Review Article

目前关于无机纳米材料在医疗保健领域安全性的亮点

卷 26, 期 12, 2019

页: [2147 - 2165] 页: 19

弟呕挨: 10.2174/0929867325666180723121804

价格: $65

摘要

近年来,无机材料主要存在于用于保健的产品中。文献给出了许多保健产品中使用的无机材料的许多实例,主要是在制药领域。银,氧化锌,氧化钛,氧化铁,金,介孔二氧化硅,类水滑石化合物和纳米粘土是纳米尺寸形式中用于健康领域的不同应用的最常见的无机材料。通常,这些材料用于实现全身用途的制剂,通常旨在对病理部位进行特异性靶向。当靶位于细胞内空间时,纳米尺寸通常优选用于获得细胞内化。一些材料经常用于局部制剂中作为流变剂,吸附剂,消光剂,物理防晒剂(例如氧化锌,二氧化钛)等。最近的研究强调,使用纳米无机材料可能会带来健康风险。直到几年前,非常小的尺寸(纳米尺度)代表了一个基本要求;然而,它目前负责无机材料的毒性。这个方面非常重要,因为在市场上可获得的许多产品中通常可以找到许多无机材料,通常专用于婴儿和儿童。使用这些材料时不考虑其尺寸特性而增加用户/患者的风险。本综述对目前研究的深入分析进行了深入分析,这些研究记录了纳米无机材料的毒性,特别是那些主要用于市场上可用产品的纳米无机材料。

关键词: 无机物,纳米材料,细胞毒性,皮肤,化妆品,皮肤病产品。

[1]
Vo-Dinh, T. Nanotechnology in Biology and Medicine: Methods, Devices, and Applications; In: Taylor & Francis - CRC Press: Boca Raton, FL, 2007.
[http://dx.doi.org/10.1201/9781420004441]
[2]
Shatkin, J.A. Nanotechnology: Health and Environmental Risks. In:, 2nd ed; Taylor & Francis: Boca Raton, FL, 2013.
[3]
Niska, K.; Zielinska, E.; Radomski, M.W.; Inkielewicz-Stepniak, I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem. Biol. Interact., 2018, 295, 38-51.
[http://dx.doi.org/10.1016/j.cbi.2017.06.018] [PMID: 28641964]
[4]
Polefka, T.G.; Bianchini, R.J.; Shapiro, S. Interaction of mineral salts with the skin: a literature survey. Int. J. Cosmet. Sci., 2012, 34(5), 416-423.
[http://dx.doi.org/10.1111/j.1468-2494.2012.00731.x] [PMID: 22712689]
[5]
Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; Viseras, C. Advanced Inorganic Nanosystems for Skin Drug Delivery. Chem. Rec., 2018, 18(7-8), 891-899.
[http://dx.doi.org/10.1002/tcr.201700061] [PMID: 29314634]
[6]
FDA. Drug Products, Including Biological Products, that Contain Nanomaterials Guidance for Industry., 2017.https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm
[7]
WHO guidelines on protecting workers from potential risks of manufactured nanomaterials. Geneva., 2017.
[8]
ECHA Nanomaterials Expert Group 2017.
[10]
Hardy, A. Hardy, Benford, D..; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; Rychen, G.; Schlatter, J.R.; Silano, V.; Solecki, R.; Turck, D.; Younes, M.; Chaudhry, Q.; Cubadda, F.; Gott, D.; Oomen, A.; Weigel, S.; Karamitrou, M.; Schoonjans, R.; Mortensen, A. Guidance on risk assessment of the application of nanosci-ence and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 2018.http://www.efsa.europa.eu/sites/default/files/engage/180112.pdf
[11]
Catalogue of nanomaterials used in cosmetic products placed on the EU market EU 6, 2017.
[12]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 32, 1-1.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[13]
Leaper, D.J. Silver dressings: their role in wound management. Int. Wound J., 2006, 3(4), 282-294.
[http://dx.doi.org/10.1111/j.1742-481X.2006.00265.x] [PMID: 17199764]
[14]
Lansdown, A.B.G.; Williams, A. How safe is silver in wound care? J. Wound Care, 2004, 13(4), 131-136.
[http://dx.doi.org/10.12968/jowc.2004.13.4.26596] [PMID: 15114822]
[15]
Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell, W.; Goessler, W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma, 2006, 60(3), 648-652.
[http://dx.doi.org/10.1097/01.ta.0000208126.22089.b6] [PMID: 16531870]
[16]
International consensus, 2012.www.woundsinternational.com
[17]
Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol., 2015, 72(2), 310-322.
[http://dx.doi.org/10.1016/j.yrtph.2015.05.005] [PMID: 25979643]
[18]
Kuwagata, M.; Kumagai, F.; Saito, Y.; Higashisaka, K.; Yoshioka, Y.; Tsutsumi, Y. Permeability of skin to silver nanoparticles after epidermal skin barrier disruption in rats. Fundam. Toxicol. Sci., 2017, 4(3), 109-119.
[http://dx.doi.org/10.2131/fts.4.109]
[19]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[20]
Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 2017, 9, 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[21]
Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. In Vitro, 2017, 38, 179-192.
[http://dx.doi.org/10.1016/j.tiv.2016.10.012] [PMID: 27816503]
[22]
Holmes, A.M.; Lim, J.; Studier, H.; Roberts, M.S. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition. Nanotoxicology, 2016, 10(10), 1503-1514.
[http://dx.doi.org/10.1080/17435390.2016.1236993] [PMID: 27636544]
[23]
Xu, L.; Dan, M.; Shao, A.; Cheng, X.; Zhang, C.; Yokel, R.A.; Takemura, T.; Hanagata, N.; Niwa, M.; Watanabe, D. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int. J. Nanomedicine, 2015, 10, 6105-6118.
[PMID: 26491287]
[24]
Gao, X.; Topping, V.D.; Keltner, Z.; Sprando, R.L.; Yourick, J.J. Toxicity of nano- and ionic silver to embryonic stem cells: a comparative toxicogenomic study. J. Nanobiotechnology, 2017, 15(1), 31.
[http://dx.doi.org/10.1186/s12951-017-0265-6] [PMID: 28399865]
[25]
De Matteis, V.; Malvindi, M.A.; Galeone, A.; Brunetti, V.; De Luca, E.; Kote, S.; Kshirsagar, P.; Sabella, S.; Bardi, G.; Pompa, P.P. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine (Lond.), 2015, 11(3), 731-739.
[http://dx.doi.org/10.1016/j.nano.2014.11.002] [PMID: 25546848]
[26]
Sun, X.; Shi, J.; Zou, X.; Wang, C.; Yang, Y.; Zhang, H. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J. Hazard. Mater., 2016, 317, 570-578.
[http://dx.doi.org/10.1016/j.jhazmat.2016.06.023] [PMID: 27344258]
[27]
Gmoshinski, I.V.; Shumakova, A.A.; Shipelin, V.A.; Maltsev, G.Y.; Khotimchenkohas, S.A. Influence of Orally Introduced Silver Nanoparticles on Content of Essential and Toxic Trace Elements in Organism. Nanotechnol. Russ., 2016, 11(9-10), 646-652.
[http://dx.doi.org/10.1134/S1995078016050074]
[28]
Anfray, C.; Dong, B.; Komaty, S.; Mintova, S.; Valable, S. Acute Toxicity of Silver Free and Encapsulated in Nanosized Zeolite for Eukaryotic Cells. ACS Appl. Mater. Interfaces, 2017, 9(16), 13849-13854.
[http://dx.doi.org/10.1021/acsami.7b00265] [PMID: 28383272]
[29]
Ema, M.; Okuda, H.; Gamo, M.; Honda, K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod. Toxicol., 2017, 67, 149-164.
[http://dx.doi.org/10.1016/j.reprotox.2017.01.005] [PMID: 28088501]
[30]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[31]
Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc therapy in dermatology: a review. Dermatol. Res. Pract., 2014, 2014709152.
[http://dx.doi.org/10.1155/2014/709152] [PMID: 25120566]
[32]
Zamani, M.; Rostami, M.; Aghajanzadeh, M.; Kheiri Manjili, H.; Rostamizadeh, K.; Danafar, H. Mesoporous titanium dioxide - zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J. Mater. Sci., 2018, 53, 1634-1645.
[http://dx.doi.org/10.1007/s10853-017-1673-6]
[33]
Leite-Silva, V.R.; Liu, D.C.; Sanchez, W.Y.; Studier, H.; Mohammed, Y.H.; Holmes, A.; Becker, W.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. Nanomedicine (Lond.), 2016, 11(10), 1193-1205.
[http://dx.doi.org/10.2217/nnm-2016-0010] [PMID: 27102240]
[34]
Vinardell, M.P.; Llanas, H.; Marics, L.; Mitjans, M. In Vitro Comparative Skin Irritation Induced by Nano and Non-Nano Zinc Oxide. Nanomaterials (Basel), 2017, 7(3), 1-8.
[http://dx.doi.org/10.3390/nano7030056] [PMID: 28336890]
[35]
Vandebriel, R.J.; De Jong, W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl., 2012, 5, 61-71.
[http://dx.doi.org/10.2147/NSA.S23932] [PMID: 24198497]
[36]
Pal, A.; Alam, S.; Mittal, S.; Arjaria, N.; Shankar, J.; Kumar, M.; Singh, D.; Pandey, A.K.; Ansari, K.M. UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 807, 15-24.
[http://dx.doi.org/10.1016/j.mrgentox.2016.06.005] [PMID: 27542711]
[37]
Lin, W.; Xu, Y.; Huang, C.C.; Ma, Y.; Shannon, K.B.; Chen, D.R.; Huang, Y.W. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanopart. Res., 2009, 11, 25-39.
[http://dx.doi.org/10.1007/s11051-008-9419-7]
[38]
Commission Regulation (UE). 2017.
[39]
He, X.; Hwang, H.M. Nanotechnology in food science: Functionality, applicability, and safety assessment. Yao Wu Shi Pin Fen Xi, 2016, 24(4), 671-681.
[http://dx.doi.org/10.1016/j.jfda.2016.06.001] [PMID: 28911604]
[40]
Song, Z.M.; Tang, H.; Deng, X.; Xiang, K.; Cao, A.; Liu, Y.; Wang, H. Comparing Toxicity of Alumina and Zinc Oxide Nanoparticles on the Human Intestinal Epithelium In Vitro Model. J. Nanosci. Nanotechnol., 2017, 17(5), 2881-2891.
[http://dx.doi.org/10.1166/jnn.2017.13056]
[41]
Pati, R.; Das, I.; Mehta, R.K.; Sahu, R.; Sonawane, A. Zinc-Oxide Nanoparticles Exhibit Genotoxic, Clastogenic, Cytotoxic and Actin Depolymerization Effects by Inducing Oxidative Stress Responses in Macrophages and Adult Mice. Toxicol. Sci., 2016, 150(2), 454-472.
[http://dx.doi.org/10.1093/toxsci/kfw010] [PMID: 26794139]
[42]
Vasile, O.R.; Serdaru, I.; Andronescu, E.; Truscă, R.; Surdu, V.A.; Oprea, O.; Ilie, A. Influence of the size and the morphology of ZnO nanoparticles on cell viability. C. R. Chim., 2015, 18, 1335-1343.
[http://dx.doi.org/10.1016/j.crci.2015.08.005]
[43]
Nohynek, G.J.; Dufour, E.K.; Roberts, M.S. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol. Physiol., 2008, 21(3), 136-149.
[http://dx.doi.org/10.1159/000131078] [PMID: 18523411]
[44]
Suh, Y.J.; Cho, K. Immobilization of Nanoscale Sunscreening Agents onto Natural Halloysite Micropowder. Mater. Trans., 2015, 56(6), 899-904.
[http://dx.doi.org/10.2320/matertrans.M2015086]
[45]
Jaeger, A.; Weiss, D.G.; Jonas, L.; Kriehuber, R. Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology, 2012, 296(1-3), 27-36.
[http://dx.doi.org/10.1016/j.tox.2012.02.016] [PMID: 22449567]
[46]
Alnuqaydan, A.M.; Sanderson, B.J. Toxicity and Genotoxicity of Beauty Products on Human Skin Cells In Vitro. J. Clin. Toxicol., 2016, 6(4), 1-9.
[http://dx.doi.org/10.4172/2161-0495.1000315]
[47]
Mohamed, M.S.; Torabi, A.; Paulose, M.; Kumar, D.S.; Varghese, O.K. Anodically Grown Titania Nanotube Induced Cytotoxicity has Genotoxic Origins. Sci. Rep., 2017, 7, 41844.
[http://dx.doi.org/10.1038/srep41844] [PMID: 28165491]
[48]
Hattori, K.; Nakadate, K.; Morii, A.; Noguchi, T.; Ogasawara, Y.; Ishii, K. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity. Biochem. Biophys. Res. Commun., 2017, 492(2), 218-223.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.054] [PMID: 28823918]
[49]
Pujalté, I.; Dieme, D.; Haddad, S.; Serventi, A.M.; Bouchard, M. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol. Lett., 2017, 265, 77-85.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.014] [PMID: 27884615]
[50]
Hong, F.; Yu, X.; Wu, N.; Zhang, Y.Q. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol. Res. (Camb.), 2017, 6(2), 115-133.
[http://dx.doi.org/10.1039/C6TX00338A] [PMID: 30090482]
[51]
Jia, X.; Wang, S.; Zhou, L.; Sun, L. The Potential Liver, Brain, and Embryo Toxicity of Titanium Dioxide Nanoparticles on Mice. Nanoscale Res. Lett., 2017, 12(1), 478.
[http://dx.doi.org/10.1186/s11671-017-2242-2] [PMID: 28774157]
[52]
Jovanović, B. Critical review of public health regulations of titanium dioxide, a human food additive. Integr. Environ. Assess. Manag., 2015, 11(1), 10-20.
[http://dx.doi.org/10.1002/ieam.1571] [PMID: 25091211]
[53]
Luo, M.Y.M.; Tan, Z.; Dai, M.; Xie, M.; Lin, J.; Hua, H.; Ma, Q.; Zhao, J.; Liu, A. Oral administration of nano-titanium dioxide particle disrupts hepaticmetabolic functions in a mouse model. Environ. Toxicol. Pharmacol., 2017, 49, 112-11.
[http://dx.doi.org/10.1016/j.etap.2016.12.006] [PMID: 27984778]
[54]
Bonvin, D.; Bastiaansen, J.A.M.; Stuber, M.; Hofmann, H.; Mionić Ebersold, M. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans., 2017, 46(37), 12692-12704.
[http://dx.doi.org/10.1039/C7DT02139A] [PMID: 28914298]
[55]
Trabulo, S.; Aires, A.; Aicher, A.; Heeschen, C.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(6), 1597-1605.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.035] [PMID: 28161480]
[56]
Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[http://dx.doi.org/10.2147/NSA.S99986] [PMID: 27578966]
[57]
Larese Filon, F.; Bello, D.; Cherrie, J.W.; Sleeuwenhoek, A.; Spaan, S.; Brouwer, D.H. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption. Int. J. Hyg. Environ. Health, 2016, 219(6), 536-544.
[http://dx.doi.org/10.1016/j.ijheh.2016.05.009] [PMID: 27289581]
[58]
Choi, K.J.; Park, B.; Lee, S.; Wang, Q.; Lee, S. Morphological Studies of Penetration Pathways via Stratum corneum and Hair Follicles using Nano-sized Iron Oxide. Microsc. Microanal, 2017. 23(Suppl. 1)
[59]
Dönmez Güngüneş, Ç.; Şeker, Ş.; Elçin, A.E.; Elçin, Y.M. A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem. Toxicol., 2017, 40(2), 215-227.
[http://dx.doi.org/10.1080/01480545.2016.1199563] [PMID: 27424666]
[60]
Volatron, J.; Carn, F.; Kolosnjaj-Tabi, J.; Javed, Y.; Vuong, Q.L.; Gossuin, Y.; Ménager, C.; Luciani, N.; Charron, G.; Hémadi, M.; Alloyeau, D.; Gazeau, F. Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small, 2017, 13(2), 1-13.
[http://dx.doi.org/10.1002/smll.201602030] [PMID: 28060465]
[61]
Valdiglesias, V.; Fernández-Bertólez, N.; Kiliç, G.; Costa, C.; Costa, S.; Fraga, S.; Bessa, M.J.; Pásaro, E.; Teixeira, J.P.; Laffon, B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J. Trace Elem. Med. Biol., 2016, 38, 53-63.
[http://dx.doi.org/10.1016/j.jtemb.2016.03.017] [PMID: 27056797]
[62]
Gaharwar, U.S.; Meena, R.; Rajamani, P. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J. Appl. Toxicol., 2017, 37(10), 1232-1244.
[http://dx.doi.org/10.1002/jat.3485] [PMID: 28585739]
[63]
Sundarraj, K.; Manickam, V.; Raghunath, A.; Periyasamy, M.; Viswanathan, M.P.; Perumal, E. Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environ. Toxicol., 2017, 32(2), 594-608.
[http://dx.doi.org/10.1002/tox.22262] [PMID: 26991130]
[64]
Gal, N.; Lassenberger, A.; Herrero-Nogareda, L.; Scheberl, A.; Charwat, V.; Kasper, C.; Reimhult, E. Interaction of Size-Tailored PEGylated Iron Oxide Nanoparticles with Lipid Membranes and Cells functional group. ACS Biomater. Sci. Eng., 2017, 3, 249-259.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00311]
[65]
Stepien, G.; Moros, M.; Pérez-Hernández, M.; Monge, M.; Gutiérrez, L.; Fratila, R.M.M.; Las Heras, M.; Menao Guillén, S.; Puente Lanzarote, J.J.; Solans, C.; Pardo, J.; de la Fuente, J.M. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Appl. Mater. Interfaces, 2018, 10(5), 4548-4560.
[http://dx.doi.org/10.1021/acsami.7b18648] [PMID: 29328627]
[66]
Coricovac, D.E.; Moacă, E.A.; Pinzaru, I.; Cîtu, C.; Soica, C.; Mihali, C.V.; Păcurariu, C.; Tutelyan, V.A.; Tsatsakis, A.; Dehelean, C.A. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile. Front. Pharmacol., 2017, 8(154), 154.
[http://dx.doi.org/10.3389/fphar.2017.00154] [PMID: 28400730]
[67]
Seo, D.Y.; Jin, M.; Ryu, J.C.; Kim, J.Y. Investigation of the Genetic Toxicity by Dextran-coated Superparamagnetic Iron Oxide Nanoparticles (SPION) in HepG2 Cells Using the Comet Assay and Cytokinesis-block Micronucleus Assay. Toxicol. Environ. Health. Sci., 2017, 9(1), 23-29.
[68]
Wang, Y.; Ding, L.; Yao, C.; Li, C.; Xing, X.; Huang, Y.; Gu, T.; Wu, M. Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Sci. China Mater., 2017, 60(2), 93-108.
[http://dx.doi.org/10.1007/s40843-016-5157-0]
[69]
Liu, Y.; Xia, Q.; Liu, Y.; Zhang, S.; Cheng, F.; Zhong, Z.; Wang, L.; Li, H.; Xiao, K. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology, 2014, 25(42), 425101.
[http://dx.doi.org/10.1088/0957-4484/25/42/425101] [PMID: 25274166]
[70]
Tran, P.A.; Nguyen, H.T.; Fox, K.; Tran, N. In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents. Mater. Res. Express, 2018, 5035051.
[http://dx.doi.org/10.1088/2053-1591/aab5f3]
[71]
Pitak-Arnnop, P.; Hemprich, A.; Dhanuthai, K.; Pausch, N.C. Gold for facial skin care: fact or fiction? Aesthetic Plast. Surg., 2011, 35(6), 1184-1188.
[http://dx.doi.org/10.1007/s00266-011-9710-3] [PMID: 21487915]
[72]
de la Calle, I.; Menta, M.; Klein, M.; Séby, F. Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES). Talanta, 2017, 171, 291-306.
[http://dx.doi.org/10.1016/j.talanta.2017.05.002] [PMID: 28551143]
[73]
Fernandes, R.; Smyth, N.R.; Muskens, O.L.; Nitti, S.; Heuer-Jungemann, A.; Ardern-Jones, M.R.; Kanaras, A.G. Interactions of skin with gold nanoparticles of different surface charge, shape, and functionality. Small, 2015, 11(6), 713-721.
[http://dx.doi.org/10.1002/smll.201401913] [PMID: 25288531]
[74]
Gupta, R.; Rai, B. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study. Sci. Rep., 2017, 7(7), 45292.
[http://dx.doi.org/10.1038/srep45292] [PMID: 28349970]
[75]
Xiong, H.; Guo, Z.; Zhong, H.; Ji, Y. Monitoring the penetration and accumulation of gold nanoparticles in rat skin ex vivo using surface-enhanced Raman scattering spectroscopy. J. Innov. Opt. Health Sci., 2016, 9(5), 1650026.
[http://dx.doi.org/10.1142/S1793545816500267]
[76]
Mateo, D.; Morales, P.; Avalos, A.; Haza, A.I. Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. J. Exp. Nanosci., 2015, 10(18), 1401-1417.
[http://dx.doi.org/10.1080/17458080.2015.1014934]
[77]
Takeuchi, I.; Nobata, S.; Oiri, N.; Tomoda, K.; Makino, K. Biodistribution and excretion of colloidal gold nanoparticles after intravenous injection: Effects of particle size. Biomed. Mater. Eng., 2017, 28(3), 315-323.
[http://dx.doi.org/10.3233/BME-171677] [PMID: 28527194]
[78]
Schmid, G.; Kreyling, W.G.; Simon, U. Toxic effects and biodistribution of ultrasmall gold nanoparticles. Arch. Toxicol., 2017, 91(9), 3011-3037.
[http://dx.doi.org/10.1007/s00204-017-2016-8] [PMID: 28702691]
[79]
Ma, X.; Hartmann, R.; Jimenez de Aberasturi, D.; Yang, F.; Soenen, S.J.H.; Manshian, B.B.; Franz, J.; Valdeperez, D.; Pelaz, B.; Feliu, N.; Hampp, N.; Riethmüller, C.; Vieker, H.; Frese, N.; Gölzhäuser, A.; Simonich, M.; Tanguay, R.L.; Liang, X.J.; Parak, W.J. Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. ACS Nano, 2017, 11(8), 7807-7820.
[http://dx.doi.org/10.1021/acsnano.7b01760] [PMID: 28640995]
[80]
Tran, A.Q.; Kaulen, C.; Simon, U.; Offenhäusser, A.; Mayer, D. Surface coupling strength of gold nanoparticles affects cytotoxicity towards neurons. Biomater. Sci., 2017, 5(5), 1051-1060.
[http://dx.doi.org/10.1039/C7BM00054E] [PMID: 28378868]
[81]
Xia, Q.; Li, H.; Liu, Y.; Zhang, S.; Feng, Q.; Xiao, K. The effect of particle size on the genotoxicity of gold nanoparticles. J. Biomed. Mater. Res. A, 2017, 105(3), 710-719.
[http://dx.doi.org/10.1002/jbm.a.35944] [PMID: 27770565]
[82]
Lehman, S.E.; Larsen, S.C. Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ. Sci. Nano, 2014, 1, 200-213.
[http://dx.doi.org/10.1039/C4EN00031E]
[83]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[84]
Ambrogi, V.; Marmottini, F.; Pagano, C. Amorphous carbamazepine stabilization by the mesoporous silicate SBA-15. Microporous Mesoporous Mater., 2013, 177, 1-7.
[http://dx.doi.org/10.1016/j.micromeso.2013.04.008]
[85]
Ambrogi, V.; Perioli, L.; Pagano, C.; Latterini, L.; Marmottini, F.; Ricci, M.; Rossi, C. MCM-41 for furosemide dissolution improvement. Microporous Mesoporous Mater., 2012, 147, 343-349.
[http://dx.doi.org/10.1016/j.micromeso.2011.07.007]
[87]
Chou, C.C.; Chen, W.; Hung, Y.; Mou, C.Y. Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo. ACS Appl. Mater. Interfaces, 2017, 9(27), 22235-22251.
[http://dx.doi.org/10.1021/acsami.7b05359] [PMID: 28608695]
[88]
Orlando, A.; Cazzaniga, E.; Tringali, M.; Gullo, F.; Becchetti, A.; Minniti, S.; Taraballi, F.; Tasciotti, E.; Re, F. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner. Int. J. Nanomedicine, 2017, 12, 3547-3559.
[http://dx.doi.org/10.2147/IJN.S127663] [PMID: 28507435]
[89]
Shi, Y.; Hélary, C.; Haye, B.; Coradin, T. Extracellular versus Intracellular Degradation of Nanostructured Silica Particles. Langmuir, 2018, 34(1), 406-415.
[http://dx.doi.org/10.1021/acs.langmuir.7b03980] [PMID: 29224358]
[90]
Trifirò, F.; Vaccari, A. In: Solid State Supramolecular Chemistry: Two‐ and Three‐Dimensional Inorganic Networks Comprehensive Supramolecular Chemistry. In: Pergamon‐Elsevier: Oxford;, Alberti, M.; Bein, T., Eds.; (8)1-46. 1996. 7, pp.
[91]
Costantino, U.; Nocchetti, M. Layered Double Hydroxides: Present and Future; Rives, V., Ed.; Nova Science Publishers Inc.: New York, 2001, pp. 403-404.
[92]
Miyata, S. Anion‐exchange properties of hydrotalcite‐like compounds. Clays Clay Miner., 1983, 31, 305-311.
[http://dx.doi.org/10.1346/CCMN.1983.0310409]
[93]
Costantino, U.; Ambrogi, V.; Nocchetti, M.; Perioli, L. Hydrotalcite‐like compounds: Versatile layered hosts of molecular anions with biological activity. Microporous Mesoporous Mater., 2008, 107, 149-160.
[http://dx.doi.org/10.1016/j.micromeso.2007.02.005]
[94]
Scholtz, E.C.; Feldkamp, J.R.; White, J.L.; Hem, S.L. Properties of Carbonate-Containing Aluminum Hydroxide Produced by Precipitation at Constant pH. J. Pharm. Sci., 1978, 67(3), 324-327.
[PMID: 641716]
[95]
Choi, S.J.; Choy, J.H. Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine (Lond.), 2011, 6(5), 803-814.
[http://dx.doi.org/10.2217/nnm.11.86] [PMID: 21793673]
[96]
Baek, M.; Kim, I.S.; Yu, J.; Chung, H.E.; Choy, J.H.; Choi, S.J. Effect of different forms of anionic nanoclays on cytotoxicity. J. Nanosci. Nanotechnol., 2011, 11(2), 1803-1806.
[http://dx.doi.org/10.1166/jnn.2011.3408] [PMID: 21456296]
[97]
Kura, A.U.; Hussein, M.Z.; Fakurazi, S.; Arulselvan, P. Layered double hydroxide nanocomposite for drug delivery systems; bio-distribution, toxicity and drug activity enhancement. Chem. Cent. J., 2014, 8(1), 47.
[http://dx.doi.org/10.1186/s13065-014-0047-2] [PMID: 25177361]
[98]
Yan, M.; Yang, C.; Huang, B.; Huang, Z.; Huang, L.; Zhang, X.; Zhao, C. Systemic toxicity induced by aggregated layered double hydroxide nanoparticles. Int. J. Nanomedicine, 2017, 12, 7183-7195.
[http://dx.doi.org/10.2147/IJN.S146414] [PMID: 29042768]
[99]
Choi, S.J.; Oh, J.M.; Choy, J.H. Human-related application and nanotoxicology of inorganic particles: complementary aspects. J. Mater. Chem., 2008, 18, 615-620.
[http://dx.doi.org/10.1039/B711208D]
[100]
Thomas, O.M.; Wang, B.; Bothun, G.; Davis, V.; Winter, J. Nanotechnology Commercialization: Manufacturing Pro-cesses and Products. In: Wiley & Sons: Hoboker;, 2018.
[101]
Ghadiri, M.; Chrzanowskia, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Advances, 2015, 5, 29467-29481.
[http://dx.doi.org/10.1039/C4RA16945J]
[102]
Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review. Int. J. Pharm., 2017, 534(1-2), 213-219.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.031] [PMID: 29038067]
[103]
Cervini-Silva, J.; Ramírez-Apan, M.T.; Kaufhold, S.; Ufer, K.; Palacios, E.; Montoya, A. Role of bentonite clays on cell growth. Chemosphere, 2016, 149, 57-61.
[http://dx.doi.org/10.1016/j.chemosphere.2016.01.077] [PMID: 26849195]
[104]
Nones, J.; Gracher Riella, H.; Gonçalves Trentin, A.; Nones, J. Effects of bentonite on different cell types: A brief review. Appl. Clay Sci., 2015, 105-106, 225-230.
[http://dx.doi.org/10.1016/j.clay.2014.12.036]
[105]
Maryan, A.S.; Montazer, M. Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment. J. Ind. Eng. Chem., 2015, 22, 164-170.
[http://dx.doi.org/10.1016/j.jiec.2014.07.005]
[106]
Li, Y.; Sawvel, A.M.; Jun, Y.S.; Nownes, S.; Kudela, M.N.D.; Stucky, G.D.; Zink, D. Cytotoxicity and potency of mesocellular foam-26 in comparison to layered clays used as hemostatic agents. Toxicol. Res., 2013, 2, 136-144.
[http://dx.doi.org/10.1039/C2TX20065A]
[107]
Paydar, S.; Noorafshan, A.; Dalfardi, B.; Jahanabadi, S.; Mortazavi, S.M.J.; Yahyavi, S.S.; Khoshmohabat, H. Structural Alteration in Dermal Vessels and Collagen Bundles following Exposure of Skin Wound to Zeolite-Bentonite Compound. J. Pharm. (Cairo), 2016, 20165843459.
[http://dx.doi.org/10.1155/2016/5843459] [PMID: 28116221]
[108]
Jennrich, P.; Schulte-Uebbing, C. Does Aluminium Trigger Breast Cancer? Open Access Journal of Science and Technology, 2016, 4, 1-6.
