Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Evaluation of Bone Scan Index as a Prognostic Tool in Breast Cancer Patients with Bone Metastasis

Author(s): Maria Silvia De Feo, Viviana Frantellizzi*, Arianna Di Rocco, Alessio Farcomeni, Antonio Matto, Andrea Marongiu, Susanna Nuvoli, Angela Spanu and Giuseppe De Vincentis

Volume 16, Issue 4, 2023

Published on: 22 June, 2023

Page: [284 - 291] Pages: 8

DOI: 10.2174/1874471016666230509113108

Price: $65

Abstract

Background: Bone metastatic involvement represents a leading cause of death in patients with advanced breast cancer (BC). At present, it is not clear whether the bone metastatic load might impact Overall Survival (OS) in patients with bone metastatic BC at diagnosis. For this purpose, we used the Bone Scan Index (BSI), which is a reproducible and quantitative expression of tumor load observed at bone scintigraphy.

Objective: The aim of this study was to associate BSI with OS in bone metastatic BC patients.

Methods: In this retrospective study, we enrolled BC patients with bone metastases at the scintigraphic bone scan performed for staging purposes. The BSI was calculated through the DASciS software, and statistical analysis was carried out. Other clinical variables relevant to OS analysis were taken into account.

Results: Of a total of 94 patients, 32% died. In most cases, the histotype was ductal infiltrating carcinoma. The median OS from diagnosis was 72 months (CI 95%: 62-NA). The univariate analysis with COX regression showed that only hormone therapy significantly correlates with OS (HR 0.417, CI 95%: 0.174-0.997, p < 0.049). As concerning BSI, the statistical analysis showed that it does not predict OS in BC patients (HR 0.960, 95% CI: 0.416-2.216, p < 0.924).

Conclusion: Although the BSI significantly predicts OS in prostate cancer and in other tumors, we observed that the metastatic load of bone disease has not a key role in prognostic stratification in our population.

Graphical Abstract

[1]
D’Oronzo, S.; Silvestris, E.; Paradiso, A.; Cives, M.; Tucci, M. Role of bone targeting agents in the prevention of bone metastases from breast cancer. Int. J. Mol. Sci., 2020, 21(8), 3022.
[http://dx.doi.org/10.3390/ijms21083022] [PMID: 32344743]
[2]
Pesapane, F.; Downey, K.; Rotili, A.; Cassano, E.; Koh, D.M. Imaging diagnosis of metastatic breast cancer. Insights Imaging, 2020, 11(1), 79.
[http://dx.doi.org/10.1186/s13244-020-00885-4] [PMID: 32548731]
[3]
Plunkett, T.A.; Smith, P.; Rubens, R.D. Risk of complications from bone metastases in breast cancer. implications for management. Eur. J. Cancer, 2000, 36(4), 476-482.
[4]
Wei, S.; Li, Y.; Siegal, G.P.; Hameed, O. Breast carcinomas with isolated bone metastases have different hormone receptor expression profiles than those with metastases to other sites or multiple organs. Ann. Diagn. Pathol., 2011, 15(2), 79-83.
[http://dx.doi.org/10.1016/j.anndiagpath.2010.06.010] [PMID: 21163679]
[5]
Follacchio, G.A.; Monteleone, F.; Anibaldi, P.; De Vincentis, G.; Iacobelli, S.; Merola, R.; D’Orazi, V.; Monti, M.; Pasta, V. A modified sentinel node and occult lesion localization (SNOLL) technique in non-palpable breast cancer: A pilot study. J. Exp. Clin. Cancer Res., 2015, 34(1), 113-113.
[http://dx.doi.org/10.1186/s13046-015-0230-x] [PMID: 26445493]
[6]
Tubiana-Hulin, M. Incidence, prevalence and distribution of bone metastases. Bone, 1991, 12(Suppl. 1), S9-S10.
[http://dx.doi.org/10.1016/8756-3282(91)90059-R] [PMID: 1954049]
[7]
Scheid, V.; Buzdar, A.U.; Smith, T.L.; Hortobagyi, G.N. Clinical course of breast cancer patients with osseous metastasis treated with combination chemotherapy. Cancer, 1986, 58(12), 2589-2593.
[http://dx.doi.org/10.1002/1097-0142(19861215)58:12<2589:AID-CNCR2820581206>3.0.CO;2-O] [PMID: 3779609]
[8]
Marazzi, F.; Orlandi, A.; Manfrida, S.; Masiello, V.; Di Leone, A.; Massaccesi, M.; Moschella, F.; Franceschini, G.; Bria, E.; Gambacorta, M.A.; Masetti, R.; Tortora, G.; Valentini, V. Diagnosis and treatment of bone metastases in breast cancer: radiotherapy, local approach and systemic therapy in a guide for clinicians. Cancers (Basel), 2020, 12(9), 2390.
[http://dx.doi.org/10.3390/cancers12092390] [PMID: 32846945]
[9]
Theriault, R.L.; Hortobagyi, G.N. Bone metastasis in breast cancer. Anticancer Drugs, 1992, 3(5), 455-462.
[http://dx.doi.org/10.1097/00001813-199210000-00002] [PMID: 1450438]
[10]
Love, C.; Din, A.S.; Tomas, M.B.; Kalapparambath, T.P.; Palestro, C.J. Radionuclide bone imaging: an illustrative review. Radiographics, 2003, 23(2), 341-358.
[http://dx.doi.org/10.1148/rg.232025103] [PMID: 12640151]
[11]
Wuestemann, J.; Hupfeld, S.; Kupitz, D.; Genseke, P.; Schenke, S.; Pech, M.; Kreissl, M.C.; Grosser, O.S. Analysis of bone scans in various tumor entities using a deep-learning-based artificial neural network algorithm-evaluation of diagnostic performance. Cancers (Basel), 2020, 12(9), 2654.
[http://dx.doi.org/10.3390/cancers12092654] [PMID: 32957650]
[12]
Idota, A.; Sawaki, M.; Yoshimura, A.; Hattori, M.; Inaba, Y.; Oze, I.; Kikumori, T.; Kodera, Y.; Iwata, H. Bone Scan Index predicts skeletal-related events in patients with metastatic breast cancer. Springerplus, 2016, 5(1), 1095.
[http://dx.doi.org/10.1186/s40064-016-2741-0] [PMID: 27468396]
[13]
Cook, G.J.R.; Fogelman, I. The role of positron emission tomography in the management of bone metastases. Cancer, 2000, 88(S12), 2927-2933.
[http://dx.doi.org/10.1002/1097-0142(20000615)88:12+<2927:AID-CNCR8>3.0.CO;2-V] [PMID: 10898336]
[14]
Uemura, K.; Miyoshi, Y.; Kawahara, T.; Yoneyama, S.; Hattori, Y.; Teranishi, J.; Kondo, K.; Moriyama, M.; Takebayashi, S.; Yokomizo, Y.; Yao, M.; Uemura, H.; Noguchi, K. Prognostic value of a computer-aided diagnosis system involving bone scans among men treated with docetaxel for metastatic castration-resistant prostate cancer. BMC Cancer, 2016, 16(1), 109.
[http://dx.doi.org/10.1186/s12885-016-2160-1] [PMID: 26883015]
[15]
Anand, A.; Morris, M.J.; Larson, S.M.; Minarik, D.; Josefsson, A.; Helgstrand, J.T.; Oturai, P.S.; Edenbrandt, L.; Røder, M.A.; Bjartell, A. Automated Bone Scan Index as a quantitative imaging biomarker in metastatic castration-resistant prostate cancer patients being treated with enzalutamide. EJNMMI Res., 2016, 6(1), 23.
[http://dx.doi.org/10.1186/s13550-016-0173-z] [PMID: 26960325]
[16]
Fosbøl, M.Ø.; Petersen, P.M.; Kjaer, A.; Mortensen, J. 223Ra Therapy of advanced metastatic castration-resistant prostate cancer: Quantitative assessment of skeletal tumor burden for prognostication of clinical outcome and hematologic toxicity. J. Nucl. Med., 2018, 59(4), 596-602.
[http://dx.doi.org/10.2967/jnumed.117.195677] [PMID: 28864632]
[17]
Bradski, G. The OpenCV Library. Dr. Dobbs J. Softw. Tools Prof. Program., 2000.
[18]
Suzuki, S. be, K.A. Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process., 1985, 30(1), 32-46.
[http://dx.doi.org/10.1016/0734-189X(85)90016-7]
[19]
Green, G. An essay on the application of mathematical analysis to the theories of electricity and magnetism. J. Reine Angew. Math., 1854, 1854(47), 161-221.
[http://dx.doi.org/10.1515/crll.1854.47.161]
[20]
Nakajima, K.; Edenbrandt, L.; Mizokami, A. Bone scan index: A new biomarker of bone metastasis in patients with prostate cancer. Int. J. Urol., 2017, 24(9), 668-673.
[http://dx.doi.org/10.1111/iju.13386] [PMID: 28556293]
[21]
Iwase, T.; Yamamoto, N.; Ichihara, H.; Togawa, T.; Nagashima, T.; Miyazaki, M. The relationship between skeletal-related events and bone scan index for the treatment of bone metastasis with breast cancer patients. Medicine (Baltimore), 2014, 93(28), e269.
[http://dx.doi.org/10.1097/MD.0000000000000269] [PMID: 25526456]
[22]
Brown, J.E.; Cook, R.J.; Lipton, A.; Costa, L.; Coleman, R.E. Prognostic factors for skeletal complications from metastatic bone disease in breast cancer. Breast Cancer Res. Treat., 2010, 123(3), 767-779.
[http://dx.doi.org/10.1007/s10549-010-0981-1] [PMID: 20574672]
[23]
Nakajima, K.; Nakajima, Y.; Horikoshi, H.; Ueno, M.; Wakabayashi, H.; Shiga, T.; Yoshimura, M.; Ohtake, E.; Sugawara, Y.; Matsuyama, H.; Edenbrandt, L. Enhanced diagnostic accuracy for quantitative bone scan using an artificial neural network system: a Japanese multi-center database project. EJNMMI Res., 2013, 3(1), 83.
[http://dx.doi.org/10.1186/2191-219X-3-83] [PMID: 24369784]
[24]
Inaki, A.; Nakajima, K.; Wakabayashi, H.; Mochizuki, T.; Kinuya, S. Fully automated analysis for bone scintigraphy with artificial neural network: usefulness of bone scan index (BSI) in breast cancer. Ann. Nucl. Med., 2019, 33(10), 755-765.
[http://dx.doi.org/10.1007/s12149-019-01386-1] [PMID: 31317398]
[25]
Frantellizzi, V.; Pani, A.; Ippoliti, M.D.; Farcomeni, A.; Aloise, I.; Colosi, M.; Polito, C.; Pani, R.; Vincentis, G.D. Scintigraphic load of bone disease evaluated by DASciS software as a survival predictor in metastatic castration-resistant prostate cancer patients candidates to 223RaCl treatment. Radiol. Oncol., 2019, 54(1), 40-47.
[http://dx.doi.org/10.2478/raon-2019-0058] [PMID: 31855572]
[26]
Frantellizzi, V.; Monari, F.; Mascia, M.; Costa, R.; Rubini, G.; Spanu, A.; Farcomeni, A.; Lodi Rizzini, E.; Cindolo, L.; Licari, M.; Lavelli, V.; Nuvoli, S.; Ricci, M.; Dionisi, V.; Nappi, A.G.; De Vincentis, G. Overall survival in mCPRC patients treated with Radium-223 in association with bone health agents: a national multicenter study. Int. J. Radiat. Biol., 2020, 96(12), 1608-1613.
[http://dx.doi.org/10.1080/09553002.2020.1838655] [PMID: 33074066]
[27]
Guise, T.A.; Mohammad, K.S.; Clines, G.; Stebbins, E.G.; Wong, D.H.; Higgins, L.S.; Vessella, R.; Corey, E.; Padalecki, S.; Suva, L.; Chirgwin, J.M. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res., 2006, 12(20), 6213s-6216s.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1007] [PMID: 17062703]
[28]
Isoda, T. BaBa, S.; Maruoka, Y.; Kitamura, Y.; Tahara, K.; Sasaki, M.; Hatakenaka, M.; Honda, H. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, bonenavi, on bone scintigraphy images. Asia Ocean. J. Nucl. Med. Biol., 2017, 5(1), 49-55.
[PMID: 28840139]
[29]
Shintawati, R.; Achmad, A.; Higuchi, T.; Shimada, H.; Hirasawa, H.; Arisaka, Y.; Takahashi, A.; Nakajima, T.; Tsushima, Y. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann. Nucl. Med., 2015, 29(10), 911-920.
[http://dx.doi.org/10.1007/s12149-015-1021-3] [PMID: 26373556]
[30]
Even-Sapir, E.; Metser, U.; Mishani, E.; Lievshitz, G.; Lerman, H.; Leibovitch, I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med., 2006, 47(2), 287-297.
[PMID: 16455635]
[31]
Yang, H.L.; Liu, T.; Wang, X.M.; Xu, Y.; Deng, S.M. Diagnosis of bone metastases: A meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur. Radiol., 2011, 21(12), 2604-2617.
[http://dx.doi.org/10.1007/s00330-011-2221-4] [PMID: 21887484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy