Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Tumour Metastasis: The Emerging Role of Nanotechnology

Author(s): Sarah Visentin, Mirela Sedić, Sandra Kraljević Pavelić and Krešimir Pavelić*

Volume 27, Issue 8, 2020

Page: [1367 - 1381] Pages: 15

DOI: 10.2174/0929867326666181220095343

Price: $65

Abstract

The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.

Keywords: Metastasis, cancer stem cells, stem cell marker, nanomedicine, cancer therapy, nanotechnology.

« Previous
[1]
Fidler, I.J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135 ]
[2]
Sampieri, K.; Fodde, R. Cancer stem cells and metastasis. Semin. Cancer Biol., 2012, 22(3), 187-193.
[http://dx.doi.org/10.1016/j.semcancer.2012.03.002] [PMID: 22774232]
[3]
Gray, J.W. Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell, 2003, 4(1), 4-6.
[http://dx.doi.org/10.1016/S1535-6108(03)00167-3] [PMID: 12892707 ]
[4]
Kraljevic Pavelic, S.; Sedic, M.; Bosnjak, H.; Spaventi, S.; Pavelic, K. Metastasis: new perspectives on an old problem. Mol. Cancer, 2011, 10(1), 22.
[http://dx.doi.org/10.1186/1476-4598-10-22] [PMID: 21342498 ]
[5]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154 ]
[6]
Kasai, T.; Chen, L.; Mizutani, A.; Kudoh, T.; Murakami, H.; Fu, L.; Seno, M. Cancer stem cells converted from pluripotent stem cells and the cancerous niche. J. Stem Cells Regen. Med., 2014, 10(1), 2-7.
[PMID: 25075155]
[7]
Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer, 2011, 12(1), 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407 ]
[8]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[9]
Blanco, E.; Kessinger, C.W.; Sumer, B.D.; Gao, J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med. (Maywood), 2009, 234(2), 123-131.
[http://dx.doi.org/10.3181/0808-MR-250] [PMID: 19064945]
[10]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633 ]
[11]
Orive, G.; Anitua, E.; Pedraz, J.L.; Emerich, D.F. Biomaterials for promoting brain protection, repair and regeneration. Nat. Rev. Neurosci., 2009, 10(9), 682-692.
[http://dx.doi.org/10.1038/nrn2685] [PMID: 19654582]
[12]
Bromberg, L. Polymeric micelles in oral chemotherapy. J. Control. Release, 2008, 128(2), 99-112.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.018] [PMID: 18325619 ]
[13]
Kitchens, K.M.; El-Sayed, M.E.H.; Ghandehari, H. Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv. Drug Deliv. Rev., 2005, 57(15), 2163-2176.
[http://dx.doi.org/10.1016/j.addr.2005.09.013] [PMID: 16289433]
[14]
Gaucher, G.; Satturwar, P.; Jones, M-C.; Furtos, A.; Leroux, J-C. Polymeric micelles for oral drug delivery. Eur. J. Pharm. Biopharm., 2010, 76(2), 147-158.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.007] [PMID: 20600891 ]
[15]
Marslin, G.; Revina, A.M.; Khandelwal, V.K.M.; Balakumar, K.; Prakash, J.; Franklin, G.; Sheeba, C.J. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int. J. Nanomedicine, 2015, 10, 3163-3170.
[http://dx.doi.org/10.2147/IJN.S75962] [PMID: 25995626 ]
[16]
Ni, X.L.; Chen, L.X.; Zhang, H.; Yang, B.; Xu, S.; Wu, M.; Liu, J.; Yang, L.L.; Chen, Y.; Fu, S.Z.; Wu, J.B. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Deliv., 2017, 24(1), 1501-1512.
[http://dx.doi.org/10.1080/10717544.2017.1384862] [PMID: 28961023 ]
[17]
Matai, I.; Gopinath, P. Hydrophobic Myristic Acid Modified PAMAM Dendrimers Augment the Delivery of Tamoxifen to Breast Cancer Cells. RSC Advances, 2016, 6(30), 24808-24819.
[http://dx.doi.org/10.1039/C6RA02391F]
[18]
Huo, Z-J.; Wang, S-J.; Wang, Z-Q.; Zuo, W-S.; Liu, P.; Pang, B.; Liu, K. Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: Therapeutic efficacy evaluation. Cancer Sci., 2015, 106(10), 1429-1437.
[http://dx.doi.org/10.1111/cas.12737] [PMID: 26177628 ]
[19]
Xiao, Y.; Liu, Y.; Yang, S.; Zhang, B.; Wang, T.; Jiang, D.; Zhang, J.; Yu, D.; Zhang, N. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment. Colloids Surf. B Biointerfaces, 2016, 141, 83-92.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.016] [PMID: 26844644 ]
[20]
Iacobazzi, R.M.; Porcelli, L.; Lopedota, A.A.; Laquintana, V.; Lopalco, A.; Cutrignelli, A.; Altamura, E.; Di Fonte, R.; Azzariti, A.; Franco, M.; Denora, N. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Int. J. Pharm., 2017, 528(1-2), 485-497.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.049] [PMID: 28624661]
[21]
Tesan, F.; Cerqueira-Coutinho, C.; Salgueiro, J.; de Souza Albernaz, M.; Pinto, S. R.; Rezende Dos Reis, S. R.; Bernardes, E. S.; Chiapetta, D.; Zubillaga, M.; Santos-Oliveira, R. Characterization and biodistribution of bevacizumab TPGS-based nanomicelles: preliminary studies, J. Drug Deliv Sci. and Tech., 2016.
[http://dx.doi.org/10.1016/j.jddst.2016.09.011]
[22]
Chitkara, D.; Singh, S.; Kumar, V.; Danquah, M.; Behrman, S.W.; Kumar, N.; Mahato, R.I. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol. Pharm., 2012, 9(8), 2350-2357.
[http://dx.doi.org/10.1021/mp3002792] [PMID: 22780906 ]
[23]
Zhang, P.; Li, J.; Ghazwani, M.; Zhao, W.; Huang, Y.; Zhang, X.; Venkataramanan, R.; Li, S. Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials, 2015, 67, 104-114.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.027] [PMID: 26210177 ]
[24]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6, 23179.
[http://dx.doi.org/10.1038/srep23179] [PMID: 27052896 ]
[25]
Wang, Y.; Huang, H-Y.; Yang, L.; Zhang, Z.; Ji, H. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci. Rep., 2016, 6, 25468.
[http://dx.doi.org/10.1038/srep25468] [PMID: 27151505 ]
[26]
Egusquiaguirre, S.P.; Igartua, M.; Hernández, R.M.; Pedraz, J.L. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin. Transl. Oncol., 2012, 14(2), 83-93.
[http://dx.doi.org/10.1007/s12094-012-0766-6] [PMID: 22301396 ]
[27]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328 ]
[28]
Azzi, S.; Hebda, J.K.; Gavard, J. Vascular permeability and drug delivery in cancers. Front. Oncol., 2013, 3, 211.
[http://dx.doi.org/10.3389/fonc.2013.00211] [PMID: 23967403]
[29]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X-J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[30]
Haakenson, J.K.; Khokhlatchev, A.V.; Choi, Y.J.; Linton, S.S.; Zhang, P.; Zaki, P.M.; Fu, C.; Cooper, T.K.; Manni, A.; Zhu, J.; Fox, T.E.; Dong, C.; Kester, M. Lysosomal degradation of CD44 mediates ceramide nanoliposome-induced anoikis and diminished extravasation in metastatic carcinoma cells. J. Biol. Chem., 2015, 290(13), 8632-8643.
[http://dx.doi.org/10.1074/jbc.M114.609677] [PMID: 25681441 ]
[31]
Inc, K.N. Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer, http://www.prnewswire.com/news-releases/keystone-nano-announces-fda-approval-of-investigational-new-drug-application-for-ceramide-nanoliposome-for-the-improved-treatment-of-cancer-300386269.html (accessed Aug 7, 2017).
[32]
Zhang, P.; Fu, C.; Hu, Y.; Dong, C.; Song, Y.; Song, E. C6-ceramide nanoliposome suppresses tumor metastasis by eliciting PI3K and PKCζ tumor-suppressive activities and regulating integrin affinity modulation. Sci. Rep., 2015, 5, 9275.
[http://dx.doi.org/10.1038/srep09275] [PMID: 25792190 ]
[33]
Morad, S.A.F.; Madigan, J.P.; Levin, J.C.; Abdelmageed, N.; Karimi, R.; Rosenberg, D.W.; Kester, M.; Shanmugavelandy, S.S.; Cabot, M.C. Tamoxifen magnifies therapeutic impact of ceramide in human colorectal cancer cells independent of p53. Biochem. Pharmacol., 2013, 85(8), 1057-1065.
[http://dx.doi.org/10.1016/j.bcp.2013.01.015] [PMID: 23353700]
[34]
FDA Draft Guidance on Daunorubicin Citrate, UCM406256.pdf (accessed on Aug 7, 2017).
[35]
Highlights of prescribing information, 207793lbl.pdf (accessed on Aug 7, 2017).
[36]
FDA Approval for Vincristine Sulfate Liposome, https://www.cancer.gov/about-cancer/treatment/drugs/fda-vincristine-sulfate-liposome (accessed Aug 7, 2017).
[37]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195 ]
[38]
Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev., 2014, 66, 110-116.
[http://dx.doi.org/10.1016/j.addr.2013.12.008] [PMID: 24384374 ]
[39]
Genexol® PM Inj. - Injections - Products : Samyang Biopharmaceuticals, https://www.samyangbiopharm.com/eng/ProductIntroduce/injection01 (accessed Mar 31, 2017).
[40]
Paclitaxel - Oasmia Pharmaceutical - AdisInsight http://adisinsight.springer.com/drugs/800024861 (accessed Aug 7, 2017).
[41]
Oasmia Pharmaceutical Announces Positive Overall Survival Results from Phase III Study of Paclical/Apealea for Treatment of Ovarian Cancer, http://oasmia.com/en/press-release/oasmia-pharmaceutical-announces-positive-overall-survival-results-phase-iii-study-paclicalapealea-treatment-ovarian-cancer/accessedAug 7,2017.
[42]
A Study of NK012 in Patients With Advanced, Metastatic Triple Negative Breast Cancer - Full Text View - Clinical Trials.gov , https://clinicaltrials.gov/ct2/show/NCT00951054 (accessed Aug 7, 2017).
[43]
Burris, H.A.; Infante, J.R.; Anthony Greco, F.; Thompson, D.S.; Barton, J.H.; Bendell, J.C.; Nambu, Y.; Watanabe, N.; Jones, S.F. A phase I dose escalation study of NK012, an SN-38 incorporating macromolecular polymeric micelle. Cancer Chemother. Pharmacol., 2016, 77(5), 1079-1086.
[http://dx.doi.org/10.1007/s00280-016-2986-x] [PMID: 27061418 ]
[44]
NC-6004 NanoplatinTM | Pipeline | Business Development | NanoCarrier http://www.nanocarrier.co.jp/en/research/pipeline/02.html accessed Aug 7, 2017
[45]
Zhang, C.G.; Zhu, W.J.; Liu, Y.; Yuan, Z.Q.; Yang, S.D.; Chen, W.L.; Li, J.Z.; Zhou, X.F.; Liu, C.; Zhang, X.N. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci. Rep., 2016, 6, 23859-23870.
[http://dx.doi.org/10.1038/srep23859] [PMID: 27030638]
[46]
Tripathi, P.K.; Khopade, A.J.; Nagaich, S.; Shrivastava, S.; Jain, S.; Jain, N.K. Dendrimer grafts for delivery of 5-fluorouracil. Pharmazie, 2002, 57(4), 261-264.
[PMID: 11998447]
[47]
Jin, Y.; Ren, X.; Wang, W.; Ke, L.; Ning, E.; Du, L.; Bradshaw, J.A. 5-fluorouracil-loaded pH-responsive dendrimer nanocarrier for tumor targeting. Int. J. Pharm., 2011, 420(2), 378-384.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.053] [PMID: 21925254]
[48]
Tran, N.Q.; Nguyen, C.K.; Nguyen, T.P. Dendrimer-Based Nanocarriers Demonstrating a High Efficiency for Loading and Releasing Anticancer Drugs against Cancer Cells in Vitro and in Vivo. Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4(4), 45013.
[http://dx.doi.org/10.1088/2043-6262/4/4/045013]
[49]
Cline, E.N.; Li, M-H.; Choi, S.K.; Herbstman, J.F.; Kaul, N.; Meyhöfer, E.; Skiniotis, G.; Baker, J.R.; Larson, R.G.; Walter, N.G. Paclitaxel-conjugated PAMAM dendrimers adversely affect microtubule structure through two independent modes of action. Biomacromolecules, 2013, 14(3), 654-664.
[http://dx.doi.org/10.1021/bm301719b] [PMID: 23391096 ]
[50]
DEPTM docetaxel, http://www.starpharma.com/ drug_delivery/dep_docetaxel (accessed Aug 7, 2017).
[51]
Cai, X.; Zhu, H.; Zhang, Y.; Gu, Z. Highly Efficient and Safe Delivery of VEGF siRNA by Bio-Reducible Fluorinated Peptide Dendrimers for Cancer Therapy. ACS Appl. Mater. Interfaces, 2017.
[52]
Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71(3), 555-564.
[http://dx.doi.org/10.1007/s00280-012-2042-4] [PMID: 23212117]
[53]
Mayer, L.D.; Bally, M.B.; Loughrey, H.; Masin, D.; Cullis, P.R. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res., 1990, 50(3), 575-579.
[PMID: 2297698]
[54]
Stover, T.; Kester, M. Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J. Pharmacol. Exp. Ther., 2003, 307(2), 468-475.
[http://dx.doi.org/10.1124/jpet.103.054056] [PMID: 12975495 ]
[55]
Morad, S.A.; Bridges, L.C.; Almeida Larrea, A.D.; Mayen, A.L.; MacDougall, M.R.; Davis, T.S.; Kester, M.; Cabot, M.C. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells. Cancer Lett., 2016, 376(2), 199-204.
[http://dx.doi.org/10.1016/j.canlet.2016.03.049] [PMID: 27045476]
[56]
Krishnamurthy, K.; Wang, G.; Rokhfeld, D.; Bieberich, E. Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res., 2008, 10(6), R106.
[http://dx.doi.org/10.1186/bcr2211] [PMID: 19087284 ]
[57]
Tran, M.A.; Smith, C.D.; Kester, M.; Robertson, G.P. Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin. Cancer Res., 2008, 14(11), 3571-3581.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4881] [PMID: 18519791]
[58]
Kraljevic, S.; Pavelic, K. Navigare necessere est. Improved navigation would help to solve two crucial problems in modern drug therapy: toxicity and precise delivery. EMBO Rep., 2005, 6(8), 695-700.
[http://dx.doi.org/10.1038/sj.embor.7400484] [PMID: 16065058 ]
[59]
Riaz, U.; Ashraf, S.M. Double layered hydroxides as potential anti-cancer drug delivery agents. Mini Rev. Med. Chem., 2013, 13(4), 522-529.
[http://dx.doi.org/10.2174/1389557511313040005] [PMID: 23170959]
[60]
Choi, J.Y.; Hong, W.G.; Cho, J.H.; Kim, E.M.; Kim, J.; Jung, C-H.; Hwang, S-G.; Um, H-D.; Park, J.K. Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy. Int. J. Oncol., 2015, 47(4), 1257-1265.
[http://dx.doi.org/10.3892/ijo.2015.3123] [PMID: 26314270 ]
[61]
Chen, J-Y.; Tang, Y-A.; Li, W-S.; Chiou, Y-C.; Shieh, J-M.; Wang, Y-C. A synthetic podophyllotoxin derivative exerts anti-cancer effects by inducing mitotic arrest and pro-apoptotic ER stress in lung cancer preclinical models. PLoS One, 2013, 8(4)
[http://dx.doi.org/10.1371/journal.pone.0062082] [PMID: 23646116 ]
[62]
Utsugi, T.; Shibata, J.; Sugimoto, Y.; Aoyagi, K.; Wierzba, K.; Kobunai, T.; Terada, T.; Oh-hara, T.; Tsuruo, T.; Yamada, Y. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res., 1996, 56(12), 2809-2814.
[PMID: 8665518]
[63]
Choi, S-J.; Choy, J-H. Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine (Lond.), 2011, 6(5), 803-814.
[http://dx.doi.org/10.2217/nnm.11.86] [PMID: 21793673 ]
[64]
Chen, J.; Shao, R.; Li, L.; Xu, Z.P.; Gu, W. Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. Int. J. Nanomedicine, 2014, 9, 3403-3411.
[http://dx.doi.org/10.2147/IJN.S61633] [PMID: 25075187]
[65]
Zhu, Y.; Wu, Y.; Zhang, H.; Wang, Z.; Wang, S.; Qian, Y.; Zhu, R. Enhanced Anti-Metastatic Activity of Etoposide Using Layered Double Hydroxide Nano Particles. J. Biomed. Nanotechnol., 2015, 11(12), 2158-2168.
[http://dx.doi.org/10.1166/jbn.2015.2164] [PMID: 26510310 ]
[66]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489 ]
[67]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[68]
Garanger, E.; Boturyn, D.; Dumy, P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer. Agents Med. Chem., 2007, 7(5), 552-558.
[http://dx.doi.org/10.2174/187152007781668706] [PMID: 17896915 ]
[69]
Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm., 2012, 9(11), 2961-2973.
[http://dx.doi.org/10.1021/mp3002733] [PMID: 22967287 ]
[70]
Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y-K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; Steinbach, J.P.; Wick, W.; Tarnawski, R.; Nam, D-H.; Hau, P.; Weyerbrock, A.; Taphoorn, M.J.B.; Shen, C-C.; Rao, N.; Thurzo, L.; Herrlinger, U.; Gupta, T.; Kortmann, R-D.; Adamska, K.; McBain, C.; Brandes, A.A.; Tonn, J.C.; Schnell, O.; Wiegel, T.; Kim, C-Y.; Nabors, L.B.; Reardon, D.A.; van den Bent, M.J.; Hicking, C.; Markivskyy, A.; Picard, M.; Weller, M. European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol., 2014, 15(10), 1100-1108.
[http://dx.doi.org/10.1016/S1470-2045(14)70379-1] [PMID: 25163906 ]
[71]
MacDonald, T.J.; Stewart, C.F.; Kocak, M.; Goldman, S.; Ellenbogen, R.G.; Phillips, P.; Lafond, D.; Poussaint, T.Y.; Kieran, M.W.; Boyett, J.M.; Kun, L.E.; Phase, I. Phase I clinical trial of cilengitide in children with refractory brain tumors: Pediatric Brain Tumor Consortium Study PBTC-012. J. Clin. Oncol., 2008, 26(6), 919-924.
[http://dx.doi.org/10.1200/JCO.2007.14.1812] [PMID: 18281665 ]
[72]
Bradley, D.A.; Daignault, S.; Ryan, C.J.; Dipaola, R.S.; Cooney, K.A.; Smith, D.C.; Small, E.; Mathew, P.; Gross, M.E.; Stein, M.N.; Chen, A.; Pienta, K.J.; Escara-Wilke, J.; Doyle, G.; Al-Hawary, M.; Keller, E.T.; Hussain, M. Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Invest. New Drugs, 2011, 29(6), 1432-1440.
[http://dx.doi.org/10.1007/s10637-010-9420-8] [PMID: 20336348 ]
[73]
Sethuraman, V.A.; Bae, Y.H. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release, 2007, 118(2), 216-224.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.008] [PMID: 17239466]
[74]
Mei, L.; Fu, L.; Shi, K.; Zhang, Q.; Liu, Y.; Tang, J.; Gao, H.; Zhang, Z.; He, Q. Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. Int. J. Pharm., 2014, 468(1-2), 26-38.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.008] [PMID: 24709209]
[75]
Jeong, Y-I.; Seo, S-J.; Park, I-K.; Lee, H-C.; Kang, I-C.; Akaike, T.; Cho, C-S. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(gamma-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int. J. Pharm., 2005, 296(1-2), 151-161.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.027] [PMID: 15885467 ]
[76]
Valle, J.W.; Armstrong, A.; Newman, C.; Alakhov, V.; Pietrzynski, G.; Brewer, J.; Campbell, S.; Corrie, P.; Rowinsky, E.K.; Ranson, M. A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest. New Drugs, 2011, 29(5), 1029-1037.
[http://dx.doi.org/10.1007/s10637-010-9399-1] [PMID: 20179989]
[77]
Alakhova, D.Y.; Zhao, Y.; Li, S.; Kabanov, A.V. Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia. PLoS One, 2013, 8(8)e72238
[http://dx.doi.org/10.1371/journal.pone.0072238] [PMID: 23977261 ]
[78]
Pasqualini, R.; Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature, 1996, 380(6572), 364-366.
[http://dx.doi.org/10.1038/380364a0] [PMID: 8598934 ]
[79]
Chen, B.; Cao, S.; Zhang, Y.; Wang, X.; Liu, J.; Hui, X.; Wan, Y.; Du, W.; Wang, L.; Wu, K.; Fan, D. A novel peptide (GX1) homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy. BMC Cell Biol., 2009, 10, 63.
[http://dx.doi.org/10.1186/1471-2121-10-63] [PMID: 19740430]
[80]
Zhi, M.; Wu, K-C.; Dong, L.; Hao, Z-M.; Deng, T-Z.; Hong, L.; Liang, S-H.; Zhao, P-T.; Qiao, T-D.; Wang, Y.; Xu, X.; Fan, D-M. Characterization of a specific phage-displayed Peptide binding to vasculature of human gastric cancer. Cancer Biol. Ther., 2004, 3(12), 1232-1235.
[http://dx.doi.org/10.4161/cbt.3.12.1223] [PMID: 15492500]
[81]
Laakkonen, P.; Åkerman, M.E.; Biliran, H.; Yang, M.; Ferrer, F.; Karpanen, T.; Hoffman, R.M.; Ruoslahti, E. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc. Natl. Acad. Sci. USA, 2004, 101(25), 9381-9386.
[http://dx.doi.org/10.1073/pnas.0403317101] [PMID: 15197262]
[82]
Luo, G.; Yu, X.; Jin, C.; Yang, F.; Fu, D.; Long, J.; Xu, J.; Zhan, C.; Lu, W. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int. J. Pharm., 2010, 385(1-2), 150-156.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.014] [PMID: 19825404 ]
[83]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285 ]
[84]
Mullin, L.B.; Phillips, L.C.; Dayton, P.A. Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2013, 60(1), 65-77.
[http://dx.doi.org/10.1109/TUFFC.2013.2538] [PMID: 23287914 ]
[85]
Kong, G.; Braun, R.D.; Dewhirst, M.W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res., 2001, 61(7), 3027-3032.
[PMID: 11306483]
[86]
ong, C. W.; Park, H. J.; Lee, C. K.; Griffin, R. Implications of Increased Tumor Blood Flow and Oxygenation Caused by Mild Temperature Hyperthermia in Tumor Treatment. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. Group, 2005, 21(8), 761-767.
[http://dx.doi.org/10.1080/02656730500204487]
[87]
Sun, Y.; Sugawara, M.; Mulkern, R.V.; Hynynen, K.; Mochizuki, S.; Albert, M.; Zuo, C.S. Simultaneous measurements of temperature and pH in vivo using NMR in conjunction with TmDOTP5-. NMR Biomed., 2000, 13(8), 460-466.
[http://dx.doi.org/10.1002/nbm.676] [PMID: 11252031]
[88]
Husseini, G.A.; Pitt, W.G. The use of ultrasound and micelles in cancer treatment. J. Nanosci. Nanotechnol., 2008, 8(5), 2205-2215.
[http://dx.doi.org/10.1166/jnn.2008.225] [PMID: 18572632 ]
[89]
Song, B.; Wu, C.; Chang, J. Ultrasound-triggered dual-drug release from poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles electrospun composite fibers. Regen. Biomater., 2015, 2(4), 229-237.
[http://dx.doi.org/10.1093/rb/rbv019] [PMID: 26816645 ]
[90]
Fingar, V.H.; Wieman, T.J.; Wiehle, S.A.; Cerrito, P.B. The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res., 1992, 52(18), 4914-4921.
[PMID: 1387584]
[91]
Sitnik, T.M.; Hampton, J.A.; Henderson, B.W. Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. Br. J. Cancer, 1998, 77(9), 1386-1394.
[http://dx.doi.org/10.1038/bjc.1998.231] [PMID: 9652753 ]
[92]
Melancon, M.P.; Elliott, A.M.; Shetty, A.; Huang, Q.; Stafford, R.J.; Li, C. Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J. Control. Release, 2011, 156(2), 265-272.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.030] [PMID: 21763373]
[93]
Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M.J.; Xia, Y. Gold nanocages as photothermal transducers for cancer treatment. Small, 2010, 6(7), 811-817.
[http://dx.doi.org/10.1002/smll.200902216] [PMID: 20225187]
[94]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2006, 128(6), 2115-2120.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114 ]
[95]
Yi, H.; Ghosh, D.; Ham, M-H.; Qi, J.; Barone, P.W.; Strano, M.S.; Belcher, A.M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett., 2012, 12(3), 1176-1183.
[http://dx.doi.org/10.1021/nl2031663] [PMID: 22268625 ]
[96]
Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9), 7000-7009.
[http://dx.doi.org/10.1021/nn201560b] [PMID: 21815655 ]
[97]
Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc., 2013, 135(23), 8571-8577.
[http://dx.doi.org/10.1021/ja4013497] [PMID: 23687972 ]
[98]
Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M.P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc., 2010, 132(43), 15351-15358.
[http://dx.doi.org/10.1021/ja106855m] [PMID: 20942456 ]
[99]
Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater., 2013, 25(9), 1353-1359.
[http://dx.doi.org/10.1002/adma.201204683] [PMID: 23280690 ]
[100]
Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E-K.; Park, H.; Suh, J-S.; Lee, K.; Yoo, K-H.; Kim, E-K.; Huh, Y-M.; Haam, S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(2), 441-444.
[http://dx.doi.org/10.1002/anie.201005075] [PMID: 21132823 ]
[101]
Zhou, Z.; Wang, Y.; Yan, Y.; Zhang, Q.; Cheng, Y. Dendrimer-Templated Ultrasmall and Multifunctional Photothermal Agents for Efficient Tumor Ablation. ACS Nano, 2016, 10(4), 4863-4872.
[http://dx.doi.org/10.1021/acsnano.6b02058] [PMID: 27054555 ]
[102]
Zhang, Q.; Zhou, Z.; Wang, Y.; Cheng, Y. How can we use dendrimer-templated ultrasmall and multifunctional nanoparticles in photothermal cancer therapy? Nanomedicine (Lond.), 2016, 11(24), 3181-3183.
[http://dx.doi.org/10.2217/nnm-2016-0359] [PMID: 27845602 ]
[103]
Bañobre-López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother., 2013, 18(6), 397-400.
[http://dx.doi.org/10.1016/j.rpor.2013.09.011] [PMID: 24416585 ]
[104]
Oliveira, H.; Pérez-Andrés, E.; Thevenot, J.; Sandre, O.; Berra, E.; Lecommandoux, S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release, 2013, 169(3), 165-170.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.013] [PMID: 23353805 ]
[105]
Salvati, E.; Stellacci, F.; Krol, S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine (Lond.), 2015, 10(23), 3495-3512.
[http://dx.doi.org/10.2217/nnm.15.180] [PMID: 26606949 ]
[106]
Zheng, X.; Tang, H.; Xie, C.; Zhang, J.; Wu, W.; Jiang, X. Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor. Angew. Chem. Int. Ed. Engl., 2015, 54(28), 8094-8099.
[http://dx.doi.org/10.1002/anie.201503067] [PMID: 26037656 ]
[107]
Yoo, B.; Kavishwar, A.; Ross, A.; Pantazopoulos, P.; Moore, A.; Medarova, Z. In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor. Mol. Imaging Biol., 2016, 18(1), 70-78.
[http://dx.doi.org/10.1007/s11307-015-0863-3] [PMID: 25987466]
[108]
Panchapakesan, B.; Lu, S.; Sivakumar, K.; Taker, K.; Cesarone, G.; Wickstrom, E. Single-Wall Carbon Nanotube Nanobomb Agents for Killing Breast Cancer Cells. NanoBiotechnology, 2005, 1(2), 133-139.
[http://dx.doi.org/10.1385/NBT:1:2:133]
[109]
Kang, B.; Yu, D.; Dai, Y.; Chang, S.; Chen, D.; Ding, Y. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small, 2009, 5(11), 1292-1301.
[http://dx.doi.org/10.1002/smll.200801820] [PMID: 19274646 ]
[110]
Wang, H.; Agarwal, P.; Zhao, S.; Yu, J.; Lu, X.; He, X. A Near-Infrared Laser-Activated “Nanobomb” for Breaking the Barriers to MicroRNA Delivery. Adv. Mater., 2016, 28(2), 347-355.
[http://dx.doi.org/10.1002/adma.201504263] [PMID: 26567892 ]
[111]
Nanotechnology Art Gallery -- Erik Viktor , http://www.nanotech-now.com/Art_Gallery/erik-viktor.htm (accessed Mar 31, 2017).
[112]
Amir, Y.; Abu-Horowitz, A.; Bachelet, I. Folding and Characterization of a Bio-Responsive Robot from DNA Origami. J. Vis. Exp. JoVE, 2015, 106 e51272
[http://dx.doi.org/10.3791/51272] [PMID: 26709748 ]
[113]
Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol., 2014, 9(5), 353-357.
[http://dx.doi.org/10.1038/nnano.2014.58] [PMID: 24705510]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy