Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Determination of the Re-188 Calibration Number for the Capintec CRC- 25PET Dose Calibrator

Author(s): Mitchell Ashley Klenner* and Aron Poole

Volume 16, Issue 4, 2023

Published on: 22 May, 2023

Page: [292 - 299] Pages: 8

DOI: 10.2174/1874471016666230502140224

Price: $65

Abstract

Background: During the development of novel Re-188 radiopharmaceuticals, it was discovered that no calibration settings were published to calibrate Re-188 on the Capintec CRC-25PET dose calibrator.

Methods: Sodium [188Re]perrhenate was eluted from an OncoBeta 188W/188Re generator to measure activity on a Capintec CRC-25R dose calibrator using established dose calibrator settings provided by the manufacturer. The eluent was then used to tune the calibra on settings on a Capintec CRC-25PET dose calibrator, accounting for geometry. Radionuclidic purity of the [188Re]perrhenate source was verified via gamma spectroscopy.

Results: The calibrator number for Re-188 was determined to be 469 x 10 for the Capintec CRC-25PET dose calibrator, which differed from the manufacturer provided calibra on number of 496 x 10 for the Capintec CRC-25R dose calibra on model. W-188 breakthrough was characterised as < 0.01%.

Conclusion: This previously unreported calibration number can be used to determine the activity of Re- 188 labelled radiopharmaceuticals using the Capintec CRC-25PET dose calibrator model.

Graphical Abstract

[1]
Lepareur, N.; Lacœuille, F.; Bouvry, C.; Hindré, F.; Garcion, E.; Chérel, M.; Noiret, N.; Garin, E.; Knapp, F.F.R., Jr Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front. Med., 2019, 6, 132.
[http://dx.doi.org/10.3389/fmed.2019.00132] [PMID: 31259173]
[2]
Melis, D.R.; Burgoyne, A.R.; Ooms, M.; Gasser, G. Bifunctional chelators for radiorhenium: past, present and future outlook. RSC Med. Chem., 2022, 13(3), 217-245.
[http://dx.doi.org/10.1039/D1MD00364J] [PMID: 35434629]
[3]
Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. J. Labelled Comp. Radiopharm., 2017, 60(11), 502-520.
[http://dx.doi.org/10.1002/jlcr.3531] [PMID: 28618064]
[4]
Smilkov, K.; Janevik, E.; Guerrini, R.; Pasquali, M.; Boschi, A.; Uccelli, L.; Di Domenico, G.; Duatti, A. Preparation and first biological evaluation of novel Re-188/Tc-99m peptide conjugates with substance-P. Appl. Radiat., 2014, 92, 25-31.
[5]
Kim, W.H.; Kim, C.G.; Kim, M.H.; Kim, D.W.; Park, C.R.; Park, J.Y.; Lee, Y.S.; Youn, H.; Kang, K.W.; Jeong, J.M.; Chung, J.K. Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting. Ann. Nucl. Med., 2016, 30(5), 369-379.
[http://dx.doi.org/10.1007/s12149-016-1072-0] [PMID: 26993818]
[6]
Wuillemin, M.A.; Reber, M.J.; Fox, T.; Spingler, B.; Brühwiler, D.; Alberto, R.; Braband, H. Towards 99mTc- and Re-based multifunctional silica platforms for theranostic applications. Inorganics, 2019, 7(11), 134.
[http://dx.doi.org/10.3390/inorganics7110134]
[7]
Boschi, A.; Massi, A.; Uccelli, L.; Pasquali, M.; Duatti, A. PEGylated N-methyl-S-methyl dithiocarbazate as a new reagent for the high-yield preparation of nitrido Tc-99m and Re-188 radiopharmaceuticals. Nucl. Med. Biol., 2010, 37(8), 927-934.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.05.008] [PMID: 21055623]
[8]
Hong, M.K.; Jeong, J.M.; Yeo, J.S.; Kim, K.M.; Chang, Y.S.; Lee, Y.J.; Lee, D.S.; Chung, J.K.; Lee, M.C.; Lee, S.J. In vitro properties and biodistribution of Tc-99m and Re-188 labeled monoclonal antibody CEA79. 4. Korean J. Nuclear Med., 1998, 32(6), 516-524.
[9]
Boschi, A.; Uccelli, L.; Pasquali, M.; Pasqualini, R.; Guerrini, R.; Duatti, A. Mixed tridentate π -donor and monodentate π -acceptor ligands as chelating systems for rhenium-188 and technetium-99m nitrido radiopharmaceuticals. Curr. Radiopharm., 2013, 6(3), 137-145.
[http://dx.doi.org/10.2174/18744710113069990022] [PMID: 24106999]
[10]
Dash, A.; Knapp, F.F.R., Jr An overview of radioisotope separation technologies for development of 188 W/188 Re radionuclide generators providing 188 Re to meet future research and clinical demands. RSC Advances, 2015, 5(49), 39012-39036.
[http://dx.doi.org/10.1039/C5RA03890A]
[11]
Argyrou, M.; Valassi, A.; Andreou, M.; Lyra, M. Rhenium-188 production in hospitals, by w-188/re-188 generator, for easy use in radionuclide therapy. Int. J. Mol. Imaging, 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/290750] [PMID: 23653859]
[12]
Pillai, M.R.; Dash, A.; Knapp, F.F., Jr Rhenium-188: availability from the (188)W/(188)Re generator and status of current applications. Curr. Radiopharm., 2012, 5(3), 228-243.
[http://dx.doi.org/10.2174/1874471011205030228] [PMID: 22642385]
[13]
Bolzati, C.; Boschi, A.; Uccelli, L.; Duatti, A.; Franceschini, R.; Piffanelli, A. An alternative approach to the preparation of 188Re radiopharmaceuticals from generator-produced [188ReO4]− efficient synthesis of 188Re(V)-meso-2,3-dimercaptosuccinic acid. Nucl. Med. Biol., 2000, 27(3), 309-314.
[http://dx.doi.org/10.1016/S0969-8051(00)00079-2] [PMID: 10832088]
[14]
Park, J.Y.; Lee, T.S.; Choi, T.H.; Cheon, G.J.; Choi, C.W.; Awh, O.D. A comparative study of 188Re(V)-meso-DMSA and 188Re(V)-rac-DMSA: preparation and in vivo evaluation in nude mice xenografted with a neuroendocrine tumor. Nucl. Med. Biol., 2007, 34(8), 1029-1036.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.06.016] [PMID: 17998108]
[15]
Guhlke, S.; Scheithauer, S.; Oetjen, K.; Sartor, J.; Bender, H.; Biersack, H.J. 188Re(V)-DMSA: In-vitro and in-vivo studies on the individual stereo isomers. 2004, 92(4), 277-283.
[16]
García-Salinas, L.; Ferro-Flores, G.; Arteaga-Murphy, C.; Pedraza-López, M.; Hernández-Gutiérrez, S.; Azorín-Nieto, J. Uptake of the 188Re(V)-DMSA complex by cervical carcinoma cells in nude mice: pharmacokinetics and dosimetry. Appl. Radiat. Isot., 2001, 54(3), 413-418.
[http://dx.doi.org/10.1016/S0969-8043(00)00278-5] [PMID: 11214875]
[17]
Nogawa, N.; Momose, S.; Miyazawa, K.; Makide, Y.; Oohashi, K.; Hashimoto, K.; Morikawa, N. Synthesis of186Re-DMSA and its biodistributions in mice. J. Radioanal. Nucl. Chem., 1999, 239(2), 385-389.
[http://dx.doi.org/10.1007/BF02349517]
[18]
Kothari, K.; Pillai, M.R.A.; Unni, P.R.; Shimpi, H.H.; Noronha, O.P.D.; Samuel, A.M. Preparation of [186Re]Re–DMSA and its bio-distribution studies. Appl. Radiat. Isot., 1999, 51(1), 43-49.
[http://dx.doi.org/10.1016/S0969-8043(98)00194-8] [PMID: 10376320]
[19]
Hashimoto, K. Synthesis of a 188Re-HEDP complex using carrier-free 188Re, and a study of its stability. Appl. Radiat. Isot., 1998, 49(4), 351-356.
[http://dx.doi.org/10.1016/S0969-8043(97)00284-4]
[20]
Biersack, H.J.; Palmedo, H.; Andris, A.; Rogenhofer, S.; Knapp, F.F.; Guhlke, S.; Ezziddin, S.; Bucerius, J.; von Mallek, D. Palliation and survival after repeated (188)Re-HEDP therapy of hormone-refractory bone metastases of prostate cancer: a retrospective analysis. J. Nucl. Med., 2011, 52(11), 1721-1726.
[http://dx.doi.org/10.2967/jnumed.111.093674] [PMID: 21976530]
[21]
Liepe, K.; Hliscs, R.; Kropp, J.; Runge, R.; Knapp, F.F., Jr; Franke, W-G. Dosimetry of 188Re-hydroxyethylidene diphosphonate in human prostate cancer skeletal metastases. J. Nucl. Med., 2003, 44(6), 953-960.
[PMID: 12791825]
[22]
Lam, M.G.E.H.; Bosma, T.B.; van Rijk, P.P.; Zonnenberg, B.A. 188Re-HEDP combined with capecitabine in hormone-refractory prostate cancer patients with bone metastases: a phase I safety and toxicity study. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(9), 1425-1433.
[http://dx.doi.org/10.1007/s00259-009-1119-8] [PMID: 19319526]
[23]
Savio, E.; Gaudiano, J.; Robles, A.M.; Balter, H.; Paolino, A.; López, A.; Hermida, J.C.; De Marco, E.; Martinez, G.; Osinaga, E.; Knapp, F.F. Jr Re-HEDP: pharmacokinetic characterization, clinical and dosimetric evaluation in osseous metastatic patients with two levels of radiopharmaceutical dose. BMC Nucl. Med., 2001, 1(1), 2.
[http://dx.doi.org/10.1186/1471-2385-1-2] [PMID: 11734069]
[24]
Nassar, M.Y.; El-Kolaly, M.T.; Mahran, M.R.H. Synthesis of a 188Re-HEDP complex using carrier-free 188Re and a study of its stability and biological distribution. Radiochemistry, 2011, 53(4), 415-420.
[http://dx.doi.org/10.1134/S1066362211040151]
[25]
Kumar, C.; Sharma, R.; Vats, K.; Mallia, M.B.; Das, T.; Sarma, H.D.; Dash, A. Comparison of the efficacy of 177Lu-EDTMP, 177Lu-DOTMP and 188Re-HEDP towards bone osteosarcoma: an in vitro study. J. Radioanal. Nucl. Chem., 2019, 319(1), 51-59.
[http://dx.doi.org/10.1007/s10967-018-6283-5]
[26]
Klenner, M.A.; Darwish, T.; Fraser, B.H.; Massi, M.; Pascali, G. Labeled rhenium complexes: radiofluorination, α-MSH cyclization, and deuterium substitutions. Organometallics, 2020, 39(13), 2334-2351.
[http://dx.doi.org/10.1021/acs.organomet.0c00267]
[27]
Chhabra, A.; Shukla, J.; Sharma, U.; Vatsa, R.; Bhatia, A.; Upadhyay, D.; Mittal, B.R. Re-188-tricarbonyl tamoxifen as a theranostic radiopharmaceutical for estrogen receptor expressing breast cancers: radiolabeling, characterization and in-vitro cytotoxic assessment. Nucl. Med. Commun., 2021, 42(7), 738-746.
[http://dx.doi.org/10.1097/MNM.0000000000001402] [PMID: 33741857]
[28]
Guhlke, S.; Schaffland, A.; Zamora, P.O.; Sartor, J.; Diekmann, D.; Bender, H.; Knapp, F.F.; Biersack, H.J. 188Re- and 99mTc-MAG3 as prosthetic groups for labeling amines and peptides. Nucl. Med. Biol., 1998, 25(7), 621-631.
[http://dx.doi.org/10.1016/S0969-8051(98)00025-0] [PMID: 9804043]
[29]
Oh, S.J.; Moon, D.H.; Ha, H.J.; Park, S.W.; Hong, M.K.; Park, S.J.; Choi, T.H.; Lim, S.M.; Choi, C.W.; Knapp, F.F.R., Jr; Lee, H.K. Automation of the synthesis of highly concentrated 188Re–MAG3 for intracoronary radiation therapy. Appl. Radiat. Isot., 2001, 54(3), 419-427.
[http://dx.doi.org/10.1016/S0969-8043(00)00279-7] [PMID: 11214876]
[30]
Crudo, J.L.; Edreira, M.M.; Obenaus, E.R.; Chinol, M.; Paganelli, G.; de Castiglia, S.G. Optimization of antibody labeling with rhenium-188 using a prelabeled MAG3 chelate. Int. J. Pharm., 2002, 248(1-2), 173-182.
[http://dx.doi.org/10.1016/S0378-5173(02)00434-9] [PMID: 12429471]
[31]
Edelman, M.J.; Clamon, G.; Kahn, D.; Magram, M.; Lister-James, J.; Line, B.R. Targeted radiopharmaceutical therapy for advanced lung cancer: phase I trial of rhenium Re188 P2045, a somatostatin analog. J. Thorac. Oncol., 2009, 4(12), 1550-1554.
[http://dx.doi.org/10.1097/JTO.0b013e3181bf1070] [PMID: 19884860]
[32]
Cyr, J.E.; Pearson, D.A.; Wilson, D.M.; Nelson, C.A.; Guaraldi, M.; Azure, M.T.; Lister-James, J.; Dinkelborg, L.M.; Dean, R.T. Somatostatin receptor-binding peptides suitable for tumor radiotherapy with Re-188 or Re-186. Chemistry and initial biological studies. J. Med. Chem., 2007, 50(6), 1354-1364.
[http://dx.doi.org/10.1021/jm061290i] [PMID: 17315859]
[33]
Nelson, C.A.; Azure, M.T.; Adams, C.T.; Zinn, K.R. The somatostatin analog 188Re-P2045 inhibits the growth of AR42J pancreatic tumor xenografts. J. Nucl. Med., 2014, 55(12), 2020-2025.
[http://dx.doi.org/10.2967/jnumed.114.140780] [PMID: 25359879]
[34]
Wang, H.; Cai, L.; He, S.H.; Zheng, X.B.; Liu, Y.X.; Zhang, L. Preliminary biological evaluation of rhenium-188-MAG3-PSMA. J. Radioanal. Nucl. Chem., 2022, 331(6), 2553-2559.
[http://dx.doi.org/10.1007/s10967-022-08306-0]
[35]
Hadisi, M.; Vosoughi, N.; Yousefnia, H.; Bahrami-Samani, A.; Zolghadri, S.; Vosoughi, S.; Alirezapour, B. Preclinical evaluation of 188Re-HYNIC-PSMA as a novel therapeutic agent. J. Radioanal. Nucl. Chem., 2022, 331(2), 841-849.
[http://dx.doi.org/10.1007/s10967-021-08173-1]
[36]
Park, S.H.; Seifert, S.; Pietzsch, H.J. Novel and efficient preparation of precursor [188Re(OH2)3(CO)3]+ for the labeling of biomolecules. Bioconjug. Chem., 2006, 17(1), 223-225.
[http://dx.doi.org/10.1021/bc050192t] [PMID: 16417272]
[37]
Schibli, R.; Schwarzbach, R.; Alberto, R.; Ortner, K.; Schmalle, H.; Dumas, C.; Egli, A.; Schubiger, P.A. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [(188)Re(H(2)O)(3)(CO)(3)](+) and synthesis of tailor-made bifunctional ligand systems. Bioconjug. Chem., 2002, 13(4), 750-756.
[http://dx.doi.org/10.1021/bc015568r] [PMID: 12121130]
[38]
Yu, J.; Häfeli, U.O.; Xia, J.; Li, S.; Dong, M.; Yin, D.; Wang, Y. Radiolabelling of poly(histidine) derivatized biodegradable microspheres with the 188Re tricarbonyl complex [188Re(CO)3 (H2O)3]+. Nucl. Med. Commun., 2005, 26(5), 453-458.
[http://dx.doi.org/10.1097/00006231-200505000-00010] [PMID: 15838429]
[39]
Wang, C.; Zhou, W.; Yu, J.; Zhang, L.; Wang, N. A study of the radiosynthesis of fac-[188Re(CO)3(H2O)3]+ and its application in labeling 1,2,3-triazole analogs obtained by click chemistry. Nucl. Med. Commun., 2012, 33(1), 84-89.
[http://dx.doi.org/10.1097/MNM.0b013e32834d3ba7] [PMID: 22008632]
[40]
Klenner, M.A.; Zhang, B.; Ciancaleoni, G.; Howard, J.K.; Maynard-Casely, H.E.; Clegg, J.K.; Massi, M.; Fraser, B.H.; Pascali, G. Rhenium(I) complexation–dissociation strategy for synthesising fluorine-18 labelled pyridine bidentate radiotracers. RSC Advances, 2020, 10(15), 8853-8865.
[http://dx.doi.org/10.1039/D0RA00318B] [PMID: 35496512]
[41]
Pervez, S.; Mushtaq, A.; Arif, M.; Chohan, Z.H. 188Rhenium-glucoheptonate: a radiopharmaceutical for intravascular radiation therapy. J. Radioanal. Nucl. Chem., 2003, 256(2), 293-296.
[http://dx.doi.org/10.1023/A:1023945603430]
[42]
Virzi, F.; Winnard, P.J., Jr; Fogarasi, M.; Sano, T.; Smith, C.L.; Cantor, C.R.; Rusckowski, M.; Hnatowich, D.J. Recombinant metallothionein-conjugated streptavidin labeled with 188Re and 99mTc. Bioconjug. Chem., 1995, 6(1), 139-144.
[http://dx.doi.org/10.1021/bc00031a018] [PMID: 7711101]
[43]
Miao, Y.; Owen, N.K.; Fisher, D.R.; Hoffman, T.J.; Quinn, T.P. Therapeutic efficacy of a 188Re-labeled α-melanocyte-stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J. Nucl. Med., 2005, 46(1), 121-129.
[PMID: 15632042]
[44]
Gonzalez, B.; Casaco, A.; Alvarez, P.; Leon, M.; Arteaga, M.; Leon, A.; Santana, E.; Bada, A.; Figueredo, R.; Hernández, R.; Iznaga-Escobar, N.; Gonzailez, F.; Perez, R. Radiotoxicity of h-R3 monoclonal antibody labeled with 188Re administered intracerebrally in rats. Hum. Exp. Toxicol., 2000, 19(12), 684-692.
[http://dx.doi.org/10.1191/096032700675323269] [PMID: 11291740]
[45]
Gestin, J.F.; Loussouarn, A.; Bardiès, M.; Gautherot, E.; Gruaz-Guyon, A.; Saï-Maurel, C.; Barbet, J.; Curtet, C.; Chatal, J.F.; Faivre-Chauvet, A. Two-step targeting of xenografted colon carcinoma using a bispecific antibody and 188Re-labeled bivalent hapten: biodistribution and dosimetry studies. J. Nucl. Med., 2001, 42(1), 146-153.
[PMID: 11197965]
[46]
Williams, J.D.; Kampmeier, F.; Badar, A.; Howland, K.; Cooper, M.S.; Mullen, G.E.D.; Blower, P.J. Optimal His-tag design for efficient [99mTc(CO)3]+ and [188Re(CO)3]+ labeling of proteins for molecular imaging and radionuclide therapy by analysis of peptide arrays. Bioconjug. Chem., 2021, 32(7), 1242-1254.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00561] [PMID: 33241692]
[47]
Blower, P. Towards molecular imaging and treatment of disease with radionuclides: the role of inorganic chemistry. Dalton Trans., 2006, (14), 1705-1711.
[http://dx.doi.org/10.1039/b516860k] [PMID: 16568178]
[48]
Rasaneh, S.; Dadras, M.R. The potential of SOCTA as a chelator for radiolabeling of trastuzumab with 99mTc. J. Radioanal. Nucl. Chem., 2016, 307(2), 1353-1357.
[http://dx.doi.org/10.1007/s10967-015-4314-z]
[49]
Luo, T.Y.; Tang, I.C.; Wu, Y.L.; Hsu, K.L.; Liu, S.W.; Kung, H.C.; Lai, P.S.; Lin, W.J. Evaluating the potential of 188Re-SOCTA–trastuzumab as a new radioimmunoagent for breast cancer treatment. Nucl. Med. Biol., 2009, 36(1), 81-88.
[http://dx.doi.org/10.1016/j.nucmedbio.2008.10.014] [PMID: 19181272]
[50]
Xia, J.; Long, S.; Yu, J.; Wang, Y.; Cao, Z. Pyridyl derivatives provide new pathways for labeling protein with fac-[188Re(CO)3(H2O)3]+. J. Radioanal. Nucl. Chem., 2009, 281(3), 493-499.
[http://dx.doi.org/10.1007/s10967-009-0025-7]
[51]
Uccelli, L.; Martini, P.; Pasquali, M.; Boschi, A. Monoclonal antibodies radiolabeling with rhenium-188 for radioimmunotherapy. BioMed Res. Int., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/5923609] [PMID: 28951872]
[52]
Blower, P.J. Rhenium-188 radiochemistry: challenges and prospects. Int. J. Nuclear Med. Res., 2017, 2017, 39-53.
[53]
Dias, C.R.; Jeger, S.; Osso, J.A., Jr; Müller, C.; De Pasquale, C.; Hohn, A.; Waibel, R.; Schibli, R. Radiolabeling of rituximab with 188Re and 99mTc using the tricarbonyl technology. Nucl. Med. Biol., 2011, 38(1), 19-28.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.05.010] [PMID: 21220126]
[54]
Torres-García, E.; Ferro-Flores, G.; Arteaga de Murphy, C.; Correa-González, L.; Pichardo-Romero, P.A. Biokinetics and dosimetry of 188Re-anti-CD20 in patients with non-Hodgkin’s lymphoma: preliminary experience. Arch. Med. Res., 2008, 39(1), 100-109.
[http://dx.doi.org/10.1016/j.arcmed.2007.06.023] [PMID: 18068002]
[55]
Azadbakht, B.; Afarideh, H.; Ghannadi-Maragheh, M.; Bahrami-Samani, A.; Yousefnia, H. Absorbed doses in humans from 188 Re-Rituximab in the free form and bound to superparamagnetic iron oxide nanoparticles: Biodistribution study in mice. Appl. Radiat. Isot., 2018, 131, 96-102.
[http://dx.doi.org/10.1016/j.apradiso.2017.10.041] [PMID: 29173814]
[56]
Azadbakht, B.; Afarideh, H.; Ghannadi-Maragheh, M.; Bahrami-Samani, A.; Asgari, M. Preparation and evaluation of APTES-PEG coated iron oxide nanoparticles conjugated to rhenium-188 labeled rituximab. Nucl. Med. Biol., 2017, 48, 26-30.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.05.002] [PMID: 28189044]
[57]
Chen, K.T.; Lee, T.W.; Lo, J.M. In vivo examination of 188Re(I)-tricarbonyl-labeled trastuzumab to target HER2-overexpressing breast cancer. Nucl. Med. Biol., 2009, 36(4), 355-361.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.01.006] [PMID: 19423002]
[58]
Luo, T.Y.; Cheng, P.C.; Chiang, P.F.; Chuang, T.W.; Yeh, C.H.; Lin, W.J. 188Re-HYNIC-trastuzumab enhances the effect of apoptosis induced by trastuzumab in HER2-overexpressing breast cancer cells. Ann. Nucl. Med., 2015, 29(1), 52-62.
[http://dx.doi.org/10.1007/s12149-014-0908-8] [PMID: 25238789]
[59]
Wang, H.Y.; Lin, W.Y.; Chen, M.C.; Lin, T.; Chao, C.H.; Hsu, F.N.; Lin, E.; Huang, C.Y.; Luo, T.Y.; Lin, H. Inhibitory effects of Rhenium-188-labeled Herceptin on prostate cancer cell growth: A possible radioimmunotherapy to prostate carcinoma. Int. J. Radiat. Biol., 2013, 89(5), 346-355.
[http://dx.doi.org/10.3109/09553002.2013.762136] [PMID: 23294030]
[60]
Kuo, W.; Cheng, K.H.; Chang, Y.J.; Wu, T.T.; Hsu, W.C.; Chen, L.C.; Chang, C.H. Radiolabeling, characteristics and nanoSPECT/CT imaging of 188Re-cetuximab in NCI-H292 human lung cancer xenografts. Anticancer Res., 2019, 39(1), 183-190.
[http://dx.doi.org/10.21873/anticanres.13096] [PMID: 30591457]
[61]
Hsu, W-C.; Cheng, C-N.; Lee, T-W.; Hwang, J-J. Cytotoxic effects of PEGylated anti-EGFR immunoliposomes combined with doxorubicin and rhenium-188 against cancer cells. Anticancer Res., 2015, 35(9), 4777-4788.
[PMID: 26254368]
[62]
Chang, Y.J.; Ho, C.L.; Cheng, K.H.; Kuo, W.I.; Lee, W.C.; Lan, K.L.; Chang, C.H. Biodistribution, pharmacokinetics and radioimmunotherapy of 188Re-cetuximab in NCI-H292 human lung tumor-bearing nude mice. Invest. New Drugs, 2019, 37(5), 961-972.
[http://dx.doi.org/10.1007/s10637-018-00718-8] [PMID: 30612308]
[63]
Castellucci, P.; Savoia, F.; Farina, A.; Lima, G.M.; Patrizi, A.; Baraldi, C.; Zagni, F.; Vichi, S.; Pettinato, C.; Morganti, A.G.; Strigari, L.; Fanti, S. High dose brachytherapy with non sealed 188Re (rhenium) resin in patients with Non-Melanoma Skin Cancers (NMSCs): single center preliminary results. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(5), 1511-1521.
[http://dx.doi.org/10.1007/s00259-020-05088-z] [PMID: 33140131]
[64]
Cipriani, C.; Desantis, M.; Dahlhoff, G.; Brown, S.D., III; Wendler, T.; Olmeda, M.; Pietsch, G.; Eberlein, B. Personalized irradiation therapy for NMSC by rhenium-188 skin cancer therapy: a long-term retrospective study. J. Dermatolog. Treat., 2022, 33(2), 969-975.
[http://dx.doi.org/10.1080/09546634.2020.1793890] [PMID: 32648530]
[65]
Mallia, M.B.; Shinto, A.S.; Kameswaran, M.; Kamaleshwaran, K.K.; Kalarikal, R.; Aswathy, K.K.; Banerjee, S. A freeze-dried kit for the preparation of 188Re-HEDP for bone pain palliation: preparation and preliminary clinical evaluation. Cancer Biother. Radiopharm., 2016, 31(4), 139-144.
[http://dx.doi.org/10.1089/cbr.2016.2030] [PMID: 27183437]
[66]
Ferro-Flores, G.; Torres-García, E.; García-Pedroza, L.; Arteaga de Murphy, C.; Pedraza-López, M.; Garnica-Garza, H. An efficient, reproducible and fast preparation of 188Re-anti-CD20 for the treatment of non-Hodgkin’s lymphoma. Nucl. Med. Commun., 2005, 26(9), 793-799.
[http://dx.doi.org/10.1097/01.mnm.0000175265.71486.61] [PMID: 16096583]
[67]
Rhodes, B.A.; Lambert, C.R.; Marek, M.J.; Knapp, F.F., Jr; Harvey, E.B. Re-188 labelled antibodies. Appl. Radiat. Isot., 1996, 47(1), 7-14.
[http://dx.doi.org/10.1016/0969-8043(95)00262-6] [PMID: 8589673]
[68]
Bergeron, D.E.; Cessna, J.T. An update on ‘dose calibrator’ settings for nuclides used in nuclear medicine. Nucl. Med. Commun., 2018, 39(6), 500-504.
[http://dx.doi.org/10.1097/MNM.0000000000000833] [PMID: 29596133]
[69]
Peplow, D.E. Specific gamma-ray dose constants with current emission data. Health Phys., 2020, 118(4), 402-416.
[http://dx.doi.org/10.1097/HP.0000000000001136] [PMID: 31658161]
[70]
Zanzonico, P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J. Nucl. Med., 2008, 49(7), 1114-1131.
[http://dx.doi.org/10.2967/jnumed.107.050203] [PMID: 18587088]
[71]
Anuradha, R.; Kulkarni, D.B.; Joseph, L.; Kulkarni, M.S. Standardisation of Rhenium-188 and determination of calibration factors for secondary standard and radionuclide calibrator. Appl. Radiat. Isot., 2019, 152, 52-56.
[http://dx.doi.org/10.1016/j.apradiso.2019.06.035] [PMID: 31280107]
[72]
Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front. Med., 2019, 2019, 6.
[73]
Sahagia, M.; Cristina Razdolescu, A.; Grigorescu, E.L.; Luca, A.; Ivan, C. Precise measurement of the activity of 186Re, 188Re radiopharmaceuticals. Appl. Radiat. Isot., 2002, 56(1-2), 349-356.
[http://dx.doi.org/10.1016/S0969-8043(01)00213-5] [PMID: 11839040]
[74]
Zimmerman, B.E.; Cessna, J.T. Experimental determinations of commercial ‘dose calibrator’ settings for nuclides used in nuclear medicine. Appl. Radiat. Isot., 2000, 52(3), 615-619.
[http://dx.doi.org/10.1016/S0969-8043(99)00219-5] [PMID: 10724415]
[75]
Esquinas, P.L.; Tanguay, J.; Gonzalez, M.; Vuckovic, M.; Rodríguez-Rodríguez, C.; Häfeli, U.O.; Celler, A. Accuracy, reproducibility, and uncertainty analysis of thyroid-probe-based activity measurements for determination of dose calibrator settings. Med. Phys., 2016, 43(12), 6309-6321.
[http://dx.doi.org/10.1118/1.4966027] [PMID: 27908190]
[76]
Yuan, M.C.; Pang, H.F.; Wang, C.F. Absolute counting of 188Re radiopharmaceuticals. Appl. Radiat. Isot., 2006, 64(10-11), 1380-1383.
[http://dx.doi.org/10.1016/j.apradiso.2006.02.049] [PMID: 16556500]
[77]
Liverani, S.; Vichi, S.; Zagni, F.; Riga, S.; Lima, G.M.; Castellucci, P.; Wendler, T.; Olmeda, M.; Marengo, M.; Mostacci, D. Determination of the activity meter calibration factor for Rhenium-188. Radiat. Eff. Defects Solids, 2018, 173(9-10), 758-762.
[http://dx.doi.org/10.1080/10420150.2018.1528601]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy