Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Role of Indian Medicinal Plants for Immunity Booster Against SARS-CoV-2 Infection: An Updated Review

Author(s): Kavita Verma, Yoganchal Mishra, Neha Kapoor and Neelam Yadav*

Volume 20, Issue 7, 2024

Published on: 22 August, 2023

Page: [823 - 835] Pages: 13

DOI: 10.2174/1573401319666230718112058

Price: $65

conference banner
Abstract

The coronavirus disease (COVID-19) came to be an epidemic that has occurred at the expense of the health of people. This disease reveals it can be lethal. Aged people and people with other medical occurrences may be more susceptible and become remarkably ill. The existing pandemic situation mandates scientific vigilance, hence we exploration to medicinal plants like Curcuma longa, Azadirachta indica, Ocimum sanctum, Tinospora cordifolia, Triphala, Phyllanthus emblica, Aloe barbadensis, Syzygium aromaticum, Cinnamomum verum, Allium cepa, Zingiber officinale, Piper nigrum, Allium sativum. The holistic Indian therapeutic system prescription is acknowledged as “Ayurveda”. Natural herbal remedies show more effectiveness which is moving towards the present day with the help of traditional medicine. The factual of the Immunity booster is to determine components of natural lineage have an antiviral outcome. This booster helps to prevent humans from infection caused by SARS-CoV-2. The molecular docking technique is used to disclose the interaction between molecules which is already researched, and the protein. In conclusion, the identified natural compounds from medicinal plants act as an herbal booster for increasing immunity in contradiction to SARS-CoV-2 contagion in patients.

Graphical Abstract

[1]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017]
[2]
Rao P, Shukla A, Parmar P, et al. Proposing a fungal metabolite-flaviolin as a potential inhibitor of 3CL pro of novel coronavirus SARS-CoV-2 identified using docking and molecular dynamics. J Biomol Struct Dyn 2022; 40(1): 348-60.
[http://dx.doi.org/10.1080/07391102.2020.1813202] [PMID: 32875950]
[3]
Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 2020; 39(9): 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1758788] [PMID: 32306836]
[4]
Lee PI, Hsueh PR. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol Immunol Infect 2020; 53(3): 365-7.
[http://dx.doi.org/10.1016/j.jmii.2020.02.001] [PMID: 32035811]
[5]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K. Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J Biomol Struct Dyn 2021; 39(8): 2980-92.
[http://dx.doi.org/10.1080/07391102.2020.1758791] [PMID: 32306862]
[7]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[8]
Mackenzie JS, Smith DW. COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don’t. Microbiol Aust 2020; 41(1): 45.
[http://dx.doi.org/10.1071/MA20013] [PMID: 32226946]
[9]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[10]
Gupta MK, Vemula S, Donde R, Gouda G, Behera L, Vadde R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J Biomol Struct Dyn 2021; 39(7): 2617-27.
[http://dx.doi.org/10.1080/07391102.2020.1751300] [PMID: 32238078]
[11]
Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One 2020; 15(3): e0230548.
[http://dx.doi.org/10.1371/journal.pone.0230548] [PMID: 32191764]
[12]
Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[13]
Hasan A, Paray BA, Hussain A, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 2021; 39(8): 3025-33.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[14]
Park JY, Ko JA, Kim DW, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem 2016; 31(1): 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[15]
Park JY, Kim JH, Kwon JM, et al. Dieckol, a SARS-CoV 3CLpro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem 2013; 21(13): 3730-7.
[http://dx.doi.org/10.1016/j.bmc.2013.04.026] [PMID: 23647823]
[16]
Park JY, Jae Jeong H, Hoon Kim J, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 2012; 35(11): 2036-42.
[http://dx.doi.org/10.1248/bpb.b12-00623] [PMID: 22971649]
[17]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[18]
Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[19]
Li S, Chen C, Zhang H, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[20]
Jamshidi N, Cohen MM. The clinical efficacy and safety of Tulsi in humans: A systematic review of the literature. Evid Based Complement Alternat Med 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/9217567] [PMID: 28400848]
[21]
Kapoor LD. Butea monospermaIn handbook of Ayurvedic medicinal plants. CRC Press: Boca Raton 1990; p. 86.
[22]
Sharma P, Parmar J, Sharma P, Verma P, Goyal PK. Radiation-induced testicular injury and its amelioration by tinosporacordifolia (an Indian medicinal plant) extract. Evid Based Complement Alternat Med 2011; 2011: 1-9.
[http://dx.doi.org/10.1155/2011/643847] [PMID: 21350610]
[23]
Ven MK, Ranjekar P, Ramassamy C, Deshpande M. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: Ashwagandha. Cent Nerv Syst Agents Med Chem 2010; 10(3): 238-46.
[24]
Vyas VK, Pratik B, Radheshyam P. A comprehensive review on Withania somnifera Dunal. J Nat Rem 2011; 11(1): 1-3.
[25]
Du HZ, Hou XY, Miao YH, Huang BS, Liu DH. Traditional Chinese Medicine: An effective treatment for 2019 novel coronavirus pneumonia (NCP). Chin J Nat Med 2020; 18(3): 206-10.
[http://dx.doi.org/10.1016/S1875-5364(20)30022-4] [PMID: 32245590]
[26]
Xu Z, Peng C, Shi Y, et al. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv 2019.
[27]
Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[28]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[29]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[30]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[31]
Lau YL, Peiris JSM. Pathogenesis of severe acute respiratory syndrome. Curr Opin Immunol 2005; 17(4): 404-10.
[http://dx.doi.org/10.1016/j.coi.2005.05.009] [PMID: 15950449]
[32]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[33]
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses — drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[34]
Xu J, Zhao S, Teng T, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020; 12(2): 244.
[http://dx.doi.org/10.3390/v12020244] [PMID: 32098422]
[35]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[36]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.
[37]
Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[38]
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117(21): 11727-34.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[39]
Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66: 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[40]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[41]
Yamauchi Y, Helenius A. Virus entry at a glance. J Cell Sci 2013; 126(Pt 6): 1289-95.
[PMID: 23641066]
[42]
Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses 2020; 12(2): 135.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[43]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[44]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[45]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[46]
Sarfraz I, Rasul A, Hussain G, Adem S, Ali M. Natural Immune boosters as first-line armours to combat viral infection-COVID19: Myth or Science? Preprints 2020; 2020030427.
[http://dx.doi.org/10.20944/preprints202003.0427.v1]
[47]
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14(4): 367-82.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015] [PMID: 32334392]
[48]
Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol Assess 2019; 23(2): 1-44.
[http://dx.doi.org/10.3310/hta23020] [PMID: 30675873]
[49]
Petric D. Immune system and COVID-19. Academia 2020; 2020: 1-5.
[50]
Gunville CM, Mourani PA, Ginde A. The role of vitamin D in prevention and treatment of infection. Inflamm Allergy Drug Targets 2013; 12(4): 239-45.
[http://dx.doi.org/10.2174/18715281113129990046]
[51]
Lytle CD, Sagripanti JL. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol 2005; 79(22): 14244-52.
[http://dx.doi.org/10.1128/JVI.79.22.14244-14252.2005] [PMID: 16254359]
[52]
Martin SA, Pence BD, Woods JA. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev 2009; 37(4): 157-64.
[http://dx.doi.org/10.1097/JES.0b013e3181b7b57b] [PMID: 19955864]
[53]
Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. J Sport Health Sci 2019; 8(3): 201-17.
[http://dx.doi.org/10.1016/j.jshs.2018.09.009] [PMID: 31193280]
[54]
Ding S, Jiang H, Fang J. Regulation of immune function by polyphenols. J Immunol Res 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/1264074] [PMID: 29850614]
[55]
Ma Y, Kosińska-Cagnazzo A, Kerr WL, Amarowicz R, Swanson RB, Pegg RB. Separation and characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem 2014; 62(47): 11488-504.
[http://dx.doi.org/10.1021/jf503836n] [PMID: 25354220]
[56]
Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 2007; 51(4): 301-23.
[http://dx.doi.org/10.1159/000107673] [PMID: 17726308]
[57]
Patel N, Penkert RR, Jones BG, et al. Baseline serum vitamin A and D levels determine benefit of oral vitamin A&D supplements to humoral immune responses following pediatric influenza vaccination. Viruses 2019; 11(10): 907.
[http://dx.doi.org/10.3390/v11100907] [PMID: 31575021]
[58]
Ivory K, Prieto E, Spinks C, et al. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clin Nutr 2017; 36(2): 407-15.
[http://dx.doi.org/10.1016/j.clnu.2015.12.003] [PMID: 26803169]
[59]
Kang EJ, Kim SY, Hwang IH, Ji YJ. The effect of probiotics on prevention of common cold: A meta-analysis of randomized controlled trial studies. Korean J Fam Med 2013; 34(1): 2-10.
[http://dx.doi.org/10.4082/kjfm.2013.34.1.2] [PMID: 23372900]
[60]
Mousa HAL. Prevention and treatment of influenza, influenza-like illness, and common cold by herbal, complementary, and natural therapies. J Evid Based Complementary Altern Med 2017; 22(1): 166-74.
[http://dx.doi.org/10.1177/2156587216641831] [PMID: 27055821]
[61]
Huang Z, Liu Y, Qi G, Brand D, Zheng S. Role of vitamin A in the immune system. J Clin Med 2018; 7(9): 258.
[http://dx.doi.org/10.3390/jcm7090258] [PMID: 30200565]
[62]
Siddiqui FQ, Ahmad MM, Kakar F, Akhtar S, Dil AS. twitter sharing button linkedin sharing button facebook sharing button whatsapp sharing button email sharing button print sharing button The role of vitamin A in enhancing humoral immunity produced by antirabies vaccine. East Mediterr Health J 2001; 7(4-5): 799-804.
[http://dx.doi.org/10.26719/2001.7.4-5.799] [PMID: 15332782]
[63]
Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/AIDS in Uganda. J Ethnopharmacol 2020; 246: 112205.
[http://dx.doi.org/10.1016/j.jep.2019.112205] [PMID: 31476442]
[64]
Chauhan RS. Efficacy of herbal immuplus in enhancing humoral and cell mediated immunity in dogs. Livest Int 2001; 5: 12-8.
[65]
Rosen Y, Daich J, Soliman I, Brathwaite E, Shoenfeld Y. Vitamin D and autoimmunity. Scand J Rheumatol 2016; 45(6): 439-47.
[http://dx.doi.org/10.3109/03009742.2016.1151072] [PMID: 27191042]
[66]
Lindenmayer GW, Stoltzfus RJ, Prendergast AJ. Interactions between zinc deficiency and environmental enteropathy in developing countries. Adv Nutr 2014; 5(1): 1-6.
[http://dx.doi.org/10.3945/an.113.004838] [PMID: 24425714]
[67]
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr 2019; 10(4): 696-710.
[http://dx.doi.org/10.1093/advances/nmz013] [PMID: 31305906]
[68]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[http://dx.doi.org/10.1038/d41573-020-00016-0]
[69]
Rupp JC, Locatelli M, Grieser A, et al. Host Cell Copper Transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J 2017; 14(1): 11.
[http://dx.doi.org/10.1186/s12985-016-0671-7] [PMID: 28115001]
[70]
Miyamoto D, Kusagaya Y, Endo N, et al. Thujaplicin–copper chelates inhibit replication of human influenza viruses. Antiviral Res 1998; 39(2): 89-100.
[http://dx.doi.org/10.1016/S0166-3542(98)00034-5] [PMID: 9806486]
[71]
Rayman MP. Selenium and human health. Lancet 2012; 379(9822): 1256-68.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[72]
Prasad S, Aggarwal BB. Herbal Medicine: Biomolecular and Clinical AspectsTurmeric, the golden spice. (2nd ed...), 2011.
[http://dx.doi.org/10.1201/b10787-14]
[73]
Ammon H, Wahl M. Pharmacology of Curcuma longa. Planta Med 1991; 57(1): 1-7.
[http://dx.doi.org/10.1055/s-2006-960004] [PMID: 2062949]
[74]
Apisariyakul A, Vanittanakom N, Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol 1995; 49(3): 163-9.
[http://dx.doi.org/10.1016/0378-8741(95)01320-2] [PMID: 8824742]
[75]
Araújo CAC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 2001; 96(5): 723-8.
[http://dx.doi.org/10.1590/S0074-02762001000500026] [PMID: 11500779]
[76]
Gupta H, Gupta M, Bhargava S. Potential use of turmeric in COVID-19. Clin Exp Dermatol 2020; 45(7): 902-3.
[http://dx.doi.org/10.1111/ced.14357] [PMID: 32608046]
[77]
Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom management agents in the setting of COVID -19. Phytother Res 2020; 34(12): 3148-67.
[http://dx.doi.org/10.1002/ptr.6794] [PMID: 32881214]
[78]
Grzanna R, Lindmark L, Frondoza CG. Ginger-an herbal medicinal product with broad anti-inflammatory actions. J Med Food 2005; 8(2): 125-32.
[http://dx.doi.org/10.1089/jmf.2005.8.125] [PMID: 16117603]
[79]
Bhat J, Damle A, Vaishnav PP, Albers R, Joshi M, Banerjee G. In vivo enhancement of natural killer cell activity through tea fortified with Ayurvedic herbs. Phytother Res 2010; 24(1): 129-35.
[http://dx.doi.org/10.1002/ptr.2889] [PMID: 19504465]
[80]
Singh NA, Kumar P, Jyoti , Kumar N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID ‐19. Phytother Res 2021; 35(5): 2745-57.
[http://dx.doi.org/10.1002/ptr.7019] [PMID: 33511704]
[81]
Malabadi RB, Chalannavar RK, Supriya S, Nityasree BR, Sowmyashree K, Meti NT. Role of botanical drugs in controlling dengue virus disease. Inter J Res Sci Innov 2018; 5(7): 134-59.
[82]
Bast F, Rani P, Meena D. Chloroplast DNA phylogeography of holy basil (Ocimum tenuiflorum) in Indian subcontinent. SciWorldJ 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/847482] [PMID: 24523650]
[83]
Tang LIC, Ling APK, Koh RY, Chye SM, Voon KGL. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complement Altern Med 2012; 12(1): 3.
[http://dx.doi.org/10.1186/1472-6882-12-3] [PMID: 22244370]
[84]
Mondal S, Mirdha BR, Mahapatra SC. The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian J Physiol Pharmacol 2009; 53(4): 291-306.
[PMID: 20509321]
[85]
Kumar DV, Geethanjali B, Avinash KO, Kumar JR, Basalingappa KM. Tinospora cordifolia: The antimicrobial property of the leaves of amruthaballi. J BacteriolMycol Open Access 2017; 5(5): 363-71.
[86]
Dhama K, Sachan S, Khandia R, et al. Medicinal and beneficial health applications of Tinospora cordifolia (Guduchi): A miraculous herb countering various diseases/disorders and its immunomodulatory effects. Recent Pat Endocr Metab Immune Drug Discov 2017; 10(2): 96-111.
[http://dx.doi.org/10.2174/1872214811666170301105101] [PMID: 28260522]
[87]
Ghosh S, Saha S. Tinospora cordifolia: One plant, many roles. Anc Sci Life 2012; 31(4): 151-9.
[http://dx.doi.org/10.4103/0257-7941.107344] [PMID: 23661861]
[88]
Rana V, Thakur K, Sood R, Sharma V, Sharma TR. Genetic diversity analysis of Tinospora cordifolia germplasm collected from northwestern Himalayan region of India. J Genet 2012; 91(1): 99-103.
[http://dx.doi.org/10.1007/s12041-012-0137-7] [PMID: 22546832]
[89]
Parthipan M, Aravindhan V, Rajendran A. Medico-botanical study of Yercaud hills in the eastern Ghats of Tamil Nadu, India. Anc Sci Life 2011; 30(4): 104-9.
[PMID: 22557438]
[90]
Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: A pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2022; 13(1): 100312.
[http://dx.doi.org/10.1016/j.jaim.2020.04.002] [PMID: 32382220]
[91]
Sharma U, Bala M, Kumar N, Singh B, Munshi RK, Bhalerao S. Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol 2012; 141(3): 918-26.
[http://dx.doi.org/10.1016/j.jep.2012.03.027] [PMID: 22472109]
[92]
Peterson CT, Denniston K, Chopra D. Therapeutic uses of triphala in ayurvedic medicine. J Altern Complement Med 2017; 23(8): 607-14.
[http://dx.doi.org/10.1089/acm.2017.0083] [PMID: 28696777]
[93]
Mukherjee PK, Rai S, Bhattachar S. Clinical study of ‘TRIPHALA’–A well knownphytomedicine from India. Iran J PharmacolTher 2005; 5: 51-4.
[94]
Shanbhag V. Triphala in prevention of dental caries and as an antimicrobial in oral cavity-a review. Infect Disord Drug Targets 2015; 15(2): 89-97.
[http://dx.doi.org/10.2174/1871526515666150513105009]
[95]
Belapurkar P, Goyal P, Tiwari-Barua P. Immunomodulatory effects of triphala and its individual constituents: A review. Indian J Pharm Sci 2014; 76(6): 467-75.
[PMID: 25593379]
[96]
Kulkarni KV, Ghurghure SM. Indian gooseberry (Emblica officinalis): Complete pharmacognosy review. Int J Chem Stud 2018; 2(2): 5-11.
[97]
Khan KH. Roles of Emblica officinalis in medicine-A review. Bot Res Int 2009; 2(4): 218-28.
[98]
Srivasuki KP. Nutritional and health care benefits of Amla. J Pharmacogn 2012; 3(2): 141-51.
[99]
Milind P, Deepa K. Clove: A champion spice. Int J Res Ayurveda Pharm 2011; 2(1): 47-54.
[100]
Gopalakrishnan N, Narayanan CS, Mathew AG. Chemical composition of Indian clove bud, stem and leaf oils. Indian Perfumers 1988; 32: 229-35.
[101]
Narayanan CR, Natu AA. Triterpene acids of indian clove buds. Phytochemistry 1974; 13(9): 1999-2000.
[http://dx.doi.org/10.1016/0031-9422(74)85139-3]
[102]
Rao PV, Gan SH. Cinnamon: A multifaceted medicinal plant. Evid Based Complement Alternat Med 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[103]
Vangalapati M, Satya NS, Prakash DS, Avanigadda S. A review on pharmacological activities and clinical effects of cinnamon species. Res J Pharm Biol Chem Sci 2012; 3(1): 653-63.
[104]
Sangal A. Role of cinnamon as beneficial antidiabetic food adjunct: A review. Adv Appl Sci Res 2011; 2(4): 440-50.
[105]
Lombard K, Peffley E, Geoffriau E, Thompson L, Herring A. Quercetin in onion (Allium cepa L.) after heat-treatment simulating home preparation. J Food Compos Anal 2005; 18(6): 571-81.
[http://dx.doi.org/10.1016/j.jfca.2004.03.027]
[106]
Takooree H, Aumeeruddy MZ, Rengasamy KR, et al. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications Crit Rev Food Sci Nutr 2019; 59(sup1): S210-243.
[107]
Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[108]
Wang B, Kovalchuk A, Li D, Ilnytskyy Y, Kovalchuk I, Kovalchuk O. In search of preventative strategies: Novel anti-inflammatory high-CBD cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Preprints 2020.
[http://dx.doi.org/10.20944/preprints202004.0315.v1]
[109]
Shahid MA, Chowdhury MA, Kashem MA. Scope of natural plant extract to deactivate COVID-19. Research Square 2020; 2: 15.
[http://dx.doi.org/10.21203/rs.3.rs-19240/v1]
[110]
Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E: Two natural compounds and folic acid as potential inhibitors of 2019-novel coronavirus Main Protease (2019-nCoVMpro), molecular docking and SAR study. Curr Computeraided Drug Des 2021; 17(3): 469-79.
[http://dx.doi.org/10.2174/15734099MTA1lOTgfz] [PMID: 32321407]
[111]
Walter TM, Justinraj CS, Nandini VS. Effect of Nilavembukudineer in the Prevention and Management of COVID–19 by inhibiting ACE2 Receptor. Siddha Papers 2020; 15(2): 531.
[112]
Alabboud M, Javadmanesh A. In silico study of various antiviral drugs, vitamins, and natural substances as potential binding compounds with SARS-CoV-2 main protease. DYSONA-Life Science 2020; 1(2): 44-63.
[113]
Bouchentouf S, Missoum N. Identification of compounds from nigella sativa as new potential inhibitors of ChemRxiv 2019.
[http://dx.doi.org/10.26434/chemrxiv.12055716.v1]
[114]
Giri S, Lal AF, Singh S. Battle against Coronavirus: Repurposing old friends (Food borne polyphenols) for new enemy (COVID-19). ChemRxiv 2016.
[115]
Rathinavel T, Palanisamy M, Palanisamy S, Subramanian A, Thangaswamy S. Phytochemical 6-gingerol-A promising drug of choice for COVID-19. Int J Adv Sci Eng 2020; 6(4): 1482-9.
[http://dx.doi.org/10.29294/IJASE.6.4.2020.1482-1489]
[116]
Manuja A, Rathore N, Choudhary S, Kumar B. Phytochemical screening, cytotoxicity and anti-inflammatory activities of the leaf extracts from Lawsonia inermis of indian origin to explore their potential for medicinal uses. Med Chem 2021; 17(6): 576-86.
[http://dx.doi.org/10.2174/1573406416666200221101953] [PMID: 32081108]
[117]
Maurya DK, Sharma D. Evaluation of traditional ayurvedic preparation for prevention and management of the novel coronavirus (SARS-CoV-2) using molecular docking approach. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12110214.v1]
[118]
Mohammadi N, Shaghaghi N. Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID_19 virus protease by molecular docking analysis. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.11987475.v1]
[119]
Thuy BTP, My TTA, Hai NTT, et al. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega 2020; 5(14): 8312-20.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[120]
Borenstein R, Hanson BA, Markosyan RM, et al. Ginkgolic acid inhibits fusion of enveloped viruses. Sci Rep 2020; 10(1): 4746.
[http://dx.doi.org/10.1038/s41598-020-61700-0] [PMID: 31913322]
[121]
Utomo RY, Ikawati M, Meiyanto E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection 2020 Preprints 2020; 2020030214.
[http://dx.doi.org/10.20944/preprints202003.0214.v1]
[122]
Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[123]
Goswami D, Kumar M, Ghosh SK, Das A. Natural product compounds in alpiniaofficinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12071997.v1]
[124]
Srivastava AK, Kumar A, Misra N. On the inhibition of COVID-19 protease by Indian herbal plants: An in silico investigation. arXiv 2020.
[125]
Khan MF, Khan MA, Khan ZA, Ahamad T, Ansari WA. 2020.Identification of dietary molecules as therapeutic agents to combat COVID-19 using molecular docking studies. Research Square 2020.
[http://dx.doi.org/10.21203/rs.3.rs-19560/v1]
[126]
Su W, Wang Y, Li P, et al. The potential application of the traditional Chinese herb Exocarpium Citri grandis in the prevention and treatment of COVID-19. Trad Med Res 2020; 5(3): 160-6.
[http://dx.doi.org/10.53388/TMR20200406172]
[127]
Sharma AD, Kaur I. Molecular docking studies on Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. arXiv 2020.
[128]
Dhanasekaran S. Scope of phytotherapeutics in targeting ACE2 mediated Host-Viral Interface of SARS-CoV2 that causes COVID-19. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12089730.v1]
[129]
Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Hydrodynamic cavitation-based rapid expansion of hesperidin-rich products from waste citrus peel as a potential tool against COVID-19. Preprint 2020; 1-15.
[http://dx.doi.org/10.20944/preprints202004.0152.v1]
[130]
Subhose V, Srinivas P, Narayana A. Basic principles of pharmaceutical science in Ayurvĕda. Bull Indian Inst Hist Med Hyderabad 2005; 35(2): 83-92.
[PMID: 17333665]
[131]
Fortunatov MN. Experimental use of phytoncides for therapeutic and prophylactic purpose. VoprosyPediatriiiOkhranyMaterinstva 1952; 20(2): 55-8.
[132]
Kahlon JB, Kemp MC, Carpenter RH, McAnalley BH, McDaniel HR, Shannon WM. Inhibition of AIDS virus replication by acemannan in vitro. Mol Biother 1991; 3(3): 127-35.
[PMID: 1768365]
[133]
Barnard DL, Huffman JH, Morris JLB, Wood SG, Hughes BG, Sidwell RW. Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral Res 1992; 17(1): 63-77.
[http://dx.doi.org/10.1016/0166-3542(92)90091-I] [PMID: 1310583]
[134]
Semple SJ, Pyke SM, Reynolds GD, Flower RLP. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antiviral Res 2001; 49(3): 169-78.
[http://dx.doi.org/10.1016/S0166-3542(01)00125-5] [PMID: 11428243]
[135]
Jakovljević D, Stanković M, Warchoł M, Skrzypek E. Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: A review. Plant Cell Tissue Organ Cult 2022; 149(1-2): 61-79.
[http://dx.doi.org/10.1007/s11240-022-02286-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy