Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Exploration of Pharmacological Potential of Alpinetin

Author(s): Dhirendra Singh and Randhir Singh*

Volume 19, Issue 3, 2023

Published on: 12 September, 2022

Page: [238 - 245] Pages: 8

DOI: 10.2174/1573401318666220512162233

Price: $65

conference banner
Abstract

Secondary metabolites found in plants are a natural source of bioactive chemicals. These secondary metabolites are vital for the survival of plants and have a number of medicinal properties, which can be utilised to treat human illnesses. Alpinetin (ALP) is one of the secondary metabolites which belongs to the Flavonoid category of phytochemicals and is present in Amomum subulatum Roxb's. Alpinetin has been found to possess antioxidant, anti-inflammatory, anticancer, hepatoprotective and renoprotective activity, along with several other biological properties. This review is focused on the exploration of the pharmacological activities of Alpinetin. ALP is considered a prospective candidate for future clinical investigations due to the number of therapeutic properties.

Keywords: Alpinetin, cancer, inflammation, osteoporosis, renal protection, Amomum subulatum, flavonoids.

Graphical Abstract

[1]
Kwon YS, Kim SS, Sohn SJ, et al. Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids. Arch Pharm Res 2004; 27(7): 751-6.
[http://dx.doi.org/10.1007/BF02980144] [PMID: 15357003]
[2]
Kim JM, Yun-Choi HS. Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch Pharm Res 2008; 31(7): 886-90.
[http://dx.doi.org/10.1007/s12272-001-1242-1] [PMID: 18704331]
[3]
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11(4): 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[4]
Jäger AK, Saaby L. Flavonoids and the CNS. Molecules 2011; 16(2): 1471-85.
[http://dx.doi.org/10.3390/molecules16021471] [PMID: 21311414]
[5]
Jeong HJ, Ryu YB, Park SJ, et al. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg Med Chem 2009; 17(19): 6816-23.
[http://dx.doi.org/10.1016/j.bmc.2009.08.036] [PMID: 19729316]
[6]
Bai N, He K, Roller M, et al. Flavonoid glycosides from Microtea debilis and their cytotoxic and anti-inflammatory effects. Fitoterapia 2011; 82(2): 168-72.
[http://dx.doi.org/10.1016/j.fitote.2010.08.014] [PMID: 20804824]
[7]
Pick A, Müller H, Mayer R, et al. Structure-activity relationships of flavonoids as inhibitors of Breast Cancer Resistance Protein (BCRP). Bioorg Med Chem 2011; 19(6): 2090-102.
[http://dx.doi.org/10.1016/j.bmc.2010.12.043] [PMID: 21354800]
[8]
Woo KW, Moon E, Park SY, Kim SY, Lee KR. Flavonoid glycosides from the leaves of Allium victorialis var. platyphyllum and their anti-neuroinflammatory effects. Bioorg Med Chem Lett 2012; 22(24): 7465-70.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.043] [PMID: 23149227]
[9]
Tronina T, Bartmańska A, Milczarek M, et al. Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg Med Chem Lett 2013; 23(7): 1957-60.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.031] [PMID: 23466227]
[10]
Lee IS, Kim IS, Lee YM, Lee Y, Kim JH, Kim JS. 2″4″-O-diacetylquercitrin, a novel advanced glycation end-product formation and aldose reductase inhibitor from Melastoma sanguineum. Chem Pharm Bull 2013; 61(6): 662-5.
[http://dx.doi.org/10.1248/cpb.c12-00877] [PMID: 23727780]
[11]
Wang SQ, Zhu XF, Wang XN, Shen T, Xiang F, Lou HX. Flavonoids from Malus hupehensis and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Phytochemistry 2013; 87: 119-25.
[http://dx.doi.org/10.1016/j.phytochem.2012.11.020] [PMID: 23276676]
[12]
Choi JS, Islam MN, Ali MY, et al. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch Pharm Res 2014; 37(10): 1354-63.
[http://dx.doi.org/10.1007/s12272-014-0351-3] [PMID: 24988985]
[13]
Kim HJ, Lee BH, Choi SH, et al. Differential effects of quercetin glycosides on GABAC receptor channel activity. Arch Pharm Res 2015; 38(1): 108-14.
[http://dx.doi.org/10.1007/s12272-014-0409-2] [PMID: 24895146]
[14]
Park SH, Kim HJ, Yim SH, et al. Delineation of the role of glycosylation in the cytotoxic properties of quercetin using novel assays in living vertebrates. J Nat Prod 2014; 77(11): 2389-96.
[http://dx.doi.org/10.1021/np500231g]
[15]
dos Santos AE, Kuster RM, Yamamoto KA, et al. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit Vectors 2014; 7: 130.
[http://dx.doi.org/10.1186/1756-3305-7-130]
[16]
Materska M, Konopacka M. Rogoliński J, Ślosarek K. Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem 2015; 168(168): 546-53.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.023] [PMID: 25172746]
[17]
Yoon JH, Baek SJ. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J 2005; 46(5): 585-96.
[http://dx.doi.org/10.3349/ymj.2005.46.5.585] [PMID: 16259055]
[18]
Yao LH, Jiang YM, Shi J, et al. Flavonoids in food and their health benefits. Plant Foods Hum Nutr 2004; 59(3): 113-22.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[19]
Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm Allergy Drug Targets 2009; 8(3): 229-35.
[http://dx.doi.org/10.2174/187152809788681029] [PMID: 19601883]
[20]
Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol Ther 2001; 90(2-3): 157-77.
[http://dx.doi.org/10.1016/S0163-7258(01)00137-1]
[21]
Nielsen ILF, Chee WSS, Poulsen L, et al. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. J Nutr 2006; 136(2): 404-8.
[http://dx.doi.org/10.1093/jn/136.2.404] [PMID: 16424119]
[22]
Liu L, Chen X, Hu Z. Separation and determination of alpinetin and cardamonin in Alpinia katsumadai Hayata by flow injection-micellar electrokinetic chromatography. Talanta 2007; 71(1): 155-9.
[http://dx.doi.org/10.1016/j.talanta.2006.03.032] [PMID: 19071282]
[23]
Huang Y, Zhou LS, Yan L, Ren J, Zhou DX, Li SS. Alpinetin inhibits lipopolysaccharide-induced acute kidney injury in mice. Int Immunopharmacol 2015; 28(2): 1003-8.
[http://dx.doi.org/10.1016/j.intimp.2015.08.002] [PMID: 26321118]
[24]
Lv Q, Shi C, Qiao S, et al. Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation. Cell Death Dis 2018; 9(9): 890.
[http://dx.doi.org/10.1038/s41419-018-0814-4] [PMID: 30166541]
[25]
Zhao X, Guo X, Shen J, Hua D. Alpinetin inhibits proliferation and migration of ovarian cancer cells via suppression of STAT3 signaling. Mol Med Rep 2018; 18(4): 4030-6.
[http://dx.doi.org/10.3892/mmr.2018.9420] [PMID: 30132572]
[26]
Zhou Y, Ding YL, Zhang JL, Zhang P, Wang JQ, Li ZH. Alpinetin improved high fat diet-induced Non-Alcoholic Fatty Liver Disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed Pharmacother 2018; 97: 1397-408.
[http://dx.doi.org/10.1016/j.biopha.2017.10.035] [PMID: 29156529]
[27]
Wu L, Yang W, Zhang SN, Lu JB. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium. Drug Des Devel Ther 2015; 9: 6119-27.
[PMID: 26604699]
[28]
Liu TG, Sha KH, Zhang LG, Liu XX, Yang F, Cheng JY. Protective effects of alpinetin on lipopolysaccharide/d-Galactosamine-induced liver injury through inhibiting inflammatory and oxidative responses. Microb Pathog 2019; 126: 239-44.
[http://dx.doi.org/10.1016/j.micpath.2018.11.007] [PMID: 30414839]
[29]
Liu EYL, Xu ML, Xia Y, et al. Activation of G protein-coupled receptor 30 by flavonoids leads to expression of acetylcholinesterase in cultured PC12 cells. Chem Biol Interact 2019; 306: 147-51.
[http://dx.doi.org/10.1016/j.cbi.2019.04.031] [PMID: 31034797]
[30]
Hu K, Liu L, Qian H, et al. Alpinetin promotes the binding of PPAR and methyltransferase. Xibao Yu Fenzi Mianyixue Zazhi 2017; 33(12): 1610-4.
[PMID: 29382419]
[31]
Bi S, Sun X, Wang Y, Wu J, Zhou H. A sensitive resonance Rayleigh light scattering method for alpinetin using gold nanorods probes. Luminescence 2018; 33(7): 1164-70.
[http://dx.doi.org/10.1002/bio.3531] [PMID: 30047614]
[32]
Wang ZR, Li Y, Tang B. Protection mechanism of alpinetin on pulmonary microvascular endothelial cells injury. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2017; 37(4): 476-9.
[PMID: 30650509]
[33]
Ye W, Lin X, Zhang Y, et al. Quantification and pharmacokinetics of alpinetin in rat plasma by UHPLC-MS/MS using protein precipitation coupled with dilution approach to eliminate matrix effects. J Pharm Biomed Anal 2018; 152: 242-7.
[http://dx.doi.org/10.1016/j.jpba.2017.12.046] [PMID: 29433096]
[34]
Qi C, Fu J, Zhao H, Xing H, Dong D, Wu B. Identification of UGTs and BCRP as potential pharmacokinetic determinants of the natural flavonoid alpinetin. Xenobiotica 2019; 49(3): 276-83.
[http://dx.doi.org/10.1080/00498254.2018.1440657] [PMID: 29436891]
[35]
Jin XL, Fang ZZ, Yan-Qing QU, Tang B, Yang L, Wang LM. Study on the glucuronidation of alpinetin in human liver microsomes. Chin J Clin Pharmacol 2011; 11(11): 847-50.
[36]
Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 2017; 9(3): 448-51.
[http://dx.doi.org/10.21037/jtd.2017.02.75] [PMID: 28449441]
[37]
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[38]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[39]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[40]
Hou S, Yuan Q, Cheng C, Zhang Z, Guo B, Yuan X. Alpinetin delays high-fat diet-aggravated lung carcinogenesis. Basic Clin Pharmacol Toxicol 2021; 128(3): 410-8.
[http://dx.doi.org/10.1111/bcpt.13540] [PMID: 33259132]
[41]
Zhang T, Guo S, Zhu X, Qiu J, Deng G, Qiu C. Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. J Cell Mol Med 2020; 24(15): 8430-40.
[http://dx.doi.org/10.1111/jcmm.15371] [PMID: 32562470]
[42]
Tang B, Du J, Wang J, et al. Alpinetin suppresses proliferation of human hepatoma cells by the activation of MKK7 and elevates sensitization to cis-diammined dichloridoplatium. Oncol Rep 2012; 27(4): 1090-6.
[http://dx.doi.org/10.3892/or.2011.1580] [PMID: 22159816]
[43]
Wang Z, Lu W, Li Y, Tang B. Alpinetin promotes Bax translocation, induces apoptosis through the mitochondrial pathway and arrests human gastric cancer cells at the G2/M phase. Mol Med Rep 2013; 7(3): 915-20.
[http://dx.doi.org/10.3892/mmr.2012.1243] [PMID: 23254270]
[44]
Du J, Tang B, Wang J, et al. Antiproliferative effect of alpinetin in BxPC-3 pancreatic cancer cells. Int J Mol Med 2012; 29(4): 607-12.
[http://dx.doi.org/10.3892/ijmm.2012.884] [PMID: 22246103]
[45]
Guo Y, Chen Y, Liu H, Yan W. Alpinetin inhibits oral squamous cell carcinoma proliferation via miR-211-5p upregulation and notch pathway deactivation. Nutr Cancer 2020; 72(5): 757-67.
[http://dx.doi.org/10.1080/01635581.2019.1651878] [PMID: 31403340]
[46]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 2019; 394(10204): 1145-58.
[http://dx.doi.org/10.1016/S0140-6736(19)30427-1] [PMID: 31248666]
[47]
Cardiovascular diseases (CVDs).. 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/ (Accessed 6 Apr 2022).
[48]
Suo C, Sun L, Yang S. Alpinetin activates the δ receptor instead of the κ and μ receptor pathways to protect against rat myocardial cell apoptosis. Exp Ther Med 2014; 7(1): 109-16.
[http://dx.doi.org/10.3892/etm.2013.1359] [PMID: 24348774]
[49]
Singh D, Cho WC, Upadhyay G. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview. Front Physiol 2016; 6: 363.
[http://dx.doi.org/10.3389/fphys.2015.00363] [PMID: 26858648]
[50]
Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: Effects on the liver sinusoidal milieu. J Hepatol 2013; 59(5): 1094-106.
[http://dx.doi.org/10.1016/j.jhep.2013.06.017] [PMID: 23811302]
[51]
Wang S, Pacher P, De Lisle RC, Huang H, Ding WX. A mechanistic review of cell death in alcohol-induced liver injury. Alcohol Clin Exp Res 2016; 40(6): 1215-23.
[http://dx.doi.org/10.1111/acer.13078] [PMID: 27130888]
[52]
Kullak-Ublick GA, Andrade RJ, Merz M, et al. Drug-induced liver injury: Recent advances in diagnosis and risk assessment. Gut 2017; 66(6): 1154-64.
[http://dx.doi.org/10.1136/gutjnl-2016-313369] [PMID: 28341748]
[53]
Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59(3): 583-94.
[http://dx.doi.org/10.1016/j.jhep.2013.03.033] [PMID: 23567086]
[54]
Li S, Tan HY, Wang N, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015; 16(11): 26087-124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[55]
Zhu Z, Hu R, Li J, et al. Alpinetin exerts anti-inflammatory, anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis. Int Immunopharmacol 2021; 96: 107660.
[http://dx.doi.org/10.1016/j.intimp.2021.107660]
[56]
Van Berendoncks AM, Elseviers MM, Lins RL. SHARF Study Group. Outcome of acute kidney injury with different treatment options: long-term follow-up. Clin J Am Soc Nephrol 2010; 5(10): 1755-62.
[http://dx.doi.org/10.2215/CJN.00770110] [PMID: 20634328]
[57]
Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298(17): 2038-47.
[http://dx.doi.org/10.1001/jama.298.17.2038] [PMID: 17986697]
[58]
Adeyemi OO, Yemitan OK, Afolabi L. Inhibition of chemically induced inflammation and pain by orally and topically administered leaf extract of Manihot esculenta Crantz in rodents. J Ethnopharmacol 2008; 119(1): 6-11.
[http://dx.doi.org/10.1016/j.jep.2008.05.019]
[59]
Nathan C. Points of control in inflammation. Nature 2002; 420(6917): 846-52.
[http://dx.doi.org/10.1038/nature01320]
[60]
Serra MB, Barroso WA, da Silva NN, et al. From inflammation to current and alternative therapies involved in wound healing. Int J Inflamm 2017; 2017: 3406215.
[http://dx.doi.org/10.1155/2017/3406215] [PMID: 28811953]
[61]
Gao Y, Wang S, He L, Wang C, Yang L. Alpinetin protects chondrocytes and exhibits anti-inflammatory effects via the NF-κB/ERK pathway for alleviating osteoarthritis. Inflammation 2020; 43(5): 1742-50.
[http://dx.doi.org/10.1007/s10753-020-01248-3] [PMID: 32474881]
[62]
Hu K, Yang Y, Tu Q, Luo Y, Ma R. Alpinetin inhibits LPS-induced inflammatory mediator response by activating PPAR-γ in THP-1-derived macrophages. Eur J Pharmacol 2013; 721(1-3): 96-102.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.049]
[63]
Huo M, Chen N, Chi G, et al. Traditional medicine alpinetin inhibits the inflammatory response in Raw 264.7 cells and mouse models. Int Immunopharmacol 2012; 12(1): 241-8.
[http://dx.doi.org/10.1016/j.intimp.2011.11.017] [PMID: 22178196]
[64]
Chen H, Mo X, Yu J, Huang Z. Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2013; 17(1): 26-32.
[http://dx.doi.org/10.1016/j.intimp.2013.04.030] [PMID: 23669335]
[65]
Liang Y, Shen T, Ming Q, et al. Alpinetin ameliorates inflammatory response in LPS-induced endometritis in mice. Int Immunopharmacol 2018; 62: 309-12.
[http://dx.doi.org/10.1016/j.intimp.2018.07.010] [PMID: 30048861]
[66]
WHO Chronic respiratory diseases.. Available from: https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_1
[67]
The Lancet. GBD 2017: A fragile world. Lancet 2018; 392(10159): 1683.
[68]
Soriano JB, Abajobir AA, Abate KH, et al. GBD 2015 chronic respiratory disease collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet Respir Med 2017; 5(9): 691-706.
[http://dx.doi.org/10.1016/S2213-2600(17)30293-X] [PMID: 28822787]
[69]
Wu D, Li S, Liu X, et al. Alpinetin prevents inflammatory responses in OVA-induced allergic asthma through modulating PI3K/AKT/NF-κB and HO-1 signaling pathways in mice. Int Immunopharmacol 2020; 89(Pt A): 107073.
[http://dx.doi.org/10.1016/j.intimp.2020.107073]
[70]
Su Y, Tao X, Xu J. Protective effect of Alpinetin on rats with chronic obstructive pulmonary disease. Food Sci Nutr 2020; 8(12): 6603-11.
[http://dx.doi.org/10.1002/fsn3.1952]
[71]
Liang X, Zhang B, Chen Q, et al. The mechanism underlying alpinetin-mediated alleviation of pancreatitis-associated lung injury through upregulating aquaporin-1. Drug Des Devel Ther 2016; 10: 841-50.
[http://dx.doi.org/10.2147/DDDT.S97614] [PMID: 26966354]
[72]
Xiao B, Zhang Z, Viennois E, et al. Combination therapy for ulcerative colitis: Orally targeted nanoparticles prevent mucosal damage and relieve inflammation. Theranostics 2016; 6(12): 2250-66.
[http://dx.doi.org/10.7150/thno.15710] [PMID: 27924161]
[73]
Quetglas EG, Mujagic Z, Wigge S, et al. Update on pathogenesis and predictors of response of therapeutic strategies used in inflammatory bowel disease. World J Gastroenterol 2015; 21(44): 12519-43.
[http://dx.doi.org/10.3748/wjg.v21.i44.12519] [PMID: 26640330]
[74]
Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 2010; 177(2): 512-24.
[http://dx.doi.org/10.2353/ajpath.2010.100168] [PMID: 20581053]
[75]
Tan Y, Zheng C. Effects of alpinetin on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium-induced ulcerative colitis mice. Am J Med Sci 2018; 355(4): 377-86.
[http://dx.doi.org/10.1016/j.amjms.2018.01.002] [PMID: 29661352]
[76]
He X, Wei Z, Wang J, et al. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Sci Rep 2016; 6(1): 28370.
[http://dx.doi.org/10.1038/srep28370] [PMID: 27321991]
[77]
Yu Z, Yue B, Ding L, et al. Activation of PXR by alpinetin contributes to abrogate chemically induced inflammatory bowel disease. Front Pharmacol 2020; 11: 474.
[http://dx.doi.org/10.3389/fphar.2020.00474] [PMID: 32372959]
[78]
Miao Y, Lv Q, Qiao S, et al. Alpinetin improves intestinal barrier homeostasis via regulating AhR/suv39h1/TSC2/mTORC1/autophagy pathway. Toxicol Appl Pharmacol 2019; 384(114772)
[http://dx.doi.org/10.1016/j.taap.2019.114772]
[79]
Cheung AM, Papaioannou A, Morin S. Osteoporosis Canada scientific advisory council. Postmenopausal osteoporosis. N Engl J Med 2016; 374(21): 2096.
[PMID: 27223160]
[80]
Aspray TJ, Hill TR. Osteoporosis and the ageing skeleton. Subcell Biochem 2019; 91: 453-76.
[http://dx.doi.org/10.1007/978-981-13-3681-2_16] [PMID: 30888662]
[81]
Lane JM, Russell L, Khan SN. Osteoporosis. Clin Orthop Relat Res 2000; (372): 139-50.
[http://dx.doi.org/10.1097/00003086-200003000-00016] [PMID: 10738423]
[82]
Kikuta J, Ishii M. Bone imaging: Osteoclast and osteoblast dynamics. Methods Mol Biol 2018; 1763: 1-9.
[http://dx.doi.org/10.1007/978-1-4939-7762-8_1] [PMID: 29476483]
[83]
Liu M, Lu Y, Cheng X, et al. Relationship between abnormal glucose metabolism and osteoporosis in Han Chinese men over the age of 50 years. Clin Interv Aging 2019; 14: 445-51.
[http://dx.doi.org/10.2147/CIA.S164021] [PMID: 30880926]
[84]
He R, Lu J, Chen Y, et al. Alpinetin inhibits RANKL-induced osteoclastogenesis and ovariectomy-induced bone loss by modulating NFATc1 transcription and lysosomal function. Research Square 2020.
[http://dx.doi.org/10.21203/rs.3.rs-132706/v1]
[85]
Li YJ, Du GH. Effects of alpinetin on rat vascular smooth muscle cells. J Asian Nat Prod Res 2004; 6(2): 87-92.
[http://dx.doi.org/10.1080/1028602031000135558] [PMID: 15008454]
[86]
Hu K, Li Y, Liang M, et al. Inhibitory effect of alpinetin on IL-6 expression by promoting cytosine methylation in CpG islands in the IL-6 promoter region. Mol Genet Genomic Med 2020; 8(1): e993.
[http://dx.doi.org/10.1002/mgg3.993] [PMID: 31724331]
[87]
Zhang Y, Zhang Y, Li Y, Zhang L, Yu S. Preclinical investigation of alpinetin in the treatment of cancer-induced cachexia via activating PPARγ. Front Pharmacol 2021; 12: 687491.
[http://dx.doi.org/10.3389/fphar.2021.687491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy