4255-8.
[46]
Schmidt A, Rossetti G, Joussen S, et al. Diminazene Is a Slow Pore Blocker of Acid-Sensing Ion Channel 1a (ASIC1a). Mol Pharmacol 2017; 92(6): 665-75.
[47]
Jensen JE, Cristofori-Armstrong B, Anangi R, et al. Understanding the molecular basis of toxin promiscuity: the analgesic sea anemone peptide APETx2 interacts with acid-sensing ion channel 3 and hERG channels via overlapping pharmacophores. J Med Chem 2014; 57(21): 9195-203.
[48]
Qu ZW, Liu TT, Qiu CY, et al. Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons. Neurosci Lett 2014; 567: 35-9.
[49]
Baconguis I, Bohlen CJ, Goehring A, et al. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell 2014; 156(4): 717-29.
[50]
Leng TD, Si HF, Li J, et al. Amiloride Analogs as ASIC1a Inhibitors. CNS Neurosci Ther 2016; 22(6): 468-76.
[51]
Buta A, Maximyuk O, Kovalskyy D, et al. Novel potent orthosteric antagonist of ASIC1a prevents NMDAR-dependent LTP induction. J Med Chem 2015; 58(11): 4449-61.
[52]
Wemmie JA, M.P. Price, M.J. Welsh. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 2006; 29(10): 578-86.
[53]
Sherwood TW and , C.C. Askwith. Endogenous arginine-phenylalanine-amide-related peptides alter steady-state desensitization of ASIC1a. J Biol Chem 2008; 283(4): 1818-30.
[54]
Jasti J, Furukawa H, Gonzales EB, et al. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 2007; 449(7160): 316-23.
[55]
Gonzales EB, T. Kawate, E. Gouaux. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 2009; 460(7255): 599-604.
[56]
Baconguis I, and E. Gouaux. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 2012; 489(7416): 400-5.
[57]
Dawson RJ, Benz J, Stohler P, et al. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat Commun 2012; 3: 936.
[58]
Paukert M, Babini E, Pusch M, et al. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 2004; 124(4): 383-94.
[59]
Boscardin E, Alijevic O, Hummler E, et al. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173(18): 2671-701.
[60]
Yang Land, L.G. Palmer. Ion conduction and selectivity in acid-sensing ion channel 1. J Gen Physiol 2014; 144(3): 245-55.
[61]
Lynagh T, Flood E, Boiteux C, et al. A selectivity filter at the intracellular end of the acid-sensing ion channel pore. eLife 2017; 12(6): e24630.
[62]
Yoder N, C. Yoshioka, E. Gouaux. Gating mechanisms of acid-sensing ion channels. Nature 2018; 555(7696): 397-401.
[63]
Schroeder CI, Rash LD, Vila-Farrés X, et al. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. Angew Chem Int Ed Engl 2014; 53(4): 1017-20.
[64]
Salinas M, Besson T, Delettre Q, et al. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J Biol Chem 2014; 289(19): 13363-73.
[65]
Joeres N, Augustinowski K, Neuhof A, et al. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1. Sci Rep 2016; 6: 27647.
[66]
Sherwood T, Franke R, Conneely S, et al. Identification of protein domains that control proton and calcium sensitivity of ASIC1a. J Biol Chem 2009; 284(41): 27899-907.
[67]
Saez NJ, Mobli M, Bieri M, et al. A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Mol Pharmacol 2011; 80(5): 796-808.
[68]
Saez NJ, Deplazes E, Cristofori-Armstrong B, et al. Molecular dynamics and functional studies define a hot spot of crystal contacts essential for PcTx1 inhibition of acid-sensing ion channel 1a. Br J Pharmacol 2015; 172(20): 4985-95.
[69]
Cristofori-Armstrong B, and L.D. Rash. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology 2017; 127: 173-84.
[70]
Diochot S, Salinas M, Baron A, et al. Peptides inhibitors of acid-sensing ion channels. Toxicon 2007; 49(2): 271-84.
[71]
Liechti LA, Bernèche S, Bargeton B, et al. A combined computational and functional approach identifies new residues involved in pH-dependent gating of ASIC1a. J Biol Chem 2010; 285(21): 16315-29.
[72]
Yang H, Yu Y, Li WG, et al. Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism. PLoS Biol 2009; 7(7): e1000151.
[73]
Shaikh SA and, E. Tajkhorshid. Potential cation and H+ binding sites in acid sensing ion channel-1. Biophys J 2008; 95(11): 5153-64.
[74]
Paukert M, Chen X, Polleichtner G, et al. Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a. J Biol Chem 2008; 283(1): 572-81.
[75]
Vullo S, Bonifacio G, Roy S, et al. Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating. Proc Natl Acad Sci USA 2017; 114(14): 3768-73.
[76]
Cushman KA, Marsh-Haffner J, Adelman JP, et al. A conformation change in the extracellular domain that accompanies desensitization of acid-sensing ion channel (ASIC) 3. J Gen Physiol 2007; 129(4): 345-50.
[77]
Alijevic O and, S. Kellenberger. Subtype-specific modulation of acid-sensing ion channel (ASIC) function by 2-guanidine-4-methylquinazoline. J Biol Chem 2012; 287(43): 36059-70.
[78]
Chauhan AS, Ansari MY, Mansuri R, et al. Computational elucidation, mutational and hot spot-based designing of potential inhibitors against human acid-sensing ion channels (hASIC-1a) to treat various physiological conditions. J Biomol Struct Dyn 2017; 1-18.
[79]
Sheinerman FB, R. Norel, Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol 2000; 10(2): 153-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy