Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Advances in Non-thermal Food Processing Methods-Principle Advantages and Limitations for the Establishment of Minimal Food Quality as well as Safety Issues: A Review

Author(s): Anish Dangal, Prekshya Timsina, Sangam Dahal, Kishor Rai and Angelo Maria Giuffrè*

Volume 20, Issue 7, 2024

Published on: 10 October, 2023

Page: [836 - 849] Pages: 14

DOI: 10.2174/0115734013250808230921105514

Price: $65

conference banner
Abstract

Background: The demand from consumers for safe, healthy food with a long shelf life, with no change in taste or nutritive value, has made food safety a key concern in today's world. Traditional thermal food processing technology has trouble meeting these standards. Conventional thermal and non-thermal processing has limitations and to overcome these limitations more studies are conducted regarding the novel non-thermal food processing methods.

Objective: The goal of this paper was to present an overview of the research on the development of non-thermal processing techniques, such as electrofreezing, high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and plasma activated water, as well as their advantages and limitations.

Methods: The present review aims to summarize findings related to novel non-thermal processing techniques, gathered from work published in scientific journals, related books, and book chapters from sources such as Web of Science (WoS), Google Scholar, Scopus and ScienceDirect.

Results: Non-thermal treatment may result in more desirable outcomes, such as greater preservation of heat-sensitive nutrients, fewer changes in sensorial as well as physico-chemical quality of the processed foods.

Conclusion: Compared to traditional heat processing, the nutritional value of foods is better preserved, and the sensory qualities of foods are less altered. These novel techniques can be combined with each other to achieve higher efficiency and overcome other limitations. More studies should be conducted regarding the combination of novel non-thermal techniques to achieve greater efficiency.

Graphical Abstract

[1]
Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A. Nanotechnology in agro-food: From field to plate. Food Res Int 2015; 69: 381-400.
[http://dx.doi.org/10.1016/j.foodres.2015.01.005]
[2]
Stephan R, Althaus D, Kiefer S, et al. Foodborne transmission of Listeria monocytogenes via ready-to-eat salad: A nationwide outbreak in Switzerland, 2013–2014. Food Control 2015; 57: 14-7.
[http://dx.doi.org/10.1016/j.foodcont.2015.03.034]
[3]
Stoica M, Bahrim G, Cârâc G. Factors that influence the electric field effects on fungal cells. Science against microbial pathogens: communicating current research and technological advances. 2011: 291-302
[4]
Valizadeh R, Kargarsana H, Shojaei M, Mehbodnia M. Effect of high intensity pulsed electric fields on microbial inactivation of cow milk. J Anim Vet Adv 2009; 8(12): 2638-43.
[5]
Rajkovic A, Smigic N, Devlieghere F. Contemporary strategies in combating microbial contamination in food chain. Int J Food Microbiol 2010; 141(S1): S29-42.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.12.019] [PMID: 20056287]
[6]
Fernández A, Shearer N, Wilson DR, Thompson A. Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. Int J Food Microbiol 2012; 152(3): 175-80.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.02.038] [PMID: 21439667]
[7]
Souza LP, Faroni LRDA, Heleno FF, et al. Effects of ozone treatment on postharvest carrot quality. Lebensm Wiss Technol 2018; 90: 53-60.
[http://dx.doi.org/10.1016/j.lwt.2017.11.057]
[8]
Hernández-Hernández HM, Moreno-Vilet L, Villanueva-Rodríguez SJ. Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innov Food Sci Emerg Technol 2019; 58: 102233.
[http://dx.doi.org/10.1016/j.ifset.2019.102233]
[9]
Satcher D. From the Surgeon General. Food safety: A growing global health problem. JAMA 2000; 283(14): 1817-7.
[http://dx.doi.org/10.1001/jama.283.14.1817] [PMID: 10770133]
[10]
WHO. WHO estimates of the global burden of foodborne diseases Foodborne diseases burden epidemiology reference group 2007-2015 2015. Available from: http://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/ (Accessed on: 5 November 2017).
[11]
Pandiselvam R, Subhashini S, Priya BEP, Kothakota A, Ramesh SV, Shahir S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci Eng 2019; 41(1): 17-34.
[http://dx.doi.org/10.1080/01919512.2018.1490636]
[12]
Pivarnik LF, Worobo R. Non-thermal or alternative food processing methods to enhance microbial safety and quality. NIFA-USDA Bulletin 2014; 8: 8.
[13]
Misra NN, Patil S, Moiseev T, et al. In-package atmospheric pressure cold plasma treatment of strawberries. J Food Eng 2014; 125: 131-8.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.10.023]
[14]
Heath J. Fumigation for the Commercial/Noncommercial Pesticide Applicator: Revision of the 3rd Edition. University of Nebraska - Lincoln 2018.
[15]
Dudkiewicz A, Dutta P, Kołożyn-Krajewska D. Ethylene oxide in foods: Current approach to the risk assessment and practical considerations based on the European food business operator perspective. Eur Food Res Technol 2022; 248(7): 1951-8.
[http://dx.doi.org/10.1007/s00217-022-04018-7]
[16]
Bratovcic A. Nanomaterials in food processing and packaging, its toxicity and food labeling. Act Sci Nutr Health 2020; 4(9): 07-13.
[17]
Chellaram C, Murugaboopathi G, John AA, et al. Significance of nanotechnology in food industry. APCBEE Procedia 2014; 8: 109-13.
[http://dx.doi.org/10.1016/j.apcbee.2014.03.010]
[18]
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Application of nanotechnology in food science: Perception and overview. Front Microbiol 2017; 8: 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[19]
Ozimek L, Pospiech E, Narine S. Nanotechnologies in food and meat processing. Acta Sci Pol Technol Aliment 2010; 9(4): 401-12.
[20]
Bratovčić A, Odobašić A, Ćatić S, Šestan I. Application of polymer nanocomposite materials in food packaging. Croat J Food Sci Technol 2015; 7(2): 86-94.
[http://dx.doi.org/10.17508/CJFST.2015.7.2.06]
[21]
Shrivastava S, Dash D. Agrifood nanotechnology: A tiny revolution in food and agriculture. J Nano Res 2009; 6: 1-14.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.6.1]
[22]
Powell M, Colin M. Nanotechnology and food safety: potential benefits, possible risks?. CAB reviews perspectives in agriculture veterinary science nutrition and natural resources. 2008. 3:16
[23]
Rogers MA. Naturally occurring nanoparticles in food. Curr Opin Food Sci 2016; 7: 14-9.
[http://dx.doi.org/10.1016/j.cofs.2015.08.005]
[24]
Pan K, Zhong Q. Organic nanoparticles in foods: Fabrication, characterization, and utilization. Annu Rev Food Sci Technol 2016; 7(1): 245-66.
[http://dx.doi.org/10.1146/annurev-food-041715-033215] [PMID: 26735797]
[25]
Tarafdar JC, Sharma S, Raliya R. Nanotechnology: Interdisciplinary science of applications. Afr J Biotechnol 2013; 12(3) 219-226
[26]
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Lett 2020; 12(1): 45.
[http://dx.doi.org/10.1007/s40820-020-0383-9] [PMID: 34138283]
[27]
Huang YF, Wang YF, Yan XP. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol 2010; 44(20): 7908-13.
[http://dx.doi.org/10.1021/es102285n] [PMID: 20866050]
[28]
Chen Z, Meng H, Xing G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006; 163(2): 109-20.
[http://dx.doi.org/10.1016/j.toxlet.2005.10.003] [PMID: 16289865]
[29]
Raj AAS, Ragavi J, Rubila S, Tirouthchelvamae D, Ranganathan T. Recent trends in nanotechnology applications in foods. IJERT 2013; 2(10): 956-61.
[30]
Mallika C, Pandey M, Radhakrishna K, Bawa A. Nano-technology: Applications in food industry. Indian Food Ind 2005; 24: 19-21.
[31]
Bhattacharya D, Gupta RK. Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 2005; 25(4): 199-204.
[http://dx.doi.org/10.1080/07388550500361994] [PMID: 16419617]
[32]
Zambrano-Zaragoza M, González-Reza R, Mendoza-Muñoz N, et al. Nanosystems in edible coatings: A novel strategy for food preservation. Int J Mol Sci 2018; 19(3): 705.
[http://dx.doi.org/10.3390/ijms19030705] [PMID: 29494548]
[33]
Yousuf B, Qadri OS, Srivastava AK. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. Lebensm Wiss Technol 2018; 89: 198-209.
[http://dx.doi.org/10.1016/j.lwt.2017.10.051]
[34]
Nickols-Richardson S, Piehowski K. Nanotechnology in nutritional sciences. Minerva Biotecnol 2008; 20(3): 117.
[35]
McClements DJ. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. J Food Sci 2015; 80(7): N1602-11.
[http://dx.doi.org/10.1111/1750-3841.12919] [PMID: 26073042]
[36]
Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 2020; 36: 100609.
[http://dx.doi.org/10.1016/j.fbio.2020.100609]
[37]
Yu H, Park J-Y, Kwon C W, Hong S-C, Park K-M, Chang P-S. An overview of nanotechnology in food science: Preparative methods, practical applications, and safety. J Chem 2018; 2018.
[http://dx.doi.org/10.1155/2018/5427978]
[38]
Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.
[39]
Mohanta D, Patnaik S, Sood S, Das N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. J Pharm Anal 2019; 9(5): 293-300.
[http://dx.doi.org/10.1016/j.jpha.2019.04.003] [PMID: 31929938]
[40]
McClements DJ, Rao J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 2011; 51(4): 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[41]
Sahani S, Sharma YC. Advancements in applications of nanotechnology in global food industry. Food Chem 2021; 342: 128318.
[http://dx.doi.org/10.1016/j.foodchem.2020.128318] [PMID: 33189478]
[42]
Brandelli A. The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. Food Sci Hum Wellness 2020; 9(1): 8-20.
[http://dx.doi.org/10.1016/j.fshw.2019.12.003]
[43]
Pathakoti K, Manubolu M, Hwang H-M. Nanostructures: Current uses and future applications in food science. Yao Wu Shi Pin Fen Xi 2017; 25(2): 245-53.
[PMID: 28911665]
[44]
Chen XX, Cheng B, Yang YX, et al. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 2013; 9(9-10): 1765-74.
[http://dx.doi.org/10.1002/smll.201201506] [PMID: 23065899]
[45]
Pandiselvam R, Singh A, Agriopoulou S, et al. A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends Food Sci Technol 2022; 127: 74-86.
[http://dx.doi.org/10.1016/j.tifs.2022.06.008]
[46]
Gaou I, Dubois M, Pfohl-Leszkowicz A, Coste C, De Jouffrey S, Parent-Massin D. Safety of Oxygreen®, an ozone treatment on wheat grains.Part 1. A four-week toxicity study in rats by dietary administration of treated wheat. Food Addit Contam 2005; 22(11): 1113-9.
[http://dx.doi.org/10.1080/02652030500307156] [PMID: 16332634]
[47]
Schneider F, Ruhl AS, Hübner U, Jekel M. Removal of residual dissolved ozone with manganese dioxide for process control with UV254. Ozone Sci Eng 2016; 38(2): 79-85.
[http://dx.doi.org/10.1080/01919512.2015.1079121]
[48]
Cullen PJ, Tiwari BK, O’Donnell CP, Muthukumarappan K. Modelling approaches to ozone processing of liquid foods. Trends Food Sci Technol 2009; 20(3-4): 125-36.
[http://dx.doi.org/10.1016/j.tifs.2009.01.049]
[49]
Guzel-Seydim ZB, Greene AK, Seydim AC. Use of ozone in the food industry. Lebensm Wiss Technol 2004; 37(4): 453-60.
[http://dx.doi.org/10.1016/j.lwt.2003.10.014]
[50]
Mahapatra AK, Muthukumarappan K, Julson JL. Applications of ozone, bacteriocins and irradiation in food processing: A review. Crit Rev Food Sci Nutr 2005; 45(6): 447-61.
[http://dx.doi.org/10.1080/10408390591034454] [PMID: 16183567]
[51]
Sung HJ, Song WJ, Kim KP, Ryu S, Kang DH. Combination effect of ozone and heat treatments for the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in apple juice. Int J Food Microbiol 2014; 171: 147-53.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.11.001] [PMID: 24362006]
[52]
Brodowska JA, Śmigielski K, Nowak A, Brodowska K, Catthoor R, Czyżowska A. The impact of ozone treatment on changes in biologically active substances of cardamom seeds. J Food Sci 2014; 79(9): C1649-55.
[http://dx.doi.org/10.1111/1750-3841.12591] [PMID: 25182178]
[53]
Pandiselvam R, Sunoj S, Manikantan MR, Kothakota A, Hebbar KB. Application and kinetics of ozone in food preservation. Ozone Sci Eng 2017; 39(2): 115-26.
[http://dx.doi.org/10.1080/01919512.2016.1268947]
[54]
Khadre MA, Yousef AE, Kim JG. Microbiological aspects of ozone applications in food: A review. J Food Sci 2001; 66(9): 1242-52.
[http://dx.doi.org/10.1111/j.1365-2621.2001.tb15196.x]
[55]
Varol K, Koc AN, Atalay MA, Keles I. Antifungal activity of olive oil and ozonated olive oil against Candida spp. and Saprochaete spp. Ozone Sci Eng 2017; 39(6): 462-70.
[http://dx.doi.org/10.1080/01919512.2017.1322490]
[56]
Fisher CW, Lee D, Dodge BA, Hamman KM, Robbins JB, Martin SE. Influence of catalase and superoxide dismutase on ozone inactivation of Listeria monocytogenes. Appl Environ Microbiol 2000; 66(4): 1405-9.
[http://dx.doi.org/10.1128/AEM.66.4.1405-1409.2000] [PMID: 10742219]
[57]
Nakamura H, Oya M, Hanamoto T, Nagashio D. Reviewing the 20 years of operation of ozonation facilities in Hanshin Water Supply Authority with respect to water quality improvements. Ozone Sci Eng 2017; 39(6): 397-406.
[http://dx.doi.org/10.1080/01919512.2017.1352413]
[58]
Tapp C, Rice RG. Generation and control of ozone. In: Ozone in food processing Wiley 2012; pp. 33-54
[59]
Varga L, Szigeti J. Use of ozone in the dairy industry: A review. Int J Dairy Technol 2016; 69(2): 157-68.
[http://dx.doi.org/10.1111/1471-0307.12302]
[60]
Tzortzakis N, Chrysargyris A. Postharvest ozone application for the preservation of fruits and vegetables. Food Rev Int 2017; 33(3): 270-315.
[http://dx.doi.org/10.1080/87559129.2016.1175015]
[61]
Tiwari BK, Brennan CS, Curran T, Gallagher E, Cullen PJ, O’ Donnell CP. Application of ozone in grain processing. J Cereal Sci 2010; 51(3): 248-55.
[http://dx.doi.org/10.1016/j.jcs.2010.01.007]
[62]
Zhu F. Effect of ozone treatment on the quality of grain products. Food Chem 2018; 264: 358-66.
[http://dx.doi.org/10.1016/j.foodchem.2018.05.047] [PMID: 29853388]
[63]
Zambre SS, Venkatesh KV, Shah NG. Tomato redness for assessing ozone treatment to extend the shelf life. J Food Eng 2010; 96(3): 463-8.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.08.027]
[64]
Ölmez H, Kretzschmar U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Lebensm Wiss Technol 2009; 42(3): 686-93.
[http://dx.doi.org/10.1016/j.lwt.2008.08.001]
[65]
O’Donnell C, Tiwari BK, Cullen P, Rice RG. Ozone in food processing. John Wiley & Sons 2012; p. 308.
[http://dx.doi.org/10.1002/9781118307472]
[66]
Simpson AMA, Mitch WA. Chlorine and ozone disinfection and disinfection byproducts in postharvest food processing facilities: A review. Crit Rev Environ Sci Technol 2022; 52(11): 1825-67.
[http://dx.doi.org/10.1080/10643389.2020.1862562]
[67]
Aday MS, Büyükcan MB, Temizkan R, Caner C. Role of ozone concentrations and exposure times in extending shelf life of strawberry. Ozone Sci Eng 2014; 36(1): 43-56.
[http://dx.doi.org/10.1080/01919512.2013.833851]
[68]
Miller FA, Silva CLM, Brandão TRS. A review on ozone-based treatments for fruit and vegetables preservation. Food Eng Rev 2013; 5(2): 77-106.
[http://dx.doi.org/10.1007/s12393-013-9064-5]
[69]
Tiwari BK, O’Donnell CP, Muthukumarappan K, Cullen PJ. Anthocyanin and colour degradation in ozone treated blackberry juice. Innov Food Sci Emerg Technol 2009; 10(1): 70-5.
[http://dx.doi.org/10.1016/j.ifset.2008.08.002]
[70]
Stoica M, Mihalcea L, Borda D, Alexe P. Non-thermal novel food processing technologies. An overview. J Agroaliment Processes Technol 2013; 19(2): 212-7.
[71]
Morales-de la Peña M, Welti-Chanes J, Martín-Belloso O. Novel technologies to improve food safety and quality. Curr Opin Food Sci 2019; 30: 1-7.
[http://dx.doi.org/10.1016/j.cofs.2018.10.009]
[72]
Dong X, Wang J, Raghavan V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit Rev Food Sci Nutr 2021; 61(2): 196-210.
[http://dx.doi.org/10.1080/10408398.2020.1722942] [PMID: 32048519]
[73]
Jan A, Sood M, Sofi S, Norzom T. Non-thermal processing in food applications: A review. Int J Food Sci Nutr 2017; 2(6): 171-80.
[74]
Elmnasser N, Guillou S, Leroi F, Orange N, Bakhrouf A, Federighi M. Pulsed-light system as a novel food decontamination technology: A review. Can J Microbiol 2007; 53(7): 813-21.
[http://dx.doi.org/10.1139/W07-042] [PMID: 17898836]
[75]
Mahendran R, Ramanan KR, Barba FJ, et al. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci Technol 2019; 88: 67-79.
[http://dx.doi.org/10.1016/j.tifs.2019.03.010]
[76]
Barba F, Sant’Ana A, Orlien V, Koubaa M. Innovative technologies for food preservation: Inactivation of spoilage and pathogenic microorganisms. Academic Press 2017.
[77]
Kramer B, Muranyi P. Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. J Appl Microbiol 2014; 116(3): 596-611.
[http://dx.doi.org/10.1111/jam.12394] [PMID: 24238364]
[78]
Takeshita K, Shibato J, Sameshima T, et al. Damage of yeast cells induced by pulsed light irradiation. Int J Food Microbiol 2003; 85(1-2): 151-8.
[http://dx.doi.org/10.1016/S0168-1605(02)00509-3] [PMID: 12810279]
[79]
Gayán E, García-Gonzalo D, Álvarez I, Condón S. Resistance of Staphylococcus aureus to UV-C light and combined UV-heat treatments at mild temperatures. Int J Food Microbiol 2014; 172: 30-9.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.12.003] [PMID: 24361830]
[80]
Ferrario MI, Guerrero SN. Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels. Rev Argent Microbiol 2018; 50(1): 3-11.
[http://dx.doi.org/10.1016/j.ram.2017.04.002] [PMID: 28728873]
[81]
Palgan I, Caminiti IM, Muñoz A, et al. Combined effect of selected non-thermal technologies on Escherichia coli and Pichia fermentans inactivation in an apple and cranberry juice blend and on product shelf life. Int J Food Microbiol 2011; 151(1): 1-6.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.07.019] [PMID: 21893360]
[82]
Bohrerova Z, Shemer H, Lantis R, Impellitteri CA, Linden KG. Comparative disinfection efficiency of pulsed and continuous-wave UV irradiation technologies. Water Res 2008; 42(12): 2975-82.
[http://dx.doi.org/10.1016/j.watres.2008.04.001] [PMID: 18460414]
[83]
Pan Y, Sun DW, Han Z. Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends Food Sci Technol 2017; 64: 13-22.
[http://dx.doi.org/10.1016/j.tifs.2017.02.014]
[84]
Bhavya ML, Hebbar UH. Pulsed light processing of foods for microbial safety. Food Qual Saf 2017; 1(3): 187-202.
[http://dx.doi.org/10.1093/fqsafe/fyx017]
[85]
Marangoni Júnior L, Cristianini M, Anjos CAR. Packaging aspects for processing and quality of foods treated by pulsed light. J Food Process Preserv 2020; 44(11): e14902.
[http://dx.doi.org/10.1111/jfpp.14902]
[86]
Bialka KL, Demirci A. Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. J Food Sci 2008; 73(5): M201-7.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00743.x] [PMID: 18577001]
[87]
Huang Y, Chen H. A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiol 2014; 40: 1-8.
[http://dx.doi.org/10.1016/j.fm.2013.11.017] [PMID: 24549191]
[88]
Muñoz A, Caminiti IM, Palgan I, et al. Effects on Escherichia coli inactivation and quality attributes in apple juice treated by combinations of pulsed light and thermosonication. Food Res Int 2012; 45(1): 299-305.
[http://dx.doi.org/10.1016/j.foodres.2011.08.020]
[89]
Heinrich V, Zunabovic M, Varzakas T, Bergmair J, Kneifel W. Pulsed light treatment of different food types with a special focus on meat: a critical review. Crit Rev Food Sci Nutr 2016; 56(4): 591-613.
[http://dx.doi.org/10.1080/10408398.2013.826174] [PMID: 25575192]
[90]
Koch F, Wiacek C, Braun PG. Pulsed light treatment for the reduction of Salmonella Typhimurium and Yersinia enterocolitica on pork skin and pork loin. Int J Food Microbiol 2019; 292: 64-71.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.11.014] [PMID: 30579058]
[91]
Ignat A, Manzocco L, Maifreni M, Bartolomeoli I, Nicoli MC. Surface decontamination of fresh-cut apple by pulsed light: Effects on structure, colour and sensory properties. Postharvest Biol Technol 2014; 91: 122-7.
[http://dx.doi.org/10.1016/j.postharvbio.2014.01.005]
[92]
Toepfl S, Mathys A, Heinz V, Knorr D. Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 2006; 22(4): 405-23.
[http://dx.doi.org/10.1080/87559120600865164]
[93]
Nowosad K, Sujka M, Pankiewicz U, Kowalski R. The application of PEF technology in food processing and human nutrition. J Food Sci Technol 2021; 58(2): 397-411.
[http://dx.doi.org/10.1007/s13197-020-04512-4] [PMID: 33564198]
[94]
Jadhav HB, Annapure US, Deshmukh RR. Non-thermal technologies for food processing. Front Nutr 2021; 8: 657090.
[http://dx.doi.org/10.3389/fnut.2021.657090] [PMID: 34169087]
[95]
Kumar Y, Patel KK, Kumar V. Pulsed electric field processing in food technology. Int J Eng Res Technol 2015; 1(2): 6-17.
[96]
Bhattacharjee C, Saxena VK, Dutta S. Novel thermal and non-thermal processing of watermelon juice. Trends Food Sci Technol 2019; 93: 234-43.
[http://dx.doi.org/10.1016/j.tifs.2019.09.015]
[97]
Bhat ZF, Morton JD, Mason SL, Bekhit AEDA. The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chem 2020; 306: 125622.
[http://dx.doi.org/10.1016/j.foodchem.2019.125622] [PMID: 31610330]
[98]
Ozkan G, Stübler AS, Aganovic K, Dräger G, Esatbeyoglu T, Capanoglu E. Retention of polyphenols and vitamin C in cranberrybush purée (Viburnum opulus) by means of non-thermal treatments. Food Chem 2021; 360: 129918.
[http://dx.doi.org/10.1016/j.foodchem.2021.129918] [PMID: 34051454]
[99]
Sharma P, Bremer P, Oey I, Everett DW. Bacterial inactivation in whole milk using pulsed electric field processing. Int Dairy J 2014; 35(1): 49-56.
[http://dx.doi.org/10.1016/j.idairyj.2013.10.005]
[100]
Clark JP. High-pressure processing research continues. Food Technol 2006; 60(2): 63-5.
[101]
Bahrami A, Baboli MZ, Schimmel K, Jafari SM, Williams L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci Technol 2020; 96: 61-78.
[http://dx.doi.org/10.1016/j.tifs.2019.12.009]
[102]
Priyadarshini A, Rajauria G, O’Donnell CP, Tiwari BK. Emerging food processing technologies and factors impacting their industrial adoption. Crit Rev Food Sci Nutr 2019; 59(19): 3082-101.
[http://dx.doi.org/10.1080/10408398.2018.1483890] [PMID: 29863891]
[103]
Barbosa-Cánovas GV, Juliano P. Food sterilization by combining high pressure and thermal energy. In: Food engineering: Integrated approaches. Springer 2008; pp. 9-46.
[http://dx.doi.org/10.1007/978-0-387-75430-7_2]
[104]
Khan MU, Ahmed I, Lin H, et al. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Crit Rev Food Sci Nutr 2019; 59(17): 2807-30.
[http://dx.doi.org/10.1080/10408398.2018.1471658] [PMID: 29851498]
[105]
Muntean MV, Marian O, Barbieru V, et al. High pressure processing in food industry–characteristics and applications. Agric Agric Sci Procedia 2016; 10: 377-83.
[http://dx.doi.org/10.1016/j.aaspro.2016.09.077]
[106]
Kurpiewska K, Biela A, Loch JI, Lipowska J, Siuda M, Lewiński K. Towards understanding the effect of high pressure on food protein allergenicity: β-lactoglobulin structural studies. Food Chem 2019; 270: 315-21.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.104] [PMID: 30174052]
[107]
Balakrishna AK, Wazed MA, Farid M. A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules 2020; 25(10): 2369.
[http://dx.doi.org/10.3390/molecules25102369] [PMID: 32443759]
[108]
Abera G. Review on high-pressure processing of foods. Cogent Food Agric 2019; 5(1): 1568725.
[http://dx.doi.org/10.1080/23311932.2019.1568725]
[109]
Oey I, Van der Plancken I, Van Loey A, Hendrickx M. Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci Technol 2008; 19(6): 300-8.
[http://dx.doi.org/10.1016/j.tifs.2007.09.002]
[110]
Houška M, Silva FVM, Evelyn , Buckow R, Terefe NS, Tonello C. High pressure processing applications in plant foods. Foods 2022; 11(2): 223.
[http://dx.doi.org/10.3390/foods11020223] [PMID: 35053954]
[111]
Rendueles E, Omer MK, Alvseike O, Alonso-Calleja C, Capita R, Prieto M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. Lebensm Wiss Technol 2011; 44(5): 1251-60.
[http://dx.doi.org/10.1016/j.lwt.2010.11.001]
[112]
Hokmollahi F, Ehsani M. High pressure processing and its application in cheese manufacturing: A review. J Food Biosci Technol 2017; 7(2): 57-66.
[113]
Vega-Gálvez A, Giovagnoli C, Pérez-Won M, et al. Application of high hydrostatic pressure to aloe vera (Aloe barbadensis Miller) gel: Microbial inactivation and evaluation of quality parameters. Innov Food Sci Emerg Technol 2012; 13: 57-63.
[http://dx.doi.org/10.1016/j.ifset.2011.07.013]
[114]
Ramírez R, Torres J. Chemical and quality changes when seeking fuller utilization of seafood resources by pressure processing technologies Fish Processing byproducts A Sustainable Future Alaska Sea Grant. AK: University of Alaska Fairbanks 2009; pp. 189-206.
[115]
Cilla A, Lagarda MJ, Alegría A, et al. Effect of processing and food matrix on calcium and phosphorous bioavailability from milk-based fruit beverages in Caco-2 cells. Food Res Int 2011; 44(9): 3030-8.
[http://dx.doi.org/10.1016/j.foodres.2011.07.018]
[116]
Stollewerk K, Jofré A, Comaposada J, Arnau J, Garriga M. The effect of NaCl-free processing and high pressure on the fate of Listeria monocytogenes and Salmonella on sliced smoked dry-cured ham. Meat Sci 2012; 90(2): 472-7.
[http://dx.doi.org/10.1016/j.meatsci.2011.09.009] [PMID: 22000500]
[117]
Shouqin Z, Junjie Z, Changzhen W. Novel high pressure extraction technology. Int J Pharm 2004; 278(2): 471-4.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.029] [PMID: 15196650]
[118]
Schwarzenbolz U, Klostermeyer H, Henle T. In Maillard reaction under high hydrostatic pressure: Studies on the formation of protein-bound amino acid derivatives. International Congress Series. Elsevier 2002; pp. 223-7.
[119]
Al-Habsi NA, Niranjan K. Effect of high hydrostatic pressure on antimicrobial activity and quality of Manuka honey. Food Chem 2012; 135(3): 1448-54.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.012] [PMID: 22953879]
[120]
Campus M. High pressure processing of meat, meat products and seafood. Food Eng Rev 2010; 2(4): 256-73.
[http://dx.doi.org/10.1007/s12393-010-9028-y]
[121]
Gharbi N, Labbafi M. Effect of processing on aggregation mechanism of egg white proteins. Food Chem 2018; 252: 126-33.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.088] [PMID: 29478522]
[122]
Jung S, Tonello-Samson C. High hydrostatic pressure food processing: Potential and limitations. RSC Green Chem 2018; 53: 251-315.
[123]
Aganovic K, Hertel C, Vogel RF, et al. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20(4): 3225-66.
[http://dx.doi.org/10.1111/1541-4337.12763] [PMID: 34056857]
[124]
Wang CY, Huang HW, Hsu CP, Yang BB. Recent advances in food processing using high hydrostatic pressure technology. Crit Rev Food Sci Nutr 2016; 56(4): 527-40.
[http://dx.doi.org/10.1080/10408398.2012.745479] [PMID: 25629307]
[125]
Huang HW, Wu SJ, Lu JK, Shyu YT, Wang CY. Current status and future trends of high-pressure processing in food industry. Food Control 2017; 72: 1-8.
[http://dx.doi.org/10.1016/j.foodcont.2016.07.019]
[126]
Liepa M, Zagorska J, Galoburda R. High-pressure processing as novel technology in dairy industry: A review. Res Rural Dev 2016; 1(1): 76-83.
[127]
Fridman A. Plasma chemistry. Cambridge university press 2008.
[http://dx.doi.org/10.1017/CBO9780511546075]
[128]
Thirumdas R, Kothakota A, Annapure U, et al. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol 2018; 77: 21-31.
[http://dx.doi.org/10.1016/j.tifs.2018.05.007]
[129]
Kaushik NK, Ghimire B, Li Y, et al. Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 2018; 400(1): 39-62.
[http://dx.doi.org/10.1515/hsz-2018-0226] [PMID: 30044757]
[130]
Liao X, Su Y, Liu D, et al. Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control 2018; 94: 307-14.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.026]
[131]
Xiang Q, Fan L, Li Y, Dong S, Li K, Bai Y. A review on recent advances in plasma-activated water for food safety: Current applications and future trends. Crit Rev Food Sci Nutr 2020; 62(8)
[PMID: 33261517]
[132]
Liao X, Xiang Q, Cullen PJ, et al. Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. Lebensm Wiss Technol 2020; 117: 108649.
[http://dx.doi.org/10.1016/j.lwt.2019.108649]
[133]
Choi EJ, Park HW, Kim SB, et al. Sequential application of plasma-activated water and mild heating improves microbiological quality of ready-to-use shredded salted kimchi cabbage (Brassica pekinensis L.). Food Control 2019; 98: 501-9.
[http://dx.doi.org/10.1016/j.foodcont.2018.12.007]
[134]
Traylor MJ, Pavlovich MJ, Karim S, et al. Long-term antibacterial efficacy of air plasma-activated water. J Phys D Appl Phys 2011; 44(47): 472001.
[http://dx.doi.org/10.1088/0022-3727/44/47/472001]
[135]
Wang H, Feng H, Liang W, Luo Y, Malyarchuk V. Effect of surface roughness on retention and removal of Escherichia coli O157:H7 on surfaces of selected fruits. J Food Sci 2009; 74(1): E8-E15.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00998.x] [PMID: 19200095]
[136]
Butz P, Tauscher B. Emerging technologies: chemical aspects. Food Res Int 2002; 35(2-3): 279-84.
[http://dx.doi.org/10.1016/S0963-9969(01)00197-1]
[137]
Chemat F, Zill-e-Huma , Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem 2011; 18(4): 813-35.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.023] [PMID: 21216174]
[138]
Kumari B, Tiwari BK, Hossain MB, Rai DK, Brunton NP. Ultrasound-assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. Int J Food Sci Technol 2017; 52(6): 1432-9.
[http://dx.doi.org/10.1111/ijfs.13404]
[139]
Sousa LS, Cabral BV, Madrona GS, Cardoso VL, Reis MHM. Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Separ Purif Tech 2016; 168: 188-98.
[http://dx.doi.org/10.1016/j.seppur.2016.05.029]
[140]
Yang X, Wang R, Fane AG, Tang CY, Wenten IG. Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review. Desalination Water Treat 2013; 51(16-18): 3604-27.
[http://dx.doi.org/10.1080/19443994.2012.751146]
[141]
Patist A, Bates D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov Food Sci Emerg Technol 2008; 9(2): 147-54.
[http://dx.doi.org/10.1016/j.ifset.2007.07.004]
[142]
Shen X, Shao S, Guo M. Ultrasound-induced changes in physical and functional properties of whey proteins. Int J Food Sci Technol 2017; 52(2): 381-8.
[http://dx.doi.org/10.1111/ijfs.13292]
[143]
Leong T, Juliano P, Knoerzer K. Advances in ultrasonic and megasonic processing of foods. Food Eng Rev 2017; 9(3): 237-56.
[http://dx.doi.org/10.1007/s12393-017-9167-5]
[144]
Chemat F, Abert Vian M, Fabiano-Tixier AS, et al. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem 2020; 22(8): 2325-53.
[http://dx.doi.org/10.1039/C9GC03878G]
[145]
Majid I, Nayik GA, Nanda V. Ultrasonication and food technology: A review. Cogent Food Agric 2015; 1(1): 1071022.
[http://dx.doi.org/10.1080/23311932.2015.1071022]
[146]
Gallo M, Ferrara L, Naviglio D. Application of ultrasound in food science and technology: A perspective. Foods 2018; 7(10): 164.
[http://dx.doi.org/10.3390/foods7100164] [PMID: 30287795]
[147]
Gabriel AA. Inactivation of L isteria monocytogenes in Milk by Multifrequency Power Ultrasound. J Food Process Preserv 2015; 39(6): 846-53.
[http://dx.doi.org/10.1111/jfpp.12295]
[148]
Guimarães JT, Balthazar CF, Scudino H, et al. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. Ultrason Sonochem 2019; 57: 12-21.
[http://dx.doi.org/10.1016/j.ultsonch.2019.05.004] [PMID: 31208607]
[149]
Ojha KS, Mason TJ, O’Donnell CP, Kerry JP, Tiwari BK. Ultrasound technology for food fermentation applications. Ultrason Sonochem 2017; 34: 410-7.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.001] [PMID: 27773263]
[150]
Bhargava N, Mor RS, Kumar K, Sharanagat VS. Advances in application of ultrasound in food processing: A review. Ultrason Sonochem 2021; 70: 105293.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105293] [PMID: 32750658]
[151]
Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 2017; 34: 540-60.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.035] [PMID: 27773280]
[152]
Magnavita N, Fileni A. Occupational risk caused by ultrasound in medicine. Radiol Med 1994; 88(1-2): 107-11.
[PMID: 8066232]
[153]
Hozumi T, Saito A, Okawa S, Watanabe K. Effects of electrode materials on freezing of supercooled water in electric freeze control. Int J Refrig 2003; 26(5): 537-42.
[http://dx.doi.org/10.1016/S0140-7007(03)00008-2]
[154]
Orlowska M, Havet M, Le-Bail A. Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res Int 2009; 42(7): 879-84.
[http://dx.doi.org/10.1016/j.foodres.2009.03.015]
[155]
Xanthakis E, Havet M, Chevallier S, Abadie J, Le-Bail A. Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innov Food Sci Emerg Technol 2013; 20: 115-20.
[http://dx.doi.org/10.1016/j.ifset.2013.06.011]
[156]
Dufour L. Ueber das Gefrieren des Wassers und über die Bildung des Hagels. Ann Phys 1862; 190(12): 530-54.
[http://dx.doi.org/10.1002/andp.18621901203]
[157]
Jia G, He X, Nirasawa S, Tatsumi E, Liu H, Liu H. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. J Food Eng 2017; 204: 18-26.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.01.020]
[158]
Dalvi-Isfahan M, Hamdami N, Xanthakis E, Le-Bail A. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J Food Eng 2017; 195: 222-34.
[http://dx.doi.org/10.1016/j.jfoodeng.2016.10.001]
[159]
Xanthakis E, Le-Bail A, Havet M. Freezing combined with electrical and magnetic disturbances. In: Emerging technologies for food processing. Elsevier, 2014; pp. 563-79
[http://dx.doi.org/10.1016/B978-0-12-411479-1.00030-9]
[160]
Cassone G, Giaquinta PV, Saija F, Saitta AM. Proton conduction in water ices under an electric field. J Phys Chem B 2014; 118(16): 4419-24.
[http://dx.doi.org/10.1021/jp5021356] [PMID: 24689531]
[161]
Sun W, Chen Z, Huang S. Effect of an external electric field on liquid water using molecular dynamics simulation with a flexible potential. J Shanghai Univ 2006; 10(3): 268-73.
[http://dx.doi.org/10.1007/s11741-006-0127-1]
[162]
Zhang XX, Li XH, Chen M. Role of the electric double layer in the ice nucleation of water droplets under an electric field. Atmos Res 2016; 178-179: 150-4.
[http://dx.doi.org/10.1016/j.atmosres.2016.04.001]
[163]
Jha PK, Xanthakis E, Jury V, Havet M, Le-Bail A. Advances of electro-freezing in food processing. Curr Opin Food Sci 2018; 23: 85-9.
[http://dx.doi.org/10.1016/j.cofs.2018.06.007]
[164]
Nath GK, Pandiselvam R, Sunil CK. High-pressure processing: Effect on textural properties of food- A review. J Food Eng 2023; 351: 111521.
[http://dx.doi.org/10.1016/j.jfoodeng.2023.111521]
[165]
Chacha JS, Zhang L, Ofoedu CE, et al. Revisiting non-thermal food processing and preservation methods—Action mechanisms, pros and cons: A technological update (2016–2021). Foods 2021; 10(6): 1430.
[http://dx.doi.org/10.3390/foods10061430] [PMID: 34203089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy