Abstract
The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Keywords: DNA double strand breaks, Linear energy transfer, Radiation, γ-H2AX foci, malignant tumors, radiobiological efficacy, DSBs, LET, NHEJ, HDR
Current Genomics
Title:Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation
Volume: 13 Issue: 6
Author(s): Thomas Ernst Schmid, Olga. Zlobinskaya and Gabriele Multhoff
Affiliation:
Keywords: DNA double strand breaks, Linear energy transfer, Radiation, γ-H2AX foci, malignant tumors, radiobiological efficacy, DSBs, LET, NHEJ, HDR
Abstract: The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Export Options
About this article
Cite this article as:
Ernst Schmid Thomas, Zlobinskaya Olga. and Multhoff Gabriele, Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation, Current Genomics 2012; 13 (6) . https://dx.doi.org/10.2174/138920212802510501
DOI https://dx.doi.org/10.2174/138920212802510501 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
![](/images/wayfinder.jpg)
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Peripheral TRPV1 Receptors As Targets for Drug Development: New Molecules and Mechanisms
Current Pharmaceutical Design Recent Updates on <i>Sinularia</i> Soft Coral
Mini-Reviews in Medicinal Chemistry Class II Phosphoinositide 3-Kinases as Potential Novel Drug Targets
Current Signal Transduction Therapy Bone Seeking Radiopharmaceuticals for Palliation of Pain in Cancer Patients with Osseous Metastases
Anti-Cancer Agents in Medicinal Chemistry Reduced Nicotinamide Adenine Dinucleotide (NADH) Fluorescence for the Detection of Cell Death
Anti-Cancer Agents in Medicinal Chemistry Endometriosis Management: Workflow on Genomics and Proteomics and Future Biomolecular Pharmacotherapy
Current Medicinal Chemistry Evaluation of High Risk HPV (HPV-16 and -18) RNA and Integration in Cervical Neoplasms in Systemic Lupus Erythematosus
Current Women`s Health Reviews Chemical Constituents and Cytotoxicity of Euphorbia vajravelui
Letters in Organic Chemistry Anti-Cancer Compounds from Terrestrial and Marine Resources -In silico and Experimental Studies
Current Computer-Aided Drug Design Cytokine Gene Polymorphisms in Cancer and Inflammatory Disorders
Current Immunology Reviews (Discontinued) Recombinant Human p53 Adenovirus Injection (rAd-p53) Combined with Chemotherapy for 4 Cases of High-grade Serous Ovarian Cancer
Current Gene Therapy Targeting miRNAs for Pancreatic Cancer Therapy
Current Pharmaceutical Design Channel-Like Functions of the 18-kDa Translocator Protein (TSPO): Regulation of Apoptosis and Steroidogenesis as Part of the Host-Defense Response
Current Pharmaceutical Design Monotherapy for the Treatment of Lymphedema in Children: A Review
Current Pediatric Reviews Pore-forming Peptides: A New Treatment Option for Cancer
Current Medicinal Chemistry Recent Developments in the Applications of Palladium Complexes Bearing N-Heterocyclic Carbene Ligands
Current Organic Chemistry Synthesis and Biological Evaluation of 2-aroyl-4-phenyl-5- hydroxybenzofurans as a New Class of Antitubulin Agents
Medicinal Chemistry Anti-cancer Research on Arnebiae radix-derived Naphthoquinone in Recent Five Years
Recent Patents on Anti-Cancer Drug Discovery UBE2L6 is Involved in Cisplatin Resistance by Regulating the Transcription of ABCB6
Anti-Cancer Agents in Medicinal Chemistry Signal Transduction and Heavy Ion Radiation Therapy: Biological Mechanisms, Biological Quality Assurance, and New Multimodality Approach
Current Signal Transduction Therapy