[http://dx.doi.org/10.11131/2016/101234]
[109]
Verma, N.K.; Moore, E.; Blau, W.; Volkov, Y.; Babu, R. Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J. Nanopart. Res., 2012, 14, 1137.
[http://dx.doi.org/10.1007/s11051-012-1137-5]
[110]
Lordan, S.; Kennedy, J.E.; Higginbotham, C.L. Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. J. Appl. Toxicol., 2011, 31(1), 27-35.
[http://dx.doi.org/10.1002/jat.1564] [PMID: 20677180]
[111]
Han, H.K.; Lee, Y.C.; Lee, M.Y.; Patil, A.J.; Shin, H.J. Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study. ACS Appl. Mater. Interfaces, 2011, 3(7), 2564-2572.
[http://dx.doi.org/10.1021/am200406k] [PMID: 21609130]
[112]
Huang, Y.; Zhang, M.; Zou, H.; Li, X.; Xing, M.; Fang, X.; He, J. Genetic damage and lipid peroxidation in workers occupationally exposed to organic bentonite particles. Mutat. Res., 2013, 751(1), 40-44.
[http://dx.doi.org/10.1016/j.mrgentox.2012.10.006] [PMID: 23131315]
[113]
Isoda, K.; Nagata, R.; Hasegawa, T.; Taira, Y.; Taira, I.; Shimizu, Y.; Isama, K.; Nishimura, T.; Ishida, I. Hepatotoxicity and Drug/Chemical Interaction Toxicity of Nanoclay Particles in Mice. Nanoscale Res. Lett., 2017, 12(1), 199.
[http://dx.doi.org/10.1186/s11671-017-1956-5] [PMID: 28314361]
[114]
Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. In Vitro, 2017, 38, 179-192.
[http://dx.doi.org/10.1016/j.tiv.2016.10.012] [PMID: 27816503]
[115]
Choi, S.Y.; Park, J.H.; Jang, S.H.; Lee, S.; Ryu, P.D.; Yang, S.I.; Joo, S.W.; Lee, S.Y. Effect of Surface Charge of Silver and Gold Nanoparticles on the Cytotoxicity in Human Lung Carcinoma, A549 Cells. FASEB J., 2010, 24(1)(Suppl.)
[116]
Brzóska, K.; Męczyńska-Wielgosz, S.; Stępkowski, T.M.; Kruszewski, M. Adaptation of HepG2 cells to silver nanoparticles-induced stress is based on the pro-proliferative and anti-apoptotic changes in gene expression. Mutagenesis, 2015, 30(3), 431-439.
[http://dx.doi.org/10.1093/mutage/gev001] [PMID: 25681789]
[117]
Baek, M.; Kim, M.K.; Cho, H.J.; Lee, J.A.; Yu, J.; Chung, H.E.; Choi, S.J. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J. Phys. Conf. Ser., 2011, 304012044.
[http://dx.doi.org/10.1088/1742-6596/304/1/012044]
[118]
Schilling, K.; Bradford, B.; Castelli, D.; Dufour, E.; Nash, J.F.; Pape, W.; Schulte, S.; Tooley, I.; van den Bosch, J.; Schellauf, F. Human safety review of “nano” titanium dioxide and zinc oxide. Photochem. Photobiol. Sci., 2010, 9(4), 495-509.
[http://dx.doi.org/10.1039/b9pp00180h] [PMID: 20354643]
[119]
Peira, E.; Turci, F.; Corazzari, I.; Chirio, D.; Battaglia, L.; Fubini, B.; Gallarate, M. The influence of surface charge and photo-reactivity on skin-permeation enhancer property of nano-TiO2 in ex vivo pig skin model under indoor light. Int. J. Pharm., 2014, 467(1-2), 90-99.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.052] [PMID: 24690425]
[120]
Patel, S.; Patel, P.; Bakshi, S.R. Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology, 2017, 69(2), 245-263.
[http://dx.doi.org/10.1007/s10616-016-0054-3] [PMID: 28050721]
[121]
Teng, Z.; Wang, C.; Tang, Y.; Li, W.; Bao, L.; Zhang, X.; Su, X.; Zhang, F.; Zhang, J.; Wang, S.; Zhao, D.; Lu, G. Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake. J. Am. Chem. Soc., 2018, 140(4), 1385-1393.
[http://dx.doi.org/10.1021/jacs.7b10694] [PMID: 29281272]
[122]
Mousa, M.; Evans, N.D.; Oreffo, R.O.C.; Dawson, J.I. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials, 2018, 159, 204-214.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.024] [PMID: 29331807]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy