Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

18F-Labeled 2-Arylquinoline Derivatives for Tau Imaging: Chemical, Radiochemical, Biological and Clinical Features

Author(s): Shozo Furumoto, Tetsuro Tago, Ryuichi Harada, Yukitsuka Kudo and Nobuyuki Okamura

Volume 14, Issue 2, 2017

Page: [178 - 185] Pages: 8

DOI: 10.2174/1567205013666160620121811

Price: $65

Abstract

Alzheimer’s disease is the most common form of dementia among older people. Misfolding and aggregation of proteins (amyloid-β and tau) in the brain is the primary cause of neurodegeneration in the disease. Non-invasive detection of amyloid-β deposition can be realized using positron emission tomography probes, but a proportion of Aβ-positive subjects do not present with cognitive dysfunction, suggesting limitations in assessment using this method. Non-invasive detection of tau deposits in the brain can be used to diagnose, monitor, and predict Alzheimer’s disease progression. Tau positron emission tomography radiolabelled probes such as T807, THK-5117, and PBB3 can image the pathology of the disease in vivo. The 18F-labeled tau imaging agents 18F-THK-5351, 18F-T807 (18F-AV-1451), and 18F-RO6958948 are presently under evaluation in clinical studies and clinical trials worldwide. This imaging methodology could be applied to enable preclinical diagnoses and disease-modifying drugs for Alzheimer’s disease. In this review, we provide an overview of the pathology and potential imaging of tau in Alzheimer’s disease, development of a THK series among tau tracers, and the chemical, radiochemical, biological, and clinical features of tau probes.

Keywords: Alzheimer’s disease, aggregation, brain, amyloid-β, tau, positron emission tomography, THK series, protein.

[1]
Chaudhuri TK, Paul S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273(7): 1331-49.(2006);
[2]
Morris JC, Price JL. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci 17(2): 101-18.(2001);
[3]
Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 4(4): 203-16.(2011);
[4]
Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med Technol 41(1): 11-8.(2013);
[5]
Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol 14(1): 114-24.(2015);
[6]
Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3): 306-19.(2004);
[7]
Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected]F 18). J Nucl Med 51(6): 913-20.(2010);
[8]
Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med 50(8): 1251-9.(2009);
[9]
Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68(3): 319-29.(2010);
[10]
Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10(5): 424-35.(2011);
[11]
Jensen JR, Cisek K, Funk KE, Naphade S, Schafer KN, Kuret J. Research towards tau imaging. J Alzheimers Dis 26(3): 147-57.(2011);
[12]
Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. [(18)F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 42(7): 1052-61.(2015);
[13]
Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med 54(8): 1420-7.(2013);
[14]
Fodero-Tavoletti MT, Okamura N, Furumoto S, Mulligan RS, Connor AR, McLean CA, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134(Pt 4): 1089-100.(2011);
[15]
Tago T, Furumoto S, Okamura N, Harada R, Ishikawa Y, Arai H, et al. Synthesis and preliminary evaluation of 2-arylhydroxyquinoline derivatives for tau imaging. J Labelled Comp Radiopharm 57(1): 18-24.(2014);
[16]
Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34(2): 457-68.(2013);
[17]
Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6): 666-76.(2013);
[18]
Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79(6): 1094-108.(2013);
[19]
Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33(1): 95-130.(2000);
[20]
Yamashita T, Tomiyama T, Li Q, Numata H, Mori H. Regulation of tau exon 10 splicing by a double stem-loop structure in mouse intron 10. FEBS Lett 579(1): 241-4.(2005);
[21]
Billingsley ML, Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323(Pt 3): 577-91.(1997);
[22]
Stoothoff WH, Johnson GV. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739(2-3): 280-97.(2005);
[23]
von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739(2-3): 158-66.(2005);
[24]
Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52(6): 1158-65.(1999);
[25]
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1): 631-9.(1992);
[26]
Humpel C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1): 26-32.(2011);
[27]
Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4): 351-7.(1997);
[28]
Nordberg A. Molecular imaging in Alzheimer’s disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther 3(6): 34.(2011);
[29]
Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 69(16): 1622-34.(2007);
[30]
Okamura N, Harada R, Furumoto S, Arai H, Yanai K, Kudo Y. Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14(11): 500.(2014);
[31]
Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1): 3-14.(2005);
[32]
Vera DR, Eckelman WC. Receptor 1980 and Receptor 2000: twenty years of progress in receptor-binding radiotracers. Nucl Med Biol 28(5): 475-6.(2001);
[33]
Eckelman WC, Mathis CA. Targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33(2): 161-4.(2006);
[34]
Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 5(6): 376-89.(2003);
[35]
Eckelman WC, Kilbourn MR, Mathis CA. Discussion of targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33(4): 449-51.(2006);
[36]
Zhu L, Ploessl K, Kung HF. PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev 43(19): 6683-91.(2014);
[37]
Schafer KN, Kim S, Matzavinos A, Kuret J. Selectivity requirements for diagnostic imaging of neurofibrillary lesions in Alzheimer’s disease: a simulation study. Neuroimage 60(3): 1724-33.(2012);
[38]
Harada R, Okamura N, Furumoto S, Tago T, Maruyama M, Higuchi M, et al. Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging 40(1): 125-32.(2013);
[39]
Lemoine L, Saint-Aubert L, Marutle A, Antoni G, Eriksson JP, Ghetti B, et al. Visualization of regional tau deposits using (3)H-THK5117 in Alzheimer brain tissue. Acta Neuropathol Commun 3: 40.(2015);
[40]
Mathis CA, Wang Y, Klunk WE. Imaging beta-amyloid plaques and neurofibrillary tangles in the aging human brain. Curr Pharm Des 10(13): 1469-92.(2004);
[41]
Smid LM, Vovko TD, Popovic M, Petric A, Kepe V, Barrio JR, et al. The 2,6-disubstituted naphthalene derivative FDDNP labeling reliably predicts Congo red birefringence of protein deposits in brain sections of selected human neurodegenerative diseases. Brain Pathol 16(2): 124-30.(2006);
[42]
Okamura N, Suemoto T, Furumoto S, Suzuki M, Shimadzu H, Akatsu H, et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J Neurosci 25(47): 10857-62.(2005);
[43]
Fodero-Tavoletti MT, Furumoto S, Taylor L, McLean CA, Mulligan RS, Birchall I, et al. Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimers Res Ther 6(1): 11.(2014);
[44]
Villemagne VL, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Hodges J, Harada R, et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41(5): 816-26.(2014);
[45]
Okamura N, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Harada R, Yates P, et al. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137(Pt 6): 1762-71.(2014);
[46]
Nyberg S, Jonhagen ME, Cselenyi Z, Halldin C, Julin P, Olsson H, et al. Detection of amyloid in Alzheimer’s disease with positron emission tomography using [11C]AZD2184. Eur J Nucl Med Mol Imaging 36(11): 1859-63.(2009);
[47]
Forsberg A, Jureus A, Cselenyi Z, Eriksdotter M, Freund-Levi Y, Jeppsson F, et al. Low background and high contrast PET imaging of amyloid-beta with [11C]AZD2995 and [11C]AZD2184 in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging 40(4): 580-93.(2013);
[48]
Tago T, Furumoto S, Okamura N, Harada R, Adachi H, Ishikawa Y, et al. Preclinical evaluation of [F]THK-5105 enantiomers: effects of chirality on its effectiveness as a tau imaging radiotracer. Mol Imaging Biol 18(2): 258-66.(2016);
[49]
Okamura N, Furumoto S, Furukawa K, Ishiki A, Harada R, Iwata R, et al. PET imaging of tau pathology in mild cognitive impairment and Alzheimer’s disease with [18F]THK-5351. J Nucl Med 56(3): 138.(2015);

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy