Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

神经退行性疾病非淀粉样PET成像生物标志物: tau蛋白,α-突触核蛋白和神经炎症

作者: Ana M. Catafau, Santiago Bullich.

卷 14, 期 2, 2017

页: [169 - 177] 页: 9

弟呕挨: 10.2174/1567205013666160620111408

价格: $65

摘要

神经退行性疾病的分类往往是基于神经病理学。长期“蛋白病”作为一种标志性的障碍包括了常见的异常蛋白例如突触核蛋白病,tau蛋白病,淀粉样变性和普遍性肌病。不同的蛋白质也可以共存于同一疾病。进一步复杂的病理生理方案不仅不同的蛋白质,而且被认为是细胞在神经退行性疾病中发挥积极作用,特别是那些大脑中参与炎症反应过程的,如活化的小胶质细胞和星形胶质细胞。在临床实践中,区分病理生理学与临床症状,用以允许准确的临床分类这些在生活中疾病,如果没有这些病理特征的生物标志物就变得困难。在这种情况下,PET成像是一个有用的工具。利用PET示踪剂定位错误折叠的蛋白质可以识别目标的存在或不存在,描绘大脑分布,量化不同脑区蛋白质负荷,以及监测其随着时间的变化。目前适合通过PET成像的β淀粉样蛋白是神经退行性疾病的蛋白质之一。目前正在进行的研究工作是识别新的PET示踪剂靶向非淀粉样PET示踪剂的神经退行性疾病。目前正在进行的研究工作,以确定新的PET示踪剂针对非淀粉样蛋白PET示踪剂神经退行性疾病。本文将重点研究PET示踪剂针对tau蛋白和α-突触核蛋白的错误折叠的蛋白质和活化的小胶质细胞和星形胶质细胞和炎症反应的细胞靶点。对靶点特征,发展面临的挑战,临床相关性和当前状态的人类PET成像进行总结。

关键词: 星形细胞,α-突触核蛋白,神经退行性疾病,小胶质细胞,神经炎症,正电子发射断层扫描,tau蛋白

[1]
Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer disease: Phase 3 study. Alzheimers Dement 11(8): 964-74.(2015);
[2]
Sabri O, Seibyl J, Rowe C, Barthel H. Beta-amyloid imaging with florbetaben. Clin Transl Imaging 3(1): 13-26.(2015);
[3]
Catafau AM, Bullich S. Amyloid PET imaging: applications beyond Alzheimer’s disease. Clin Transl Imaging 3(1): 39-55.(2015);
[4]
Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 24(5): 375-98.(2010);
[5]
Chen-Plotkin AS, Lee VM, Trojanowski JQ. TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6(4): 211-20.(2010);
[6]
Morris JC, Blennow K, Froelich L, Nordberg A, Soininen H, Waldemar G, et al. Harmonized diagnostic criteria for Alzheimer’s disease: recommendations. J Intern Med 275(3): 204-13.(2014);
[7]
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(6): 614-29.(2014);
[8]
Riedl L, Mackenzie IR, Forstl H, Kurz A, Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat 10: 297-310.(2014);
[9]
Bayer TA. Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol 25(5): 713-24.(2015);
[10]
Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52(6): 1158-65.(1999);
[11]
Delacourte A, Sergeant N, Wattez A, Maurage CA, Lebert F, Pasquier F, et al. Tau aggregation in the hippocampal formation: an ageing or a pathological process? Exp Gerontol 37(10-11): 1291-6.(2002);
[12]
Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, et al. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85(3): 519-33.(2015);
[13]
Xu S, Brunden KR, Trojanowski JQ, Lee VM. Characterization of tau fibrillization in vitro. Alzheimers Dement 6(2): 110-7.(2010);
[14]
von Bergen M, Barghorn S, Muller SA, Pickhardt M, Biernat J, Mandelkow EM, et al. The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. Biochemistry 45(20): 6446-57.(2006);
[15]
Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol 14(1): 114-24.(2015);
[16]
Fawaz MV, Brooks AF, Rodnick ME, Carpenter GM, Shao X, Desmond TJ, et al. High affinity radiopharmaceuticals based upon lansoprazole for PET imaging of aggregated tau in Alzheimer’s disease and progressive supranuclear palsy: synthesis, preclinical evaluation, and lead selection. ACS Chem Neurosci 5(8): 718-30.(2014);
[17]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1) a006189(2011);
[18]
Okamura N, Harada R, Furumoto S, Arai H, Yanai K, Kudo Y. Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14(11): 500.(2014);
[19]
Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4): 351-7.(1997);
[20]
Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53: 127-40.(1998);
[21]
Duyckaerts C, Braak H, Brion JP, Buee L, Del Tredici K, Goedert M, et al. PART is part of Alzheimer disease. Acta Neuropathol 129(5): 749-56.(2015);
[22]
McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 136(Pt 1): 43-64.(2013);
[23]
Rabinovici G, Schonhaut D, Baker S, Lazaris A, Ossenkoppele R, Lockhart S, et al. Preliminary Experience with [18F]AV1451 PET in Non-AD Neurodegenerative Syndromes.9th Human Amyloid Imaging (Conference Program and Abstracts) January 14-16. Miami, Florida, United States (2015).
[24]
Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci 21(24): Rc189.(2001);
[25]
Shah M, Catafau AM. Molecular Imaging Insights into Neurodegeneration: Focus on Tau PET Radiotracers. J Mol Med (Berl) 55(6): 871-4.(2014);
[26]
Smid LM, Kepe V, Vinters HV, Bresjanac M, Toyokuni T, Satyamurthy N, et al. Postmortem 3-D brain hemisphere cortical tau and amyloid-beta pathology mapping and quantification as a validation method of neuropathology imaging. J Alzheimers Dis 36(2): 261-74.(2013);
[27]
Kepe V, Bordelon Y, Boxer A, Huang SC, Liu J, Thiede FC, et al. PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimers Dis 36(1): 145-53.(2013);
[28]
Villemagne VL, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Hodges J, Harada R, et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41(5): 816-26.(2014);
[29]
Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med 54(8): 1420-7.(2013);
[30]
Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1): 38-48.(2013);
[31]
Shah M, Seibyl J, Cartier A, Bhatt R, Catafau AM. Molecular imaging insights into neurodegeneration: focus on alpha-synuclein radiotracers. J Nucl Med 55(9): 1397-400.(2014);
[32]
Eberling JL, Dave KD, Frasier MA. alpha-synuclein imaging: a critical need for Parkinson’s disease research. J Parkinsons Dis 3(4): 565-7.(2013);
[33]
Marek K, Jennings D. Can we image premotor Parkinson disease? Neurology 72(7): S21-6.(2009);
[34]
Iranzo A, Valldeoriola F, Lomena F, Molinuevo JL, Serradell M, Salamero M, et al. Serial dopamine transporter imaging of nigrostriatal function in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study. Lancet Neurol 10(9): 797-805.(2011);
[35]
Hawkes CH, Del Tredici K, Braak H. A timeline for Parkinson’s disease. Park Relat Disord 16(2): 79-84.(2010);
[36]
Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8(12): 1150-7.(2009);
[37]
Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201: 1-119.(2009);
[38]
Seibyl J, Russell D, Jennings D, Marek K. Neuroimaging over the course of Parkinson’s disease: from early detection of the at-risk patient to improving pharmacotherapy of later-stage disease. Semin Nucl Med 42(6): 406-14.(2012);
[39]
Mitchell D, Nash K, Hardick D, Kotzbaue P, Tu Z, Xu J, et al. Development of an Alpha-synuclein PET Tracer.9th Human Amyloid Imaging (Conference Program and Abstracts) January 14-16,. Miami, Florida, United States (2015).
[40]
Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet 358(9280): 461-7.(2001);
[41]
Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol 80(6): 308-22.(2006);
[42]
Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27(8): 402-9.(2006);
[43]
Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118(1): 1-17.(2008);
[44]
Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med 48(1): 158-67.(2007);
[45]
Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 35(12): 2304-19.(2008);
[46]
Fujita M, Imaizumi M, Zoghbi SS, Fujimura Y, Farris AG, Suhara T, et al. Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation. Neuroimage 40(1): 43-52.(2008);
[47]
Owen DR, Howell OW, Tang SP, Wells LA, Bennacef I, Bergstrom M, et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab 30(9): 1608-18.(2010);
[48]
Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 52(1): 24-32.(2011);
[49]
Varley J, Brooks DJ, Edison P. Imaging neuroinflammation in Alzheimer’s and other dementias: Recent advances and future directions. Alzheimers Dement 11(9): 1110-20.(2015);
[50]
Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O, et al. Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging 42(3): 438-46.(2015);
[51]
Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K, Shih JC, et al. Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70(3): 755-74.(1996);
[52]
Tong J, Meyer JH, Furukawa Y, Boileau I, Chang LJ, Wilson AA, et al. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies. J Cereb Blood Flow Metab 33(6): 863-71.(2013);
[53]
Fowler JS, Logan J, Shumay E, Alia-Klein N, Wang GJ, Volkow ND. Monoamine oxidase: radiotracer chemistry and human studies. J Labelled Comp Radiopharm 58(3): 51-64.(2015);
[54]
Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med 36(7): 1255-62.(1995);
[55]
Nag S, Varrone A, Toth M, Thiele A, Kettschau G, Heinrich T, et al. In vivo evaluation in cynomolgus monkey brain and metabolism of [(1)(8)F]fluorodeprenyl: a new MAO-B pet radioligand. Synapse (New York, NY) 66(4): 323-30.(2012);
[56]
Nag S, Lehmann L, Kettschau G, Heinrich T, Thiele A, Varrone A, et al. Synthesis and evaluation of [(1)(8)F]fluororasagiline, a novel positron emission tomography (PET) radioligand for monoamine oxidase B (MAO-B). Bioorg Med Chem 20(9): 3065-71.(2012);
[57]
Nag S, Lehmann L, Kettschau G, Toth M, Heinrich T, Thiele A, et al. Development of a novel fluorine-18 labeled deuterated fluororasagiline ([(18)F]fluororasagiline-D2) radioligand for PET studies of monoamino oxidase B (MAO-B). Bioorg Med Chem 21(21): 6634-41.(2013);
[58]
Kumlien E, Nilsson A, Hagberg G, Langstrom B, Bergstrom M. PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy. Acta Neurol Scand 103(6): 360-6.(2001);
[59]
Engler H, Lundberg PO, Ekbom K, Nennesmo I, Nilsson A, Bergstrom M, et al. Multitracer study with positron emission tomography in Creutzfeldt-Jakob disease. Eur J Nucl Med Mol Imaging 30(1): 85-95.(2003);
[60]
Johansson A, Engler H, Blomquist G, Scott B, Wall A, Aquilonius SM, et al. Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci 255(1-2): 17-22.(2007);
[61]
Hirvonen J, Kailajarvi M, Haltia T, Koskimies S, Nagren K, Virsu P, et al. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther 85(5): 506-12.(2009);
[62]
Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1): 37-46.(2012);

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy