Abstract
Human gene therapy promises to change the practice of medicine by treating the causes of disease rather than the symptoms. Since the first clinical trial made its debut ten years ago, there are over 400 approved protocols in the United States alone, most of which have failed to show convincing data of clinical efficacy. This setback is largely due to the lack of efficient and adequate gene transfer vehicles. With the recent progress in elucidating the molecular mechanisms of human diseases and the imminent arrival of the post genomic era, there are increasing numbers of therapeutic genes or targets that are available for gene therapy. Therefore, the urgency and need for efficacious gene therapies are greater than ever. Clearly, the current fundamental obstacle is to develop delivery vectors that exhibit high efficacy and specificity of gene transfer. Recombinant adenoviruses have provided a versatile system for gene expression studies and therapeutic applications. Of late, there has been a remarkable increase in adenoviral vector-based clinical trials. Recent endeavors in the development of recombinant adenoviral vectors have focused on modification of virus tropism, accommodation of larger genes, increase in stability and control of transgene expression, and down-modulation of host immune responses. These modifications and continued improvements in adenoviral vectors will provide a great opportunity for human gene therapy to live up to its enormous potential in the second decade.
Keywords: Adenoviral Vector-Mediated, Recombinant adenoviruses, Cancer, Genetic diseases, Cardiovascular diseases, Rheumatoid Arthritis, Multiple Sclerosis, Acute hepatic failure, ADENOVIRUS BIOLOGY