Abstract
The mangosteen fruit (Garcinia mangostana) is a rich source of dietary xanthones with the most prominent being α-mangostin. Dietary xanthones have been reported to have a variety of health promoting properties. Until now, in vivo studies on the pharmacokinetic profile of α-mangostin are limited. For this study we employed an LC/MS/MS assay to determine the pharmacokinetic properties of α-mangostin suspension in cottonseed oil in C57BL/6 Mice. Mice were administered 100 mg/kg of α-mangostin by oral gavage and the plasma levels were analyzed over a 24 hour period. We observed the degree of exposure (i.e. area under the curve) of α-mangostin to be 5,736 nmol/L/hr and the maximum plasma concentration was 1,382 nmol/L. Furthermore, we provide evidence that α-mangostin undergoes glucuronidation into monoglucuronide and diglucuronide metabolites. Our study demonstrated that α-mangostin when administered in cotton seed oil to mice at a dose equivalent to 615 mg in a 90kg human adult achieves an approximate maximum plasma concentration of 1,300 nmol/L and is detectable for up to 24 hours. Further research is needed to understand the relationship between the pharmacokinetic properties of α-mangostin following oral administration and reported health benefits.
Keywords: α-Mangostin, mangosteen, absorption, pharmacokinetics, xanthone