Review Article

酸敏离子通道的结构、病理生理学的重要性和针对人类ASIC 1的不同物种的实验突变数据

卷 20, 期 1, 2019

页: [111 - 121] 页: 11

弟呕挨: 10.2174/1389450119666180820103316

价格: $65

摘要

氢门控(质子)电流广泛存在于脑感觉神经系统中,各种研究鉴定了离子通道的结构单元,并破译了离子通道的生理和病理功能。正常神经元需要一个最适的pH来实现其功能。酸中毒时,酸敏离子通道(ASICs)在中枢神经系统(CNS)和外周神经系统(PNS)均被激活。Asics与简并素通道(DEGS)、上皮性钠离子通道(ENaCs)和FMRF-酰胺(PHE-Met-Arg-PHE-NH2)门控通道(FaNaC)有关.它的激活在生理上导致疼痛知觉、突触可塑性、学习记忆、恐惧、缺血神经元损伤、癫痫发作终止、神经元变性和机械感觉。它检测细胞外环境中的酸波动水平,并通过提高膜去极化率来响应酸性pH。它在质子化时将Na(钠)和Ca2+(钙)等阳离子穿过膜。ASIC亚型具有不同的生物物理性质和pH敏感性。ASIC 1亚型与多种中枢神经系统疾病有关,因此,对其功能特性的研究对药物设计方法具有指导意义。综述了cASIC 1(鸡ASIC 1)晶体结构、对生理环境的影响以及现有抑制剂的局限性。此外,它还详细介绍了可用于设计抗hASIC 1抑制剂(HumanASIC 1)的突变数据。

关键词: 酸敏离子通道,人ASIC 1,hASIC 1抑制剂,hASIC 1突变,H门控(质子),中枢神经系统疾病。

图形摘要

[1]
Krusek J, Dittert I, Hendrych T, Hník P, et al. Activation and modulation of ligand-gated ion channels. Physiol Res 2004; 53(Suppl. 1): S103-13.
[2]
Chu XP, Papasian CJ, Wang JQ, Xiong ZG, et al. Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential. Int J Physiol Pathophysiol Pharmacol 2011; 3(4): 288-309.
[3]
Kreple CJ, Lu Y, Taugher RJ, et al. Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci 2014; 17(8): 1083-91.
[4]
Askwith CC, Benson CJ, Welsh MJ, et al. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci USA 2001; 98(11): 6459-63.
[5]
Ugawa S, Yamamoto T, Ueda T, et al. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J Neurosci 2003; 23(9): 3616-22.
[6]
Ettaiche M, Deval E, Cougnon M, et al. Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J Neurosci 2006; 26(21): 5800-9.
[7]
Ettaiche M, Guy N, Hofman P, et al. Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci 2004; 24(5): 1005-12.
[8]
Wu LJ, Duan B, Mei YD, et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 2004; 279(42): 43716-24.
[9]
Immke DC, E.W. McCleskey. ASIC3: a lactic acid sensor for cardiac pain. Scientific World Journal 2001; 1: 510-2.
[10]
Sutherland SP, Benson CJ, Adelman JP, et al. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 2001; 98(2): 711-6.
[11]
Wemmie JA, Chen J, Askwith CC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002; 34(3): 463-77.
[12]
Ziemann AE, Schnizler MK, Albert GW, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 2008; 11(7): 816-22.
[13]
Kweon HJ and, B.C. Suh. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Rep 2013; 46(6): 295-304.
[14]
Yermolaieva O, Leonard AS, Schnizler MK, et al. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA 2004; 101(17): 6752-7.
[15]
Coryell MW, Wunsch AM, Haenfler JM, et al. Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 2009; 29(17): 5381-8.
[16]
Wong HK, Bauer PO, Kurosawa M, et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet 2008; 17(20): 3223-35.
[17]
Wemmie JA, R.J. Taugher and, C.J. Kreple. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 2013; 14(7): 461-71.
[18]
Xiong ZG, Zhu XM, Chu XP, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 2004; 118(6): 687-98.
[19]
Dwyer JM, Rizzo SJ, Neal SJ, et al. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology (Berl) 2009; 203(1): 41-52.
[20]
Goudarzi M, Zarghami Z, Salavati-Niasari M. Novel and solvent-free cochineal-assisted synthesis of Ag–Al2O3 nanocomposites via solid-state thermal decomposition route: characterization and photocatalytic activity assessment. J Mater Sci Mater Electron 2016; 27: 9789-97.
[21]
Mojgan Goudarzi MS-N. Mohammadhassan Motaghedifard, Seyed Mostafa Hosseinpour-Mashkani, Semiconductive Tl2O3 nanoparticles: Facile synthesis in liquid phase, characterization and its applications as photocatalytic substrate and electrochemical sensor. Journal of Molecular Liquids 2016; 219: 720-7.
[22]
Goudarzi M, Ghanbari D, Salavati-Niasari M, et al. Synthesis and Characterization of Al(OH)3, Al2O3 Nanoparticles and Polymeric Nanocomposites. J Cluster Sci 2016; 27(1): 25-38.
[23]
Goudarzi M, Mir N, Mousavi-Kamazani M, et al. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci Rep 2016; 6: 32539.
[24]
Mehdi Mousavi-Kamazani MS-N. Mojgan Goudarzi,Zabihullah Zarghami, Hydrothermal synthesis of CdIn2S4 nanostructures using new starting reagent for elevating solar cells efficiency. Journal of Molecular Liquids 2017; 242: 653-61.
[25]
Maysinger D. Ji J1, Hutter E1, et al.Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front Neurosci 2015; 9: 480.
[26]
Mazzocchi N, De Ceglia R, Mazza D, et al. Fluorescence-based automated screening assay for the study of the pH-sensitive channel ASIC1a. J Biomol Screen 2016; 21(4): 372-80.
[27]
Qiang M, Dong X, Zha Z, et al. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc Natl Acad Sci USA 2018.
[28]
Saez NJ, Saez SS, Jonas EJ, et al. Spider-venom peptides as therapeutics. Toxins (Basel) 2010; 2(12): 2851-71.
[29]
Wei X, Chen X, Ying M, et al. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 2014; 4(3): 193-201.
[30]
Mukhopadhyay M, Singh A, Sachchidanand S, et al. Quercetin inhibits acid-sensing ion channels through a putative binding site in the central vestibular region. Neuroscience 2017; 348: 264-72.
[31]
M. Goudarzi. M.B.A.M.S.-N., Synthesis, characterization and degradation of organic dye over Co3O4 nanoparticles prepared from new binuclear complex precursors. RSC Advances 2014; 4(87): 46517-20.
[32]
Dhawan S, R. Kapil and, B. Singh. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 2011; 63(3): 342-51.
[33]
Gonzales EB, N. Sumien. Acidity and acid-sensing ion channels in the normal and Alzheimer’s disease brain. J Alzheimers Dis 2017; 57(4): 1137-44.
[34]
Li M, Inoue K, Branigan D, et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab 2010; 30(6): 1247-60.
[35]
Mojgan Goudarzi MS-N. Controllable synthesis of new Tl2S2O3 nanostructures via hydrothermal process; characterization and investigation photocatalytic activity for degradation of some anionic dyes. Journal of Molecular Liquids 2016; 219: 851-7.
[36]
Chu XP, Xiong ZG. Acid-sensing ion channels in pathological conditions. Adv Exp Med Biol 2013; 961: 419-31.
[37]
Bohlen CJ, Chesler AT, Sharif-Naeini R, et al. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 2011; 479(7373): 410-4.
[38]
Diochot S, Baron A, Salinas M, et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 2012; 490(7421): 552-5.
[39]
Wang W, et al. Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem 2006; 281(5): 2497-505.
[40]
Voilley N, de Weille J, Mamet J, et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 2001; 21(20): 8026-33.
[41]
Escoubas P, Bernard C, Lambeau G, et al. Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. Protein Sci 2003; 12(7): 1332-43.
[42]
Wang W, Ye SD, Zhou KQ, et al. High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron. J Neurosci Res 2012; 90(1): 267-77.
[43]
Dorofeeva NA, Barygin OI, Staruschenko A, et al. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J Neurochem 2008; 106(1): 429-41.
[44]
Mango D, Barbato G, Piccirilli S, et al. Electrophysiological and metabolic effects of CHF5074 in the hippocampus: protection against in vitro ischemia. Pharmacol Res 2014; 81: 83-90.
[45]
Kuduk SD, Chang RK, Di Marco CN, et al. Identification of non-amidine inhibitors of acid-sensing ion channel-3 (ASIC3). Bioorg Med Chem Lett 2011; 21(14): 4255-8.
[46]
Schmidt A, Rossetti G, Joussen S, et al. Diminazene Is a Slow Pore Blocker of Acid-Sensing Ion Channel 1a (ASIC1a). Mol Pharmacol 2017; 92(6): 665-75.
[47]
Jensen JE, Cristofori-Armstrong B, Anangi R, et al. Understanding the molecular basis of toxin promiscuity: the analgesic sea anemone peptide APETx2 interacts with acid-sensing ion channel 3 and hERG channels via overlapping pharmacophores. J Med Chem 2014; 57(21): 9195-203.
[48]
Qu ZW, Liu TT, Qiu CY, et al. Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons. Neurosci Lett 2014; 567: 35-9.
[49]
Baconguis I, Bohlen CJ, Goehring A, et al. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. Cell 2014; 156(4): 717-29.
[50]
Leng TD, Si HF, Li J, et al. Amiloride Analogs as ASIC1a Inhibitors. CNS Neurosci Ther 2016; 22(6): 468-76.
[51]
Buta A, Maximyuk O, Kovalskyy D, et al. Novel potent orthosteric antagonist of ASIC1a prevents NMDAR-dependent LTP induction. J Med Chem 2015; 58(11): 4449-61.
[52]
Wemmie JA, M.P. Price, M.J. Welsh. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 2006; 29(10): 578-86.
[53]
Sherwood TW and , C.C. Askwith. Endogenous arginine-phenylalanine-amide-related peptides alter steady-state desensitization of ASIC1a. J Biol Chem 2008; 283(4): 1818-30.
[54]
Jasti J, Furukawa H, Gonzales EB, et al. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 2007; 449(7160): 316-23.
[55]
Gonzales EB, T. Kawate, E. Gouaux. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 2009; 460(7255): 599-604.
[56]
Baconguis I, and E. Gouaux. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 2012; 489(7416): 400-5.
[57]
Dawson RJ, Benz J, Stohler P, et al. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat Commun 2012; 3: 936.
[58]
Paukert M, Babini E, Pusch M, et al. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 2004; 124(4): 383-94.
[59]
Boscardin E, Alijevic O, Hummler E, et al. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173(18): 2671-701.
[60]
Yang Land, L.G. Palmer. Ion conduction and selectivity in acid-sensing ion channel 1. J Gen Physiol 2014; 144(3): 245-55.
[61]
Lynagh T, Flood E, Boiteux C, et al. A selectivity filter at the intracellular end of the acid-sensing ion channel pore. eLife 2017; 12(6): e24630.
[62]
Yoder N, C. Yoshioka, E. Gouaux. Gating mechanisms of acid-sensing ion channels. Nature 2018; 555(7696): 397-401.
[63]
Schroeder CI, Rash LD, Vila-Farrés X, et al. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. Angew Chem Int Ed Engl 2014; 53(4): 1017-20.
[64]
Salinas M, Besson T, Delettre Q, et al. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J Biol Chem 2014; 289(19): 13363-73.
[65]
Joeres N, Augustinowski K, Neuhof A, et al. Functional and pharmacological characterization of two different ASIC1a/2a heteromers reveals their sensitivity to the spider toxin PcTx1. Sci Rep 2016; 6: 27647.
[66]
Sherwood T, Franke R, Conneely S, et al. Identification of protein domains that control proton and calcium sensitivity of ASIC1a. J Biol Chem 2009; 284(41): 27899-907.
[67]
Saez NJ, Mobli M, Bieri M, et al. A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Mol Pharmacol 2011; 80(5): 796-808.
[68]
Saez NJ, Deplazes E, Cristofori-Armstrong B, et al. Molecular dynamics and functional studies define a hot spot of crystal contacts essential for PcTx1 inhibition of acid-sensing ion channel 1a. Br J Pharmacol 2015; 172(20): 4985-95.
[69]
Cristofori-Armstrong B, and L.D. Rash. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. Neuropharmacology 2017; 127: 173-84.
[70]
Diochot S, Salinas M, Baron A, et al. Peptides inhibitors of acid-sensing ion channels. Toxicon 2007; 49(2): 271-84.
[71]
Liechti LA, Bernèche S, Bargeton B, et al. A combined computational and functional approach identifies new residues involved in pH-dependent gating of ASIC1a. J Biol Chem 2010; 285(21): 16315-29.
[72]
Yang H, Yu Y, Li WG, et al. Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism. PLoS Biol 2009; 7(7): e1000151.
[73]
Shaikh SA and, E. Tajkhorshid. Potential cation and H+ binding sites in acid sensing ion channel-1. Biophys J 2008; 95(11): 5153-64.
[74]
Paukert M, Chen X, Polleichtner G, et al. Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a. J Biol Chem 2008; 283(1): 572-81.
[75]
Vullo S, Bonifacio G, Roy S, et al. Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating. Proc Natl Acad Sci USA 2017; 114(14): 3768-73.
[76]
Cushman KA, Marsh-Haffner J, Adelman JP, et al. A conformation change in the extracellular domain that accompanies desensitization of acid-sensing ion channel (ASIC) 3. J Gen Physiol 2007; 129(4): 345-50.
[77]
Alijevic O and, S. Kellenberger. Subtype-specific modulation of acid-sensing ion channel (ASIC) function by 2-guanidine-4-methylquinazoline. J Biol Chem 2012; 287(43): 36059-70.
[78]
Chauhan AS, Ansari MY, Mansuri R, et al. Computational elucidation, mutational and hot spot-based designing of potential inhibitors against human acid-sensing ion channels (hASIC-1a) to treat various physiological conditions. J Biomol Struct Dyn 2017; 1-18.
[79]
Sheinerman FB, R. Norel, Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol 2000; 10(2): 153-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy