Abstract
At present, gene transfection insufficient efficiency is a major drawback of non-viral gene therapy. The 2 main types of delivery systems deployed in gene therapy are based on viral or non-viral gene carriers. Several non-viral modalities can transfer foreign genetic material into the human body. To do so, polycation-based gene delivery methods must achieve sufficient efficiency in the transportation of therapeutic genes across various extracellular and intracellular barriers. These barriers include interactions with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is a potential obstacle for functional delivery to target cells. Cationic polymers constitute one of the most promising approaches to the use of viral vectors for gene therapy. A better understanding of the mechanisms by which DNA can escape from endosomes and traffic to enter the nucleus has triggered new strategies of synthesis and has revitalized research into new polycation-based systems. The objective of this review is to address the state of the art in gene therapy with synthetic and natural polycations and the latest advances to improve gene transfer efficiency in cells
Keywords: DNA, gene therapy, nanoparticles, polycations, polymers, viral vectors, endosomes, reticuloendothelial system, polycation-based, serum nucleases
Current Gene Therapy
Title: Polycation-Based Gene Therapy: Current Knowledge and New Perspectives
Volume: 11 Issue: 4
Author(s): Marcio J. Tiera, Qin Shi, Francoise M. Winnik and Julio C. Fernandes
Affiliation:
Keywords: DNA, gene therapy, nanoparticles, polycations, polymers, viral vectors, endosomes, reticuloendothelial system, polycation-based, serum nucleases
Abstract: At present, gene transfection insufficient efficiency is a major drawback of non-viral gene therapy. The 2 main types of delivery systems deployed in gene therapy are based on viral or non-viral gene carriers. Several non-viral modalities can transfer foreign genetic material into the human body. To do so, polycation-based gene delivery methods must achieve sufficient efficiency in the transportation of therapeutic genes across various extracellular and intracellular barriers. These barriers include interactions with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is a potential obstacle for functional delivery to target cells. Cationic polymers constitute one of the most promising approaches to the use of viral vectors for gene therapy. A better understanding of the mechanisms by which DNA can escape from endosomes and traffic to enter the nucleus has triggered new strategies of synthesis and has revitalized research into new polycation-based systems. The objective of this review is to address the state of the art in gene therapy with synthetic and natural polycations and the latest advances to improve gene transfer efficiency in cells
Export Options
About this article
Cite this article as:
J. Tiera Marcio, Shi Qin, M. Winnik Francoise and C. Fernandes Julio, Polycation-Based Gene Therapy: Current Knowledge and New Perspectives, Current Gene Therapy 2011; 11 (4) . https://dx.doi.org/10.2174/156652311796150408
DOI https://dx.doi.org/10.2174/156652311796150408 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Pharmacology of Sigma (σ) Receptor Ligands from a Behavioral Perspective
Current Pharmaceutical Design Prostaglandin J2 Family and the Cardiovascular System
Current Vascular Pharmacology The Role of Tumor-related LncRNA PART1 in Cancer
Current Pharmaceutical Design Preservation of Cellular Glutathione Status and Mitochondrial Membrane Potential by N-Acetylcysteine and Insulin Sensitizers Prevent Carbonyl Stress-Induced Human Brain Endothelial Cell Apoptosis
Current Neurovascular Research How do Glial Cells Contribute to Motor Control?
Current Pharmaceutical Design Detection and Specific Targeting of Hypoxic Regions within Solid Tumors: Current Preclinical and Clinical Strategies
Current Medicinal Chemistry Ferroptosis Inducers for Prostate Cancer Therapy
Current Medicinal Chemistry Human Neural Stem and Progenitor Cells: In Vitro and In Vivo Properties, and Potential for Gene Therapy and Cell Replacement in the CNS
Current Gene Therapy Drug Tissue Distribution: Study Methods and Therapeutic Implications
Current Pharmaceutical Design Role of Connexins and Pannexins in Ischemic Stroke
Current Medicinal Chemistry Benzamide Riboside, a Recent Inhibitor of Inosine 5-Monophosphate Dehydrogenase Induces Transferrin Receptors in Cancer Cells
Current Medicinal Chemistry Engineered Exosomes: A Promising Drug Delivery Strategy for Brain Diseases
Current Medicinal Chemistry Aberrant Splicing, Hyaluronan Synthases and Intracellular Hyaluronan as Drivers of Oncogenesis and Potential Drug Targets
Current Cancer Drug Targets Recent Advances in Use of Topoisomerase Inhibitors in Combination Cancer Therapy
Current Topics in Medicinal Chemistry Mitochondria Sentencing About Cellular Life and Death: A Matter of Oxidative Stress
Current Pharmaceutical Design Mitochondrial and Nuclear Genes of Mitochondrial Components in Cancer
Current Genomics DLEU2: A Meaningful Long Noncoding RNA in Oncogenesis
Current Pharmaceutical Design Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature
Current Drug Targets Stem Cell-Like Brain Cancer Cells
Current Cancer Therapy Reviews Neonatal Germ Cell Tumors
Current Pediatric Reviews