Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Emerging Applications of Nanotechnology in Drug Delivery and Medical Imaging: Review

Author(s): Sonia Singh* and Himanshu Sharma

Volume 16, Issue 4, 2023

Published on: 05 July, 2023

Page: [269 - 283] Pages: 15

DOI: 10.2174/1874471016666230621120453

Price: $65

conference banner
Abstract

The use of the one-of-a-kind qualities possessed by substances at the nanoscale is the core concept of nanotechnology. Nanotechnology has become increasingly popular in various business sectors because it enables better construction and more advanced product design. Nanomedicine is the name given to the application of nanotechnology in the medical and healthcare fields. It has been used to fight against some of the most prevalent diseases, such as cancer and cardiovascular diseases. This current manuscript provides an overview of the recent advancements in nanotechnology in drug delivery and imaging.

Graphical Abstract

[1]
Sim, S.; Wong, N. Nanotechnology and its use in imaging and drug delivery (Review). Biomed. Rep., 2021, 14(5), 42.
[http://dx.doi.org/10.3892/br.2021.1418] [PMID: 33728048]
[2]
Sharma, P.K.; Dorlikar, S.; Rawat, P.; Malik, V.; Vats, N.; Sharma, M.; Rhyee, J.S.; Kaushik, A.K. Nanotechnology and its application: a review. Nanotechnology in Cancer Management; Khondakar, K.R; Kaushik, A.K, Eds.; Elsevier, 2021, pp. 1-33.
[http://dx.doi.org/10.1016/B978-0-12-818154-6.00010-X]
[3]
Belkin, A.; Hubler, A.; Bezryadin, A. Self-assembled wiggling nano-structures and the principle of maximum entropy production. Sci. Rep., 2015, 5(1), 8323.
[http://dx.doi.org/10.1038/srep08323] [PMID: 25662746]
[4]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[5]
Woldeamanuel, K.M.; Kurra, F.A.; Roba, Y.T. A review on nanotechnology and its application in modern veterinary science. Int. J. Nanomater. Nanotechnol. Nanomed., 2021, 7, 26-31.
[http://dx.doi.org/10.17352/2455-3492.000041]
[6]
Rashidi, L.; Khosravi-Darani, K. The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr., 2011, 51(8), 723-730.
[http://dx.doi.org/10.1080/10408391003785417] [PMID: 21838555]
[7]
Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals (Basel), 2021, 14(8), 707.
[http://dx.doi.org/10.3390/ph14080707] [PMID: 34451803]
[8]
Abdussalam-Mohammed, W. Review of therapeutic applications of nanotechnology in medicine field and its side effects. J. Chem. Rev., 2019, 1(3), 243-251.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.3.5]
[9]
Jena, M.; Mishra, S.; Jena, S.; Mishra, S. Nanotechnology- future prospect in recent medicine: a review. Int. J. Basic Clin. Pharmacol., 2013, 2(4), 353.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20130802]
[10]
Khan, Y.; Sadia, H.; Ali Shah, S.Z.; Khan, M.N.; Shah, A.A.; Ullah, N.; Ullah, M.F.; Bibi, H.; Bafakeeh, O.T.; Khedher, N.B.; Eldin, S.M.; Fadhl, B.M.; Khan, M.I. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts, 2022, 12(11), 1386.
[http://dx.doi.org/10.3390/catal12111386]
[11]
Kumari, S.; Sarkar, L. A Review on Nanoparticles: Structure, Classification, Synthesis Applications. J. Sci Res., 2021, 65(8), 42-46.
[http://dx.doi.org/10.37398/JSR.2021.650809]
[12]
Kapare, H.S.; Metkar, S.R. Micellar drug delivery system: a review. Pharmaceut. Reson., 2020, 2(2), 21-26.
[13]
Liu, P.; Chen, G.; Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules, 2022, 27(4), 1372.
[http://dx.doi.org/10.3390/molecules27041372] [PMID: 35209162]
[14]
Klajnert, B.; Bryszewska, M. Dendrimers: properties and applications. Acta Biochim. Pol., 2001, 48(1), 199-208.
[http://dx.doi.org/10.18388/abp.2001_5127] [PMID: 11440170]
[15]
Aqel, A.; El-Nour, K.M.M.A.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem., 2012, 5(1), 1-23.
[http://dx.doi.org/10.1016/j.arabjc.2010.08.022]
[16]
Ajayan, PM; Zhou, OZ Applications of carbon nanotubes intechopen. 2001.
[http://dx.doi.org/10.1007/3-540-39947-X_14]
[17]
Mody, V.; Siwale, R.; Singh, A.; Mody, H. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[18]
Rao, C.N.R.; Kulkarni, G.U.; Thomas, P.J.; Edwards, P.P. Metal nanoparticles and their assemblies. Chem. Soc. Rev., 2000, 29(1), 27-35.
[http://dx.doi.org/10.1039/a904518j]
[19]
Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev., 2015, 44(1), 362-381.
[http://dx.doi.org/10.1039/C4CS00269E] [PMID: 25316556]
[20]
Reed, M.A. Quantum Dots. Sci. Am., 1993, 268(1), 118-123.
[http://dx.doi.org/10.1038/scientificamerican0193-118]
[21]
Attard, P.; Moody, M.P.; Tyrrell, J.W.G. Nanobubbles: the big picture. Physica A, 2002, 314(1-4), 696-705.
[http://dx.doi.org/10.1016/S0378-4371(02)01191-3]
[22]
Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V.S.J. A history of nanobubbles. Langmuir, 2016, 32(43), 11086-11100.
[http://dx.doi.org/10.1021/acs.langmuir.6b02489] [PMID: 27594543]
[23]
Kazemzadeh, H.; Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today, 2019, 24(3), 898-905.
[http://dx.doi.org/10.1016/j.drudis.2019.01.013] [PMID: 30703542]
[24]
Yu, Z.; Eich, C.; Cruz, L.J. Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics. Front Chem., 2020, 8, 496.
[http://dx.doi.org/10.3389/fchem.2020.00496] [PMID: 32656181]
[25]
Medina, C.; Santos-Martinez, M.J.; Radomski, A.; Corrigan, O.I.; Radomski, M.W. Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol., 2007, 150(5), 552-558.
[http://dx.doi.org/10.1038/sj.bjp.0707130] [PMID: 17245366]
[26]
Ratner, B.D.; Bryant, S.J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng., 2004, 6(1), 41-75.
[http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140027] [PMID: 15255762]
[27]
Sakiyama-Elbert, S.E.; Hubbell, J.A. Functional biomaterials: design of novel biomaterials. Annu. Rev. Mater. Res., 2001, 31(1), 183-201.
[http://dx.doi.org/10.1146/annurev.matsci.31.1.183]
[28]
Deng, S.; Gu, J.; Jiang, Z.; Cao, Y.; Mao, F.; Xue, Y.; Wang, J.; Dai, K.; Qin, L.; Liu, K.; Wu, K.; He, Q.; Cai, K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J. Nanobiotechnology, 2022, 20(1), 415.
[http://dx.doi.org/10.1186/s12951-022-01613-4] [PMID: 36109734]
[29]
Yan, Z.; Bin, Y.; Deng, Y.H. Take the initiative to drug-loaded liposomes prepared by vincristine sulfate and the determination of encapsulation efficiency. Chung Kuo Yao Hsueh Tsa Chih, 2005, 10(1559)
[30]
Ochekpe, N.A.; Olorunfemi, P.O.; Ngwuluka, N.C. Nanotechnology and drug delivery part 1: background and applications. Trop. J. Pharm. Res., 2009, 8(3)
[http://dx.doi.org/10.4314/tjpr.v8i3.44546]
[31]
Jain, N.; Jain, R.; Thakur, N.; Gupta, B.P.; Jain, D.K.; Banveer, J.; Jain, S. Nanotechnology: a safe and effective drug delivery system. Asian J. Pharm. Clin. Res., 2010, 3(3), 159-165.
[32]
Kakade, T.; Kadam, V.; Dhanavade, K.; Salunkhe, V. A review on pharmaceutical nanotechnology. Dendrimers. World J. Pharm. Pharm. Sci., 2013, 2, 4815-4830.
[33]
Hornyak, G.L.; Tibbals, H.F.; Dutta, J.; Moore, J.J. Introduction to nanoscience and nanotechnology; CRC press, 2008.
[http://dx.doi.org/10.1201/9781420047806]
[34]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[35]
van Vlerken, L.E.; Vyas, T.K.; Amiji, M.M. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharm. Res., 2007, 24(8), 1405-1414.
[http://dx.doi.org/10.1007/s11095-007-9284-6] [PMID: 17393074]
[36]
Biswas, A.K.; Islam, M.R.; Choudhury, Z.S.; Mostafa, A.; Kadir, M.F. Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, 5(4), 043001.
[37]
Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today, 2002, 7(10), 569-579.
[http://dx.doi.org/10.1016/S1359-6446(02)02255-9] [PMID: 12047857]
[38]
McGill, H.C., Jr; McMahan, C.A.; Gidding, S.S. Preventing heart disease in the 21st century: Implications of the pathobiological determinants of atherosclerosis in youth (PDAY) study. Circulation, 2008, 117(9), 1216-1227.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.717033] [PMID: 18316498]
[39]
Das, A.; Mukherjee, P.; Singla, S.K.; Guturu, P.; Frost, M.C.; Mukhopadhyay, D.; Shah, V.H.; Patra, C.R. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. Nanotechnology, 2010, 21(30), 305102.
[http://dx.doi.org/10.1088/0957-4484/21/30/305102] [PMID: 20610873]
[40]
Deshpande, D.; Kethireddy, S.; Janero, D.R.; Amiji, M.M. Therapeutic efficacy of an ω-3-fatty acid-containing 17-β estradiol nano-delivery system against experimental atherosclerosis. PLoS One, 2016, 11(2), e0147337.
[http://dx.doi.org/10.1371/journal.pone.0147337] [PMID: 26840601]
[41]
Wu, T.; Chen, X.; Wang, Y.; Xiao, H.; Peng, Y.; Lin, L.; Xia, W.; Long, M.; Tao, J.; Shuai, X. Aortic plaque-targeted andrographolide delivery with oxidation-sensitive micelle effectively treats atherosclerosis via simultaneous ROS capture and anti-inflammation. Nanomedicine, 2018, 14(7), 2215-2226.
[http://dx.doi.org/10.1016/j.nano.2018.06.010] [PMID: 29964220]
[42]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: an updated review. Pharmaceutics, 2017, 9(4), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[43]
Zhang, N.; Li, C.; Zhou, D.; Ding, C.; Jin, Y.; Tian, Q.; Meng, X.; Pu, K.; Zhu, Y. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater., 2018, 70, 227-236.
[http://dx.doi.org/10.1016/j.actbio.2018.01.038] [PMID: 29412186]
[44]
Najlah, M.; Freeman, S.; Attwood, D.; D’Emanuele, A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int. J. Pharm., 2007, 336(1), 183-190.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.047] [PMID: 17188439]
[45]
Korin, N.; Gounis, M.J.; Wakhloo, A.K.; Ingber, D.E. Targeted drug delivery to flow-obstructed blood vessels using mechanically activated nanotherapeutics. JAMA Neurol., 2015, 72(1), 119-122.
[http://dx.doi.org/10.1001/jamaneurol.2014.2886] [PMID: 25365638]
[46]
Li, W.; Feng, S.S.; Guo, Y. Block copolymer micelles for nanomedicine. Nanomedicine (Lond.), 2012, 7(2), 169-172.
[http://dx.doi.org/10.2217/nnm.11.182] [PMID: 22339128]
[47]
Chandarana, M.; Curtis, A.; Hoskins, C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci., 2018, 8(7), 1607-1619.
[http://dx.doi.org/10.1007/s13204-018-0856-z]
[48]
Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of nanoparticles in biomedical imaging. Nanoscale, 2019, 11(3), 799-819.
[http://dx.doi.org/10.1039/C8NR07769J] [PMID: 30603750]
[49]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7, 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[50]
Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev., 2019, 138, 302-325.
[http://dx.doi.org/10.1016/j.addr.2019.01.005] [PMID: 30639256]
[51]
Arap, W.; Pasqualini, R.; Montalti, M.; Petrizza, L.; Prodi, L.; Rampazzo, E.; Zaccheroni, N.; Marchiò, S. Luminescent silica nanoparticles for cancer diagnosis. Curr. Med. Chem., 2013, 20(17), 2195-2211.
[http://dx.doi.org/10.2174/0929867311320170005] [PMID: 23458621]
[52]
Laurent, S.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int. J. Mol. Epidemiol. Genet., 2011, 2(4), 367-390.
[PMID: 22199999]
[53]
Foucault-Collet, A.; Gogick, K.A.; White, K.A.; Villette, S.; Pallier, A.; Collet, G.; Kieda, C.; Li, T.; Geib, S.J.; Rosi, N.L.; Petoud, S. Lanthanide near infrared imaging in living cells with Yb 3+ nano metal organic frameworks. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17199-17204.
[http://dx.doi.org/10.1073/pnas.1305910110] [PMID: 24108356]
[54]
Hwang, E.S.; Cao, C.; Hong, S.; Jung, H.J.; Cha, C.Y.; Choi, J.B.; Kim, Y.J.; Baik, S. The DNA hybridization assay using single-walled carbon nanotubes as ultrasensitive, long-term optical labels. Nanotechnology, 2006, 17(14), 3442-3445.
[http://dx.doi.org/10.1088/0957-4484/17/14/016] [PMID: 19661588]
[55]
Cai, Z.; Ye, Z.; Yang, X.; Chang, Y.; Wang, H.; Liu, Y.; Cao, A. Encapsulated enhanced green fluorescence protein in silica nanoparticle for cellular imaging. Nanoscale, 2011, 3(5), 1974-1976.
[http://dx.doi.org/10.1039/c0nr00956c] [PMID: 21369623]
[56]
Genovese, D.; Bonacchi, S.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Prevention of self-quenching in fluorescent silica nanoparticles by efficient energy transfer. Angew. Chem. Int. Ed., 2013, 52(23), 5965-5968.
[http://dx.doi.org/10.1002/anie.201301155] [PMID: 23616475]
[57]
Grebenik, E.A.; Nadort, A.; Generalova, A.N.; Nechaev, A.V.; Sreenivasan, V.K.A.; Khaydukov, E.V.; Semchishen, V.A.; Popov, A.P.; Sokolov, V.I.; Akhmanov, A.S.; Zubov, V.P.; Klinov, D.V.; Panchenko, V.Y.; Deyev, S.M.; Zvyagin, A.V. Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes. J. Biomed. Opt., 2013, 18(7), 076004.
[http://dx.doi.org/10.1117/1.JBO.18.7.076004] [PMID: 23843082]
[58]
Santra, S.; Dutta, D.; Walter, G.A.; Moudgil, B.M. Fluorescent nanoparticle probes for cancer imaging. Technol. Cancer Res. Treat., 2005, 4(6), 593-602.
[http://dx.doi.org/10.1177/153303460500400603] [PMID: 16292879]
[59]
Kim, D.; Lee, N.; Park, Y.I.; Hyeon, T. Recent advances in inorganic nanoparticle-based NIR luminescence imaging: semiconductor nanoparticles and lanthanide nanoparticles. Bioconjug. Chem., 2017, 28(1), 115-123.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00654] [PMID: 27982578]
[60]
Klanjscek, T.; Nisbet, R.M.; Priester, J.H.; Holden, P.A. Dynamic energy budget approach to modeling mechanisms of CdSe quantum dot toxicity. Ecotoxicology, 2013, 22(2), 319-330.
[http://dx.doi.org/10.1007/s10646-012-1028-7] [PMID: 23291788]
[61]
Zhao, Y.; van Rooy, I.; Hak, S.; Fay, F.; Tang, J.; Davies, C.L.; Skobe, M.; Fisher, E.A.; Radu, A.; Fayad, Z.A.; de Mello Donegá, C.; Meijerink, A.; Mulder, W.J.M. Near-infrared fluorescence energy transfer imaging of nanoparticle accumulation and dissociation kinetics in tumor-bearing mice. ACS Nano, 2013, 7(11), 10362-10370.
[http://dx.doi.org/10.1021/nn404782p] [PMID: 24134041]
[62]
Gao, J.; Chen, K.; Luong, R.; Bouley, D.M.; Mao, H.; Qiao, T.; Gambhir, S.S.; Cheng, Z. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett., 2012, 12(1), 281-286.
[http://dx.doi.org/10.1021/nl203526f] [PMID: 22172022]
[63]
Savla, R.; Taratula, O.; Garbuzenko, O.; Minko, T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release, 2011, 153(1), 16-22.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.015] [PMID: 21342659]
[64]
Wu, Y.; Eisele, K.; Doroshenko, M.; Algara-Siller, G.; Kaiser, U.; Koynov, K.; Weil, T. A quantum dot photoswitch for DNA detection, gene transfection, and live-cell imaging. Small, 2012, 8(22), 3465-3475.
[http://dx.doi.org/10.1002/smll.201200409] [PMID: 22915540]
[65]
Adegoke, O.; Seo, M.W.; Kato, T.; Kawahito, S.; Park, E.Y. An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus. Biosens. Bioelectron., 2016, 86, 135-142.
[http://dx.doi.org/10.1016/j.bios.2016.06.027] [PMID: 27348778]
[66]
Meledandri, C.J.; Stolarczyk, J.K.; Brougham, D.F. Hierarchical gold-decorated magnetic nanoparticle clusters with controlled size. ACS Nano, 2011, 5(3), 1747-1755.
[http://dx.doi.org/10.1021/nn102331c] [PMID: 21309572]
[67]
Sardar, R.; Shumaker-Parry, J.S. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. J. Am. Chem. Soc., 2011, 133(21), 8179-8190.
[http://dx.doi.org/10.1021/ja107934h] [PMID: 21548572]
[68]
Mesbahi, A.; Jamali, F.; Garehaghaji, N. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. Bioimpacts, 2013, 3(1), 29-35.
[PMID: 23678467]
[69]
Geng, J.; Li, K.; Pu, K.Y.; Ding, D.; Liu, B. Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small, 2012, 8(15), 2421-2429.
[http://dx.doi.org/10.1002/smll.201102353] [PMID: 22544732]
[70]
Zhang, P.; Wang, Y.; Leng, F.; Xiong, Z.H.; Huang, C.Z. Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide. Talanta, 2013, 112, 117-122.
[http://dx.doi.org/10.1016/j.talanta.2013.03.013] [PMID: 23708546]
[71]
Gao, L.; Lian, C.; Zhou, Y.; Yan, L.; Li, Q.; Zhang, C.; Chen, L.; Chen, K. Graphene oxide–DNA based sensors. Biosens. Bioelectron., 2014, 60, 22-29.
[http://dx.doi.org/10.1016/j.bios.2014.03.039] [PMID: 24768760]
[72]
Pan, X.W.; Liu, N.; Zheng, D.X.; Shi, M.M.; Wu, G.; Wang, M.; Chen, H.Z. Föster resonance energy transfer in solution-processed Si-nanoparticle/carbon nanotube nanocomposites. Nanotechnology, 2009, 20(41), 415605.
[http://dx.doi.org/10.1088/0957-4484/20/41/415605] [PMID: 19762949]
[73]
Zhu, S.; Liu, Z.; Hu, L.; Yuan, Y.; Xu, G. Turn-on fluorescence sensor based on single-walled-carbon-nanohorn-peptide complex for the detection of thrombin. Chemistry, 2012, 18(51), 16556-16561.
[http://dx.doi.org/10.1002/chem.201201468] [PMID: 23037143]
[74]
Sun, I.C.; Lee, S.; Koo, H.; Kwon, I.C.; Choi, K.; Ahn, C.H.; Kim, K. Caspase sensitive gold nanoparticle for apoptosis imaging in live cells. Bioconjug. Chem., 2010, 21(11), 1939-1942.
[http://dx.doi.org/10.1021/bc1003026] [PMID: 20936793]
[75]
Li, L.; Feng, J.; Fan, Y.; Tang, B. Simultaneous imaging of Zn(2+) and Cu(2+) in living cells based on DNAzyme modified gold nanoparticle. Anal. Chem., 2015, 87(9), 4829-4835.
[http://dx.doi.org/10.1021/acs.analchem.5b00204] [PMID: 25853631]
[76]
Pang, S.; Gao, Y.; Li, Y.; Liu, S.; Su, X. A novel sensing strategy for the detection of Staphylococcus aureus DNA by using a graphene oxide-based fluorescent probe. Analyst (Lond.), 2013, 138(9), 2749-2754.
[http://dx.doi.org/10.1039/c3an36642a] [PMID: 23505623]
[77]
Pillai, S.S.; Yukawa, H.; Onoshima, D.; Biju, V.; Baba, Y. Fluorescence quenching of CdSe/ZnS quantum dots by using black hole quencher molecules intermediated with peptide for biosensing application. Cell Med., 2015, 8(1-2), 57-62.
[http://dx.doi.org/10.3727/215517915X689074] [PMID: 26858909]
[78]
Donato, H.; França, M.; Candelária, I.; Caseiro-Alves, F. Liver MRI: From basic protocol to advanced techniques. Eur. J. Radiol., 2017, 93, 30-39.
[http://dx.doi.org/10.1016/j.ejrad.2017.05.028] [PMID: 28668428]
[79]
Bashir, M.R. Magnetic resonance contrast agents for liver imaging. Magn. Reson. Imaging Clin. N. Am., 2014, 22(3), 283-293.
[http://dx.doi.org/10.1016/j.mric.2014.04.002] [PMID: 25086930]
[80]
Ghaghada, K.B.; Starosolski, Z.A.; Bhayana, S.; Stupin, I.; Patel, C.V.; Bhavane, R.C.; Gao, H.; Bednov, A.; Yallampalli, C.; Belfort, M.; George, V.; Annapragada, A.V. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta. Placenta, 2017, 57, 60-70.
[http://dx.doi.org/10.1016/j.placenta.2017.06.008] [PMID: 28864020]
[81]
Vargo, K.B.; Zaki, A.A.; Warden-Rothman, R.; Tsourkas, A.; Hammer, D.A. Superparamagnetic iron oxide nanoparticle micelles stabilized by recombinant oleosin for targeted magnetic resonance imaging. Small, 2015, 11(12), 1409-1413.
[http://dx.doi.org/10.1002/smll.201402017] [PMID: 25418741]
[82]
Thorek, D.L.J.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[http://dx.doi.org/10.1007/s10439-005-9002-7] [PMID: 16496086]
[83]
Mekuria, S.L.; Debele, T.A.; Tsai, H.C. Encapsulation of gadolinium oxide nanoparticle (Gd2O3) contrasting agents in PAMAM dendrimer templates for enhanced magnetic resonance imaging in vivo. ACS Appl. Mater. Interfaces, 2017, 9(8), 6782-6795.
[http://dx.doi.org/10.1021/acsami.6b14075] [PMID: 28164704]
[84]
Huang, P.; Guo, W.; Yang, G.; Song, H.; Wang, Y.; Wang, C.; Kong, D.; Wang, W. Fluorine meets amine: reducing microenvironment-induced amino-activatable nanoprobes for 19F-magnetic resonance imaging of biothiols. ACS Appl. Mater. Interfaces, 2018, 10(22), 18532-18542.
[http://dx.doi.org/10.1021/acsami.8b03764] [PMID: 29775280]
[85]
Li, N.; Li, S.; Shen, J. High field in vivo 13C magnetic resonance spectroscopy of brain by random radiofrequency heteronuclear decoupling and data undersampling. Front. Phys. (Lausanne), 2017, 5, 26.
[http://dx.doi.org/10.3389/fphy.2017.00026] [PMID: 29177139]
[86]
Sedivy, P.; Drobny, M.; Dezortova, M.; Herynek, V.; Roztocil, K.; Cermakova, H.; Nemcova, A.; Dubsky, M.; Hajek, M. 31P-MR spectroscopy in patients with mild and serious lower limb ischemia. International Angiol., 2018, 37(4), 293-299.
[87]
Hou, G.; Byeon, I.J.L.; Ahn, J.; Gronenborn, A.M.; Polenova, T. 1H-13C/1H-15N heteronuclear dipolar recoupling by R-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids. J. Am. Chem. Soc., 2011, 133(46), 18646-18655.
[http://dx.doi.org/10.1021/ja203771a] [PMID: 21995349]
[88]
Suzuki, K.; Igarashi, H.; Huber, V.J.; Kitaura, H.; Kwee, I.L.; Nakada, T. Ligand-based molecular MRI: O-17 JJVCPE amyloid imaging in transgenic mice. J. Neuroimaging, 2014, 24(6), 595-598.
[http://dx.doi.org/10.1111/jon.12091] [PMID: 25370340]
[89]
Zhang, Z.; Mascheri, N.; Dharmakumar, R.; Fan, Z.; Paunesku, T.; Woloschak, G.; Li, D. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging. Cytotherapy, 2009, 11(1), 43-51.
[http://dx.doi.org/10.1080/14653240802420243] [PMID: 18956269]
[90]
Jun, Y.; Lee, J.H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed., 2008, 47(28), 5122-5135.
[http://dx.doi.org/10.1002/anie.200701674] [PMID: 18574805]
[91]
Frias, J.C.; Ma, Y.; Williams, K.J.; Fayad, Z.A.; Fisher, E.A. Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett., 2006, 6(10), 2220-2224.
[http://dx.doi.org/10.1021/nl061498r] [PMID: 17034087]
[92]
Song, Y.; Xu, X.; MacRenaris, K.W.; Zhang, X.Q.; Mirkin, C.A.; Meade, T.J. Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew. Chem. Int. Ed., 2009, 48(48), 9143-9147.
[http://dx.doi.org/10.1002/anie.200904666] [PMID: 19882611]
[93]
Vilarino-Varela, M.J.; Taylor, A.; Rockall, A.G.; Reznek, R.H.; Powell, M.E.B. A verification study of proposed pelvic lymph node localisation guidelines using nanoparticle-enhanced magnetic resonance imaging. Radiother. Oncol., 2008, 89(2), 192-196.
[http://dx.doi.org/10.1016/j.radonc.2008.07.023] [PMID: 18771811]
[94]
Tromsdorf, U.I.; Bigall, N.C.; Kaul, M.G.; Bruns, O.T.; Nikolic, M.S.; Mollwitz, B.; Sperling, R.A.; Reimer, R.; Hohenberg, H.; Parak, W.J.; Förster, S.; Beisiegel, U.; Adam, G.; Weller, H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett., 2007, 7(8), 2422-2427.
[http://dx.doi.org/10.1021/nl071099b] [PMID: 17658761]
[95]
Jeon, T.Y.; Kim, J.H.; Im, G.H.; Kim, J.H.; Yang, J.; Yoo, S.Y.; Lee, J.H. Hollow manganese oxide nanoparticle-enhanced MRI of hypoxic-ischaemic brain injury in the neonatal rat. Br. J. Radiol., 2016, 89(1067), 20150806.
[http://dx.doi.org/10.1259/bjr.20150806] [PMID: 27653465]
[96]
Mi, P.; Kokuryo, D.; Cabral, H.; Wu, H.; Terada, Y.; Saga, T.; Aoki, I.; Nishiyama, N.; Kataoka, K. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol., 2016, 11(8), 724-730.
[http://dx.doi.org/10.1038/nnano.2016.72] [PMID: 27183055]
[97]
Keca, J.M.; Chen, J.; Overchuk, M.; Muhanna, N.; MacLaughlin, C.M.; Jin, C.S.; Foltz, W.D.; Irish, J.C.; Zheng, G. Nanotexaphyrin: One-Pot Synthesis of a Manganese Texaphyrin-Phospholipid Nanoparticle for Magnetic Resonance Imaging. Angew. Chem. Int. Ed., 2016, 55(21), 6187-6191.
[http://dx.doi.org/10.1002/anie.201600234] [PMID: 27071806]
[98]
Bo, S.; Yuan, Y.; Chen, Y.; Yang, Z.; Chen, S.; Zhou, X.; Jiang, Z.X. In vivo drug tracking with 19F MRI at therapeutic dose. Chem. Commun. (Camb.), 2018, 54(31), 3875-3878.
[http://dx.doi.org/10.1039/C7CC09898G] [PMID: 29594281]
[99]
Zeng, C.; Shang, W.; Liang, X.; Liang, X.; Chen, Q.; Chi, C.; Du, Y.; Fang, C.; Tian, J. Cancer diagnosis and imaging-guided photothermal therapy using a dual-modality nanoparticle. ACS Appl. Mater. Interfaces, 2016, 8(43), 29232-29241.
[http://dx.doi.org/10.1021/acsami.6b06883] [PMID: 27731621]
[100]
Ahn, S.; Jung, S.Y.; Seo, E.; Lee, S.J. Gold nanoparticle-incorporated human red blood cells (RBCs) for X-ray dynamic imaging. Biomaterials, 2011, 32(29), 7191-7199.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.023] [PMID: 21777977]
[101]
Ghaghada, K.B.; Badea, C.T.; Karumbaiah, L.; Fettig, N.; Bellamkonda, R.V.; Johnson, G.A.; Annapragada, A. Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging. Acad. Radiol., 2011, 18(1), 20-30.
[http://dx.doi.org/10.1016/j.acra.2010.09.003] [PMID: 21145026]
[102]
Tan, L.; Liu, T.; Fu, C.; Wang, S.; Fu, S.; Ren, J.; Meng, X. Hollow ZrO2/PPy nanoplatform for improved drug delivery and real-time CT monitoring in synergistic photothermal-chemo cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(5), 859-866.
[http://dx.doi.org/10.1039/C5TB02205C] [PMID: 32263158]
[103]
Shi, H.; Niu, M.; Tan, L.; Liu, T.; Shao, H.; Fu, C.; Ren, X.; Ma, T.; Ren, J.; Li, L.; Liu, H.; Xu, K.; Wang, J.; Tang, F.; Meng, X. A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO 2 nanoparticles. Chem. Sci. (Camb.), 2015, 6(8), 5016-5026.
[http://dx.doi.org/10.1039/C5SC00781J] [PMID: 30155006]
[104]
Danila, D.; Partha, R.; Elrod, D.B.; Lackey, M.; Casscells, S.W.; Conyers, J.L. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography. Tex. Heart Inst. J., 2009, 36(5), 393-403.
[PMID: 19876414]
[105]
Hu, Y.; Wang, Y.; Jiang, J.; Han, B.; Zhang, S.; Li, K.; Ge, S.; Liu, Y. Preparation and characterization of novel perfluorooctyl bromide nanoparticle as ultrasound contrast agent via layer-by-layer self-assembly for folate-receptor-mediated tumor imaging. BioMed Res. Int., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/6381464] [PMID: 27652265]
[106]
Wang, X.; Chen, H.; Zheng, Y.; Ma, M.; Chen, Y.; Zhang, K.; Zeng, D.; Shi, J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials, 2013, 34(8), 2057-2068.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.044] [PMID: 23246067]
[107]
Sakamoto, J.H.; Smith, B.R.; Xie, B.; Rokhlin, S.I.; Lee, S.C.; Ferrari, M. The molecular analysis of breast cancer utilizing targeted nanoparticle based ultrasound contrast agents. Technol. Cancer Res. Treat., 2005, 4(6), 627-636.
[http://dx.doi.org/10.1177/153303460500400606] [PMID: 16292882]
[108]
Seo, M.; Gorelikov, I.; Williams, R.; Matsuura, N. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy. Langmuir, 2010, 26(17), 13855-13860.
[http://dx.doi.org/10.1021/la102272d] [PMID: 20666507]
[109]
Min, K.H.; Min, H.S.; Lee, H.J.; Park, D.J.; Yhee, J.Y.; Kim, K.; Kwon, I.C.; Jeong, S.Y.; Silvestre, O.F.; Chen, X.; Hwang, Y.S.; Kim, E.C.; Lee, S.C. pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano, 2015, 9(1), 134-145.
[http://dx.doi.org/10.1021/nn506210a] [PMID: 25559896]
[110]
Wang, J.; Barback, C.V.; Ta, C.N.; Weeks, J.; Gude, N.; Mattrey, R.F.; Blair, S.L.; Trogler, W.C.; Lee, H.; Kummel, A.C. Extended lifetime in vivo pulse stimulated ultrasound imaging. IEEE Trans. Med. Imaging, 2018, 37(1), 222-229.
[http://dx.doi.org/10.1109/TMI.2017.2740784] [PMID: 28829305]
[111]
Lanza, G.M.; Wickline, S.A. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog. Cardiovasc. Dis., 2001, 44(1), 13-31.
[http://dx.doi.org/10.1053/pcad.2001.26440] [PMID: 11533924]
[112]
Wang, C.W.; Yang, S.P.; Hu, H.; Du, J.; Li, F.H. Synthesis, characterization and in vitro and in vivo investigation of C3F8-filled poly(lactic-co-glycolic acid) nanoparticles as an ultrasound contrast agent. Mol. Med. Rep., 2015, 11(3), 1885-1890.
[http://dx.doi.org/10.3892/mmr.2014.2938] [PMID: 25394467]
[113]
Park, S.H.; Yoon, Y.I.; Moon, H.; Lee, G.H.; Lee, B.H.; Yoon, T.J.; Lee, H.J. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells. Oncol. Rep., 2016, 36(1), 131-136.
[http://dx.doi.org/10.3892/or.2016.4836] [PMID: 27220374]
[114]
Chen, F.; Ma, M.; Wang, J.; Wang, F.; Chern, S.X.; Zhao, E.R.; Jhunjhunwala, A.; Darmadi, S.; Chen, H.; Jokerst, J.V. Exosome-like silica nanoparticles: a novel ultrasound contrast agent for stem cell imaging. Nanoscale, 2017, 9(1), 402-411.
[http://dx.doi.org/10.1039/C6NR08177K] [PMID: 27924340]
[115]
Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; Chen, L. Safety‐reinforced poly (propylene carbonate)‐based All‐solid‐state polymer electrolyte for ambient‐temperature solid polymer lithium batteries. Adv. Energy Mater., 2015, 5(24), 1501082.
[http://dx.doi.org/10.1002/aenm.201501082]
[116]
Kim, G.W.; Kang, C.; Oh, Y.B.; Ko, M.H.; Seo, J.H.; Lee, D. Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles. Theranostics, 2017, 7(9), 2463-2476.
[http://dx.doi.org/10.7150/thno.18922] [PMID: 28744328]
[117]
Li, X.; Sui, Z.; Li, X.; Xu, W.; Guo, Q.; Sun, J.; Jing, F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int. J. Nanomedicine, 2018, 13, 3053-3067.
[http://dx.doi.org/10.2147/IJN.S164905] [PMID: 29872293]
[118]
Jiang, Z.; Zhang, M.; Li, P.; Wang, Y.; Fu, Q. Nanomaterial-based CT contrast agents and their applications in image-guided therapy. Theranostics, 2023, 13(2), 483-509.
[http://dx.doi.org/10.7150/thno.79625] [PMID: 36632234]
[119]
Zern, B.J.; Chacko, A.M.; Liu, J.; Greineder, C.F.; Blankemeyer, E.R.; Radhakrishnan, R.; Muzykantov, V. Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation. ACS Nano, 2013, 7(3), 2461-2469.
[http://dx.doi.org/10.1021/nn305773f] [PMID: 23383962]
[120]
Schluep, T.; Hwang, J.; Hildebrandt, I.J.; Czernin, J.; Choi, C.H.J.; Alabi, C.A.; Mack, B.C.; Davis, M.E. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc. Natl. Acad. Sci. USA, 2009, 106(27), 11394-11399.
[http://dx.doi.org/10.1073/pnas.0905487106] [PMID: 19564622]
[121]
Zhou, W.; Feng, X.; Ren, C.; Jiang, X.; Liu, W.; Huang, W.; Liu, Z.; Li, Z.; Zeng, L.; Wang, L.; Zhu, B.; Shi, J.; Liu, J.; Zhang, C.; Liu, Y.; Yao, K. Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma. Mol. Cancer, 2013, 12(1), 53.
[http://dx.doi.org/10.1186/1476-4598-12-53] [PMID: 23758864]
[122]
Veres, D.S.; Máthé, D.; Futó, I.; Horváth, I.; Balázs, Á.; Karlinger, K.; Szigeti, K. Quantitative liver lesion volume determination by nanoparticle-based SPECT. Mol. Imaging Biol., 2014, 16(2), 167-172.
[http://dx.doi.org/10.1007/s11307-013-0679-y] [PMID: 23996677]
[123]
Black, K.C.L.; Akers, W.J.; Sudlow, G.; Xu, B.; Laforest, R.; Achilefu, S. Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale, 2015, 7(2), 440-444.
[http://dx.doi.org/10.1039/C4NR05269B] [PMID: 25418982]
[124]
Pressly, E.D.; Pierce, R.A.; Connal, L.A.; Hawker, C.J.; Liu, Y. Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug. Chem., 2013, 24(2), 196-204.
[http://dx.doi.org/10.1021/bc300473x] [PMID: 23272904]
[125]
Nahrendorf, M.; Zhang, H.; Hembrador, S.; Panizzi, P.; Sosnovik, D.E.; Aikawa, E.; Libby, P.; Swirski, F.K.; Weissleder, R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation, 2008, 117(3), 379-387.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.741181] [PMID: 18158358]
[126]
Simone, E.A.; Zern, B.J.; Chacko, A.M.; Mikitsh, J.L.; Blankemeyer, E.R.; Muro, S.; Stan, R.V.; Muzykantov, V.R. Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124. Biomaterials, 2012, 33(21), 5406-5413.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.036] [PMID: 22560201]
[127]
Qin, J.; Peng, C.; Zhao, B.; Ye, K.; Yuan, F.; Peng, Z.; Yang, X.; Huang, L.; Jiang, M.; Zhao, Q.; Tang, G.; Lu, X. Noninvasive detection of macrophages in atherosclerotic lesions by computed tomography enhanced with PEGylated gold nanoparticles. Int. J. Nanomedicine, 2014, 9, 5575-5590.
[PMID: 25506213]
[128]
Yadav, S.K.; Khan, Z.A.; Mishra, B.; Bahadur, S.; Kumar, A.; Yadav, B. The toxic side of nanotechnology: An insight into hazards to health and the ecosystem. Micro Nanosyst., 2022, 14(1), 21-33.
[http://dx.doi.org/10.2174/1876402913666210412160329]
[129]
Bahadur, S.; Jha, M.K. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. J. Drug Deliv. Sci. Technol., 2022, 78, 103932.
[http://dx.doi.org/10.1016/j.jddst.2022.103932]
[130]
Bahadur, S.; Sachan, N.; Harwansh, R.K.; Deshmukh, R. Nanoparticlized system: promising approach for the management of Alzheimer’s disease through intranasal delivery. Curr. Pharm. Des., 2020, 26(12), 1331-1344.
[http://dx.doi.org/10.2174/1381612826666200311131658] [PMID: 32160843]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy