Abstract
Neuropsychiatric disorders (including dementia) have high personal, family, and social costs. Although many neuropsychiatric disorders share common patterns of symptoms and treatments, there are no validated biomarkers that define the underlying molecular mechanisms in the central nervous system (CNS). We hypothesize that there are early and common molecular changes in the CNS that will serve as sensitive indicators of CNS molecular stress and that will be predictive of neuropathological changes resulted in increasing the risk for neuropsychiatric diseases. Using the rodent model, we showed that systemic exposure to three diverse CNS stressors with different mechanisms of action (ketamine, low-dose and high-dose ionizing radiation, interferon-α) induced the expression of troponin T1 (Tnnt 1) within hours in adult mouse brain tissue. Tnnt 1 expression was induced in neuronal (not glial) cells, the hippocampal zone of neurogenesis, cerebral cortex, amygdale, and choroid plexus, which are important CNS locations in behavior and mental health. We also identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue for hours after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer’s disease. Our studies provide new molecular information on shared mechanisms and expression profiles of diverse neuropsychiatric disorders. This knowledge will be fundamental for developing molecular signatures of early CNS stress biomarker for early diagnosis and treatment of neuropsychiatric diseases.
Keywords: Early CNS stress biomarker, Interferon, Radiation, Low-dose, Ketamine, Microarray, Neuropsychiatric diseases, RNA in situ hybridization, Tnnt1, cerebral cortex, Alzheimer’s disease
Current Genomics
Title:Characterization of the Early CNS Stress Biomarkers and Profiles Associated with Neuropsychiatric Diseases
Volume: 13 Issue: 6
Author(s): X. R. Lowe and A. J. Wyrobek
Affiliation:
Keywords: Early CNS stress biomarker, Interferon, Radiation, Low-dose, Ketamine, Microarray, Neuropsychiatric diseases, RNA in situ hybridization, Tnnt1, cerebral cortex, Alzheimer’s disease
Abstract: Neuropsychiatric disorders (including dementia) have high personal, family, and social costs. Although many neuropsychiatric disorders share common patterns of symptoms and treatments, there are no validated biomarkers that define the underlying molecular mechanisms in the central nervous system (CNS). We hypothesize that there are early and common molecular changes in the CNS that will serve as sensitive indicators of CNS molecular stress and that will be predictive of neuropathological changes resulted in increasing the risk for neuropsychiatric diseases. Using the rodent model, we showed that systemic exposure to three diverse CNS stressors with different mechanisms of action (ketamine, low-dose and high-dose ionizing radiation, interferon-α) induced the expression of troponin T1 (Tnnt 1) within hours in adult mouse brain tissue. Tnnt 1 expression was induced in neuronal (not glial) cells, the hippocampal zone of neurogenesis, cerebral cortex, amygdale, and choroid plexus, which are important CNS locations in behavior and mental health. We also identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue for hours after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer’s disease. Our studies provide new molecular information on shared mechanisms and expression profiles of diverse neuropsychiatric disorders. This knowledge will be fundamental for developing molecular signatures of early CNS stress biomarker for early diagnosis and treatment of neuropsychiatric diseases.
Export Options
About this article
Cite this article as:
R. Lowe X. and J. Wyrobek A., Characterization of the Early CNS Stress Biomarkers and Profiles Associated with Neuropsychiatric Diseases, Current Genomics 2012; 13 (6) . https://dx.doi.org/10.2174/138920212802510448
DOI https://dx.doi.org/10.2174/138920212802510448 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Tubulin Inhibitors: A Patent Survey
Recent Patents on Anti-Cancer Drug Discovery Synthesis and Antiproliferative Evaluation of Spirothiadiazolopyridazine Derivatives
Letters in Drug Design & Discovery The Molecular Machinery Regulating Apoptosis Signal Transduction and its Implication in Human Physiology and Pathophysiologies
Current Molecular Medicine Mechanisms of Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors and New Therapeutic Perspectives in Non Small Cell Lung Cancer
Current Drug Targets Daclizumab: A Potential Asthma Therapy?
Recent Patents on Inflammation & Allergy Drug Discovery Targeting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cells
Current Medicinal Chemistry The Effects of Caffeine on the Cholinergic System
Mini-Reviews in Medicinal Chemistry Tetraspanins - Gateways for Infection
Infectious Disorders - Drug Targets Synthesis and Evaluation of Haloacetyl, α-Bromoacryloyl and Nitrooxyacetyl Benzo[b]furan and Benzo[b]thiophene Derivatives as Potent Antiproliferative Agents Against Leukemia L1210 and K562 Cells
Letters in Drug Design & Discovery Biological Basis of Novel Therapies for Myelodysplastic Syndrome
Current Cancer Therapy Reviews Aberrant Expression of MicroRNAs in B-cell Lymphomas
MicroRNA Recent Advances in Characterizing Natural Products that Regulate Autophagy
Anti-Cancer Agents in Medicinal Chemistry Anti-Cancer Therapeutic Approaches Based on Intracellular and Extracellular Heat Shock Proteins
Current Medicinal Chemistry Production, Novel Assay Development and Clinical Applications of Monoclonal Antibodies
Recent Patents on Anti-Cancer Drug Discovery MicroRNAs and Cancer; an Overview
Current Pharmaceutical Biotechnology Pleiotropic Effect of Mahanine and Girinimbine Analogs: Anticancer Mechanism and its Therapeutic Versatility
Anti-Cancer Agents in Medicinal Chemistry The Role of Nucleoside Transport in the Antineoplastic Activity of Purine Nucleoside Chemotherapeutic Agents
Current Cancer Therapy Reviews Natural Compounds as Antagonists of Canonical Wnt/β-Catenin Signaling
Current Chemical Biology The Use of Innovative Tools to Reproduce Human Cancer Translocations: Lessons from the CRISPR/Cas System
Current Biotechnology Phosphodiesterase Type 5 Inhibitors: Unmet Needs
Current Pharmaceutical Design