Abstract
The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Keywords: DNA double strand breaks, Linear energy transfer, Radiation, γ-H2AX foci, malignant tumors, radiobiological efficacy, DSBs, LET, NHEJ, HDR
Current Genomics
Title:Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation
Volume: 13 Issue: 6
Author(s): Thomas Ernst Schmid, Olga. Zlobinskaya and Gabriele Multhoff
Affiliation:
Keywords: DNA double strand breaks, Linear energy transfer, Radiation, γ-H2AX foci, malignant tumors, radiobiological efficacy, DSBs, LET, NHEJ, HDR
Abstract: The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Export Options
About this article
Cite this article as:
Ernst Schmid Thomas, Zlobinskaya Olga. and Multhoff Gabriele, Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation, Current Genomics 2012; 13 (6) . https://dx.doi.org/10.2174/138920212802510501
DOI https://dx.doi.org/10.2174/138920212802510501 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Multifaceted Approach to Circadian Rhythm: Redox, Oxidative Stress, Melatonin, Antioxidants, Nitric Oxide, Hypoxia, Anesthetics, Cortisol and Cocaine
Current Chemical Biology Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery
Current Cancer Drug Targets ING Proteins as Potential Anticancer Drug Targets
Current Drug Targets Cancer Therapy By Targeting Hypoxia-Inducible Factor-1
Current Cancer Drug Targets Carcinogenicity and Chronic Rodent Toxicity of the Selective Progesterone Receptor Modulator Ulipristal Acetate
Current Drug Safety Tumour Hypoxia and Technetium Tracers: In Vivo Studies
Current Radiopharmaceuticals Sex Hormones and their Analogues in Neuroimmune Biology
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Nucleic Acids as Therapeutic Agents
Current Topics in Medicinal Chemistry Direct Evidence on the Immune-Mediated Spontaneous Regression of Human Cancer: An Incentive for Pharmaceutical Companies to Develop a Novel Anti-Cancer Vaccine
Current Pharmaceutical Design The Therapeutic Potential of Stem Cells in Amyotrophic Lateral Sclerosis
Current Signal Transduction Therapy Pharmacological Characteristics of Parenteral IGF-I Administration
Current Pharmaceutical Biotechnology In Vitro Anticancer Evaluation of Platinum(II/IV) Complexes with Diisoamyl Ester of (S,S)-ethylenediamine-N,N’-di-2-propanoic Acid
Anti-Cancer Agents in Medicinal Chemistry Chemotherapy with si-RNA and Anti-Cancer Drugs
Current Drug Delivery Editorial [Hot Topic:Cervical Cancer - Current Challenges(Guest Editor: Adeola Olaitan)]
Current Women`s Health Reviews Novel Virally Targeted Therapies of EBV-Associated Tumors
Current Cancer Drug Targets Small Molecule Toxins Targeting Tumor Receptors
Current Pharmaceutical Design Diffuse Large B-Cell Lymphoma Presenting as an Anterior Chest Wall Mass: A Case Report and Literature Review
Current Respiratory Medicine Reviews Anticancer Potential of Doxorubicin in Combination with Green-Synthesized Silver Nanoparticle and its Cytotoxicity Effects on Cardio-Myoblast Normal Cells
Anti-Cancer Agents in Medicinal Chemistry Tumor Dormancy and the Angiogenic Switch: Possible Implications of Bone Marrow- Derived Cells
Current Pharmaceutical Design PET Radiopharmaceuticals for Personalized Medicine
Current Drug Targets