Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Effect of Postharvest Treatments on the Biosynthesis of Fruit Volatile Compounds: A Literature Review

Author(s): Hilton César Rodrigues Magalhães*, Deborah dos Santos Garruti, Eliezer Ávila Gandra and Eduardo Purgatto

Volume 19, Issue 3, 2023

Published on: 26 August, 2022

Page: [246 - 261] Pages: 16

DOI: 10.2174/1573401318666220527123341

Price: $65

conference banner
Abstract

Fruits have different aromatic profiles according to their stage of ripeness; therefore, the volatile compounds profile is an important quality attribute, which also determines flavor and aroma characteristics, making this profile a perfect option to guide the optimization of postharvest treatment of fruits. In this context, the objective was to discuss the effects of postharvest treatments, associating them with the biosynthesis of volatile compounds in fruits. There are three major groups of fruit flavor precursors: carbohydrates, amino acids, and fatty acids. The biosynthesis of volatile compounds is directly related to metabolic changes that occur according to the fruit ripening stage. This process occurs under the regulation of hormones, which have ethylene as one of the main agents. Several hormones are also part of this complex mechanism and interact by regulating ethylene levels positively or negatively to form a fine adjustment. Therefore, hormonal treatments have an impact on the biosynthesis of volatile compounds in different ways. Other postharvest treatments, such as cold storage, controlled atmosphere, and UV radiation, can also impact the biosynthesis of volatile compounds, but are generally used synergistically, which circumvents the negative effects on the aromatic profile of the fruits.

Keywords: ethylene, ripening, hormones, fatty acids, amino acids, carbohydrates.

[1]
Dudareva N, Klempien A, Muhlemann K, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 2013; 198(1): 16-32.
[http://dx.doi.org/10.1111/nph.12145]
[2]
Espino-Díaz M, Sepúlveda DR, González-aguilar G, Olivas GI. Biochemistry of apple aroma: A review. Food Technol Biotechnol 2016; 54(4): 375-94.
[http://dx.doi.org/10.17113/ftb.54.04.16.4248]
[3]
Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J. Advances in fruit aroma volatile research. Molecules 2013; 18(7): 8200-29.
[http://dx.doi.org/10.3390/molecules18078200]
[4]
Defilippi B, Manríquez K, González-Aguero M. Aroma volatiles: Biosynthesis and mechanisms of modulation during fruit development. Adv Bot Res 2009; 50: 1-37.
[http://dx.doi.org/10.1016/S0065-2296(08)00801-X]
[5]
Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J 2008; 54(4): 712-32.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03446.x]
[6]
Mehinagic E, Royer G, Symoneaux R, Jourjon F, Prost C. Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage. J Agric Food Chem 2006; 54(7): 2678-87.
[http://dx.doi.org/10.1021/jf052288n]
[7]
Rambla JL, Tikunov YM, Monforte AJ, Bovy AG, Granell A. The expanded tomato fruit volatile landscape. J Exp Bot 2014; 65(16): 4613-23.
[http://dx.doi.org/10.1093/jxb/eru128]
[8]
Shan W, Zhao C, Fan J, Cong H, Liang S, Yu X. Antisense suppression of alcohol acetyltransferase gene in ripening melon fruit alters volatile composition. Sci Hortic 2012; 139: 96-101.
[http://dx.doi.org/10.1016/j.scienta.2012.03.010]
[9]
Breslin PA. An Evolutionary perspective on food and human taste. Curr Biol 2013; 23(9): R409-18.
[http://dx.doi.org/10.1016/j.cub.2013.04.010]
[10]
Li Y, Qi H, Jin Y, Tian X, Sui L, Qiu Y. Role of ethylene in biosynthetic pathway of related-aroma volatiles derived from amino acids in oriental sweet melons (Cucumis melo var. makuwa Makino). Sci Hortic 2016; 201: 24-35.
[http://dx.doi.org/10.1016/j.scienta.2015.12.053]
[11]
Xiaotang Y, Jun S, Lina D, et al. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chem 2016; 194: 325-36.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.018]
[12]
Bood KG, Zabetakis I. The Biosynthesis of strawberry flavor (II): Biosynthetic and molecular biology studies. J Food Sci 2002; 67(1): 1-8.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb11349.x]
[13]
Pott DM, Osorio S, Vallarino JG. From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front Plant Sci 2019; 10(6): 1-19.
[http://dx.doi.org/10.3389/fpls.2019.00835]
[14]
Matarese F, Cuzzola A, Scalabrelli G, Onofrio CD. Expression of terpene synthase genes associated with the formation of volatiles in different organs of Vitis vinifera. Phytochemistry 2014; 105: 12-24.
[http://dx.doi.org/10.1016/j.phytochem.2014.06.007]
[15]
Pulido P, Perello C, Rodriguez-Concepcion M. New insights into plant isoprenoid metabolism. Mol Plant 2012; 5(5): 964-7.
[http://dx.doi.org/10.1093/mp/sss088]
[16]
Schwab W. Natural 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®). Molecules 2013; 3(2): 6936-51.
[http://dx.doi.org/10.3390/molecules18066936]
[17]
Serra S. Recent advances in the synthesis of carotenoid-derived flavours and fragrances. Molecules 2015; 20(7): 12817-40.
[http://dx.doi.org/10.3390/molecules200712817]
[18]
Gonda I, Bar E, Portnoy V, et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 2010; 61(4): 1111-23.
[http://dx.doi.org/10.1093/jxb/erp390]
[19]
Pérez AG, Olías R, Luances P, Sanz C. Biosynthesis of strawberry aroma compounds through amino. J Agric Food Chem 2002; 50(14): 4037-42.
[http://dx.doi.org/10.1021/jf011465r]
[20]
Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc Natl Acad Sci USA 2006; 103(21): 8287-92.
[http://dx.doi.org/10.1073/pnas.0602469103]
[21]
Kochevenko A, Araújo WL, Maloney GS, et al. Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits. Mol Plant 2012; 5(2): 366-75.
[http://dx.doi.org/10.1093/mp/ssr108]
[22]
Liu M, Nauta A, Francke C, Siezen RJ. Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 2008; 74(15): 4590-600.
[http://dx.doi.org/10.1128/AEM.00150-08]
[23]
Pan Q, Chen F, Zhu BQ, Ma LY, Li L, Li JM. Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in ‘Vidal blanc’ grape berries. Mol Biol Rep 2012; 39(4): 4319-25.
[http://dx.doi.org/10.1007/s11033-011-1219-y]
[24]
Graham IA, Eastmond PJ. Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 2002; 41(2): 156-81.
[http://dx.doi.org/10.1016/S0163-7827(01)00022-4]
[25]
Song J, Bangerth F. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biol Technol 2003; 30(2): 113-21.
[http://dx.doi.org/10.1016/S0925-5214(03)00098-X]
[26]
Goepfert S, Poirier Y. β-Oxidation in fatty acid degradation and beyond. Curr Opin Plant Biol 2007; 10(3): 245-51.
[http://dx.doi.org/10.1016/j.pbi.2007.04.007]
[27]
Contreras C, Tjellström H, Beaudry RM. Relationships between free and esterified fatty acids and LOX-derived volatiles during ripening in apple. Postharvest Biol Technol 2016; 112: 105-13.
[http://dx.doi.org/10.1016/j.postharvbio.2015.10.009]
[28]
Deshpande AB, Chidley HG, Oak PS, Pujari KH, Giri AP, Gupta VS. Isolation and characterization of 9-lipoxygenase and epoxide hydrolase 2 genes: Insight into lactone biosynthesis in mango fruit (Mangifera indica L.). Phytochemistry 2017; 138: 65-75.
[http://dx.doi.org/10.1016/j.phytochem.2017.03.002]
[29]
Barreto GPM, Fabi JP, De Rosso VV, Cordenunsi BR, Lajolo FM, Nascimento JRO. Influence of ethylene on carotenoid biosynthesis during papaya postharvesting ripening. J Food Compos Anal 2011; 24(4-5): 620-4.
[http://dx.doi.org/10.1016/j.jfca.2011.02.006]
[30]
Saraiva LA, Castelan FP, Gomes BL, Purgatto E, Cordenunsi-Lysenko BR. Thap Maeo bananas: Fast ripening and full ethylene perception at low doses. Food Res Int 2018; 105: 384-92.
[http://dx.doi.org/10.1016/j.foodres.2017.11.007]
[31]
Matsui K. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds. Curr Opin Plant Biol 2016; 32: 24-30.
[http://dx.doi.org/10.1016/j.pbi.2016.05.005]
[32]
Brizzolara S, Manganaris GA, Fotopoulos V, Watkins CB, Tonutti P, Walker RP. Primary metabolism in fresh fruits during storage. Front Plant Sci 2020; 11(2): 1-16.
[http://dx.doi.org/10.3389/fpls.2020.00080]
[33]
Jiang B, Ou S, Xu L, et al. Comparative proteomic analysis provides novel insights into the regulation mechanism underlying papaya (Carica papaya L.) exocarp during fruit ripening process. BMC Plant Biol 2019; 238(1): 1-13.
[http://dx.doi.org/10.1186/s12870-019-1845-4]
[34]
Shahidi F, Abad A. Lipid-derived flavours and off-flavours in food. Encyc Food Chem 2019; 183-92.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21666-1]
[35]
Contreras C, Beaudry R. Lipoxygenase-associated apple volatiles and their relationship with aroma perception during ripening. Postharvest Biol Technol 2013; 82: 28-38.
[http://dx.doi.org/10.1016/j.postharvbio.2013.02.006]
[36]
Matsui K. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 2006; 9(3): 274-80.
[http://dx.doi.org/10.1016/j.pbi.2006.03.002]
[37]
Ameye M, Allmann S, Verwaeren J, et al. Green leaf volatile production by plants: A meta-analysis. New Phytol 2018; 220(3): 666-83.
[http://dx.doi.org/10.1111/nph.14671]
[38]
Mwenda CM, Matsui K. The importance of lipoxygenase control in the production of green leaf volatiles by lipase-dependent and independent pathways. Plant Biotechnol 2014; 452(5): 445-52.
[http://dx.doi.org/10.5511/plantbiotechnology.14.0924a]
[39]
Spyropoulou EA, Dekker HL, Steemers L, et al. Identification and characterization of (3Z):(2E)-hexenal isomerases from cucumber. Front Plant Sci 2017; 8(8): 1-14.
[http://dx.doi.org/10.3389/fpls.2017.01342]
[40]
Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D. Identification of a specific isoform of tomato Lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 2004; 136(9): 2641-51.
[http://dx.doi.org/10.1104/pp.104.041608]
[41]
Mariutto M, Duby F, Adam A, et al. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 2011; 11(1): 2-15.
[http://dx.doi.org/10.1186/1471-2229-11-29]
[42]
Vogt J, Schiller D, Ulrich D, Schwab W, Dunemann F. Identification of lipoxygenase (LOX) genes putatively involved in fruit flavour formation in apple (Malus × domestica). Tree Genet Genomes 2013; 9(6): 1493-511.
[http://dx.doi.org/10.1007/s11295-013-0653-5]
[43]
Zhang B, Yin XR, Li X, Yang SL, Ferguson IB, Chen KS. Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production. J Agric Food Chem 2009; 57(7): 2875-81.
[http://dx.doi.org/10.1021/jf9000378]
[44]
Hirao T, Okazawa A, Harada K, Kobayashi A, Muranaka T, Hirata K. Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. J Biosci Bioeng 2012; 114(5): 540-5.
[http://dx.doi.org/10.1016/j.jbiosc.2012.06.010]
[45]
Shen J, Tieman D, Jones JB, et al. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J Exp Bot 2014; 65(2): 419-28.
[http://dx.doi.org/10.1093/jxb/ert382]
[46]
Han GZ. Evolution of jasmonate biosynthesis and signaling mechanisms. J Exp Bot 2017; 68(6): 1323-31.
[http://dx.doi.org/10.1093/jxb/erw470]
[47]
Rustgi S, Springer A, Kang C, et al. Allene oxide synthase and hydroperoxide lyase, two non-canonical cytochrome p450s in arabidopsis thaliana and their different roles in plant defense. Int J Mol Sci 2019; 20(12): 1-14.
[http://dx.doi.org/10.3390/ijms20123064]
[48]
Wasternack C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 2007; 100(4): 681-97.
[http://dx.doi.org/10.1093/aob/mcm079]
[49]
Manríquez D, El-Sharkawy I, Flores F, et al. Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics. Plant Mol Biol 2006; 61(4-5): 675-85.
[http://dx.doi.org/10.1007/s11103-006-0040-9]
[50]
Min T, Yin X, Luo Z, et al. Ethylene-responsive transcription factors interact in with In Posidonia oceanica cadmium induces changes DNA promoters of ADH and PDC patterning involved in persimmon methylation and (Diospyros kaki) fruit de-astringency. J Exp Bot 2012; 63(18): 6393-405.
[http://dx.doi.org/10.1093/jxb/ers296]
[51]
Tesniere C, Pradal M, El-kereamy A, et al. Involvement of ethylene signalling in a non-climacteric fruit: New elements regarding the regulation of ADH expression in grapevine. J Exp Bot 2004; 55(11): 2235-40.
[http://dx.doi.org/10.1093/jxb/erh244]
[52]
Saffert A, Hartmann-schreier J, Scho A, Schreier P. A dual function α-dioxygenase-peroxidase and NAD+ oxidoreductase active enzyme from germinating pea rationalizing α-oxidation of fatty acids in plants. American Society of Plant Biologists 2020; 123: 1545-51.
[53]
Zhang C, Cao S, Jin Y, et al. Melon13-lipoxygenase CmLOX18 may be involved in C6 volatiles biosynthesis in fruit. Sci Rep 2017; 1-12.
[http://dx.doi.org/10.1038/s41598-017-02559-6]
[54]
Xi W, Zhang BO, Liang LI, et al. Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant Cell Environ 2012; 35(3): 534-45.
[http://dx.doi.org/10.1111/j.1365-3040.2011.02433.x]
[55]
Steingass CB, Grauwet T, Carle R. Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography - mass spectrometry (HS-SPME-GC/MS). Food Chem 2014; 150: 382-91.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.092]
[56]
Ubeda C, San-juan F, Callejo RM, et al. Glycosidically bound aroma compounds and impact odorants of varieties. J Agric Food Chem 2012; 60(24): 6095-102.
[http://dx.doi.org/10.1021/jf301141f]
[57]
Xi W, Zhang Q, Lu X, Wei C, Yu S, Zhou Z. Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chem 2014; 164: 219-27.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.017]
[58]
Zhang L, Li H, Gao L, et al. Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit. Plant Cell Rep 2017; 36(6): 829-42.
[http://dx.doi.org/10.1007/s00299-017-2113-4]
[59]
Sánchez G, Venegas-calerón M, Salas JJ, Monforte A, Badenes ML, Granell A. An integrative “omics” approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Plant Biol 2013; 343: 1-23.
[60]
Sánchez-Sevilla JF, Cruz-Rus E, Valpuesta V, Botella MA, Amaya I. Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses. BMC Genomics 2014; 218(1): 1-15.
[http://dx.doi.org/10.1186/1471-2164-15-218]
[61]
Tohge T, Alseekh S, Fernie AR. On the regulation and function of secondary metabolism during fruit development and ripening. J Exp Bot 2014; 1-13.
[http://dx.doi.org/10.1093/jxb/ert443]
[62]
Jordán MJ, Tandon K, Shaw PE, Goodner KL. Aromatic profile of aqueous banana essence and banana fruit by Gas Chromatography - Mass Spectrometry (GC-MS) and gas chromatography - Olfactometry (GC-O). J Agric Food Chem 2001; 49(10): 4813-7.
[http://dx.doi.org/10.1021/jf010471k]
[63]
Matich A, Rowan D. Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography − Mass spectrometry. J Agric Food Chem 2007; 55(7): 2727-35.
[http://dx.doi.org/10.1021/jf063018n]
[64]
Wyllie SG, Fellman JK. Formation of Volatile Branched Chain Esters in Bananas (Musa sapientum L.). J Agric Food Chem 2000; 48(8): 3493-6.
[http://dx.doi.org/10.1021/jf0001841]
[65]
Gonda I, Lev S, Bar E, et al. Catabolism of L–methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit. Plant J 2013; 74(3): 458-72.
[http://dx.doi.org/10.1111/tpj.12149]
[66]
Rowan DD, Allen JM, Fielder S, Hunt MB. Biosynthesis of straight-chain ester volatiles in red delicious and granny smith apples using deuterium-labeled precursors. J Agric Food Chem 1999; 47(7): 2553-62.
[http://dx.doi.org/10.1021/jf9809028]
[67]
Marilley L, Casey MG. Flavours of cheese products: Metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol 2004; 90(2): 139-59.
[http://dx.doi.org/10.1016/S0168-1605(03)00304-0]
[68]
Gonda I, Burger Y, Schaffer AA, et al. Biosynthesis and perception of melon. In: Biotechnology in Flavor Production. 2016; pp. 281-305.
[http://dx.doi.org/10.1002/9781118354056.ch11]
[69]
Smit BA, Engels WJM, Smit G. Branched chain aldehydes  Production and breakdown pathways and relevance for flavour in foods. Appl Microbiol Biotechnol 2009; 81(6): 987-99.
[http://dx.doi.org/10.1007/s00253-008-1758-x]
[70]
Torrens-spence MP, Liu P, Ding H, Harich K, Gillaspy G, Li J. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic. J Biol Chem 2013; 288(4): 2376-87.
[http://dx.doi.org/10.1074/jbc.M112.401752]
[71]
Farhi M, Lavie O, Masci T, et al. Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Mol Biol 2010; 72(3): 235-45.
[http://dx.doi.org/10.1007/s11103-009-9564-0]
[72]
Kaminaga Y, Schnepp J, Peel G, et al. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 2010; 281(33): 23357-66.
[http://dx.doi.org/10.1074/jbc.M602708200]
[73]
Bastos DM, Monaro É, Siguemoto É, Séfora M. Maillard reaction products in processed food: Pros and cons. Food Indus Processes – Methods Equip 2014; 281-300.
[http://dx.doi.org/10.5772/31925]
[74]
Nashalian O, Wang X, Yaylayan VA. Formation of the reduced form of furaneol (2,5-dimethyl-4-hydroxy- tetrahydrofuran-3-one) during the maillard reaction through catalysis of amino acid metal salts. Food Chem 2016; 210: 43-8.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.100]
[75]
Klein D, Fink B, Arold B, Eisenreich W, Schwab W. Functional characterization of enone oxidoreductases from strawberry and tomato fruit. J Agric Food Chem 2007; 55(16): 6705-11.
[http://dx.doi.org/10.1021/jf071055o]
[76]
Zorrilla-Fontanesi Y, Rambla J, Cabeza A, et al. Genetic analysis of strawberry fruit aroma and identification of O- methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiol 2012; 159(6): 851-70.
[http://dx.doi.org/10.1104/pp.111.188318]
[77]
Sarrazin E, Dubourdieu D, Darriet P. Characterization of key-aroma compounds of botrytized wines, influence of grape botrytization. Food Chem 2007; 103(2): 536-45.
[http://dx.doi.org/10.1016/j.foodchem.2006.08.026]
[78]
Schiefner A, Sinz Q, Neumaier I, Schwab W, Skerra A. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-Hydroxy-2,5-dimethyl-3(2H)-furanone. J Biol Chem 2013; 288(23): 16815-26.
[http://dx.doi.org/10.1074/jbc.M113.453852]
[79]
Chen Y, Sidisky LM. Quantification of 4-hydroxy-2, 5-dimethyl-3-furanone in fruit samples using solid phase microextraction coupled with gas chromatography - mass spectrometry. J Chromatogr A 2011; 1218(38): 6817-22.
[http://dx.doi.org/10.1016/j.chroma.2011.07.103]
[80]
Kulkarni R, Chidley H, Deshpande A, et al. An oxidoreductase from ‘Alphonso’ mango catalyzing biosynthesis of furaneol and reduction of reactive carbonyls. Springerplus 2013; 2(1): 2-9.
[http://dx.doi.org/10.1186/2193-1801-2-494]
[81]
Tokitomo Y, Steinhaus M, Buettner A, Schieberle P. Odor-active constituents in fresh pineapple (Ananas comosus L. Merr.) by quantitative and sensory evaluation odor-active constituents in fresh pineapple (Ananas comosus [ L. Merr.) by quantitative and sensory evaluation. Biosci Biotechnol Biochem 2005; 69: 1323-30.
[http://dx.doi.org/10.1271/bbb.69.1323]
[82]
Mayer F, Takeoka GR, Buttery RG, Whitehand LC, Naim M, Rabinowitch HD. Studies on the aroma of five fresh tomato cultivars and the precursors of cis - and trans-4,5-epoxy-(E)-2-decenals and methional. J Agric Food Chem 2008; 56(10): 3749-57.
[http://dx.doi.org/10.1021/jf0732915]
[83]
Du XF, Kurnianta A, Mcdaniel M, Finn CE, Qian MC. Flavour profiling of ‘Marion’ and thornless blackberries by instrumental and sensory analysis. Food Chem 2010; 121(4): 1080-8.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.053]
[84]
Yan J, Ban Z, Lu H, et al. The aroma volatile repertoire in strawberry fruit: A review. J Sci Food Agric 2018; 98(3): 4395-402.
[http://dx.doi.org/10.1002/jsfa.9039]
[85]
Zhang H, Mahunu GK, Castoria R, Yang Q, Apaliya MT. Trends in Food Science & Technology Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends Food Sci Technol 2018; 78: 180-7.
[http://dx.doi.org/10.1016/j.tifs.2018.06.002]
[86]
Nieuwenhuizen NJ, Green SA, Chen X, et al. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol 2013; 161(2): 787-804.
[http://dx.doi.org/10.1104/pp.112.208249]
[87]
Xu J, Van Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato grandular cells. Plant Cell 2018; 30(12): 2988-3005.
[http://dx.doi.org/10.1105/tpc.18.00571]
[88]
Gonzales-Vigil E, Hufnagel DE, Kim J, Last RL, Barry CS. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Plant J 2012; 71(6): 921-35.
[http://dx.doi.org/10.1111/j.1365-313X.2012.05040.x]
[89]
Liao P, Hemmerlin A, Bach TJ, Chye M. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv 2016; 34(5): 697-713.
[http://dx.doi.org/10.1016/j.biotechadv.2016.03.005]
[90]
Simkin AJ, Guirimand G, Papon N, et al. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 2011; 234(5): 903-14.
[http://dx.doi.org/10.1007/s00425-011-1444-6]
[91]
Wang Q, Quan S, Xiao H. Towards efficient terpenoid biosynthesis: Manipulating IPP and DMAPP supply. Bioresour Bioprocess 2019; 6(1): 1-13.
[http://dx.doi.org/10.1186/s40643-019-0242-z]
[92]
Lewinsohna E, Sitritb Y. Not just colors - carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Technol 2005; 16(9): 407-15.
[http://dx.doi.org/10.1016/j.tifs.2005.04.004]
[93]
Auldridge ME, Mccarty DR, Klee HJ. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 2005; 9(3): 315-21.
[http://dx.doi.org/10.1016/j.pbi.2006.03.005]
[94]
Ibdah M, Azulay Y, Portnoy V, et al. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 2006; 67(15): 1579-89.
[http://dx.doi.org/10.1016/j.phytochem.2006.02.009]
[95]
Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J 2004; 40(6): 882-92.
[http://dx.doi.org/10.1111/j.1365-313X.2004.02263.x]
[96]
Vogel JT, Tieman DM, Sims CA, Odabasi AZ, Clark DG, Klee HJ. Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). J Sci Food Agric 2010; 90(6): 2233-40.
[http://dx.doi.org/10.1002/jsfa.4076]
[97]
Brandi F, Bar E, Mourgues F, et al. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 2011; 11(1): 24.
[http://dx.doi.org/10.1186/1471-2229-11-24]
[98]
Cao S, Liang M, Shi L, et al. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chem 2017; 214: 137-46.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.085]
[99]
Villatoro C, Altisent R, Echeverr G, Graell J, Lara I. Changes in biosynthesis of aroma volatile compounds during on-tree maturation of ‘Pink Lady ®’ apples. Postharvest Biol Technol 2008; 47(3): 286-95.
[http://dx.doi.org/10.1016/j.postharvbio.2007.07.003]
[100]
Liu M, Chervin C. Ethylene and fruit ripening. In: Reference Module in Food Science. Elsevier 2017.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21256-0]
[101]
Cherian S, Figueroa CR, Nair H. ‘Movers and shakers’ in the regulation of fruit ripening: A cross-dissection of climacteric versus non-climacteric fruit. J Exp Bot 2014; 65(17): 4705-22.
[http://dx.doi.org/10.1093/jxb/eru280]
[102]
Cara B, Giovannoni JJ. Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci 2008; 175(1): 106-13.
[http://dx.doi.org/10.1016/j.plantsci.2008.03.021]
[103]
Tao X, Wu Q, Li J, Wang D, Nassarawa SS, Ying T. Ethylene biosynthesis and signal transduction are enhanced during accelerated ripening of postharvest tomato treated with exogenous methyl jasmonate. Sci Hortic 2021; 281: 1-12.
[http://dx.doi.org/10.1016/j.scienta.2021.109965]
[104]
Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 1984; 35(132): 155-89.
[http://dx.doi.org/10.1146/annurev.pp.35.060184.001103]
[105]
Park CH, Roh J, Youn J, et al. Molecules and cells arabidopsis ACC oxidase 1 coordinated by multiple signals mediates ethylene biosynthesis and is involved in root development. Mol Cells 2018; 41(10): 923-32.
[106]
Lelievre J, Latche A, Jones B, Bouzayen M, Pech J. Ethylene and fruit ripening. Physiol Plant 1997; 101(4): 727-39.
[http://dx.doi.org/10.1111/j.1399-3054.1997.tb01057.x]
[107]
Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 2011; 45(1): 41-59.
[http://dx.doi.org/10.1146/annurev-genet-110410-132507]
[108]
Thewes FR, Both V, Brackmann A, Ferreira DDF, Wagner R. 1-methylcyclopropene effects on volatile profile and quality of ‘Royal Gala’ apples produced in Southern Brazil and stored in controlled atmosphere. Cienc Rural 2015; 45(12): 2259-66.
[http://dx.doi.org/10.1590/0103-8478cr20141613]
[109]
Abdi N, Holford P, Mcglasson WB, Mizrahi Y. Ripening behaviour and responses to propylene in four cultivars of Japanese type plums. Postharvest Biol Technol 1997; 12(1): 21-34.
[http://dx.doi.org/10.1016/S0925-5214(97)00041-0]
[110]
Defilippi BG, Kader AA, Dandekar AM. Apple aroma: Alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci 2005; 168(5): 1199-210.
[http://dx.doi.org/10.1016/j.plantsci.2004.12.018]
[111]
Kondo S, Setha S, Rudell DR, Buchanan DA, Mattheis JP. Aroma volatile biosynthesis in apples affected by 1-MCP and methyl jasmonate. Postharvest Biol Technol 2005; 36(1): 61-8.
[http://dx.doi.org/10.1016/j.postharvbio.2004.11.005]
[112]
García-Rojas M, Morgan A, Gudenschwager O, et al. Biosynthesis of fatty acids-derived volatiles in ‘Hass’ avocado is modulated by ethylene and storage conditions during ripening. Sci Hortic 2016; 202: 91-8.
[http://dx.doi.org/10.1016/j.scienta.2016.02.024]
[113]
Zhu X, Shen L, Fu D, et al. Effects of the combination treatment of 1-MCP and ethylene on the ripening of harvested banana fruit. Postharvest Biol Technol 2015; 107: 23-32.
[http://dx.doi.org/10.1016/j.postharvbio.2015.04.010]
[114]
Magalhães HCR, Filho EGA, Garruti D dos S, Massaretto IL, Purgatto E. Effect of postharvest methyl jasmonate and ethylene treatments on the biosynthesis of volatile compounds of hot pepper fruits. Sci Hortic 2021; 289.
[http://dx.doi.org/10.1016/j.scienta.2021.110477]
[115]
Garde-Cerdán T, Portu J, López R, Santamaría P. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content. Food Chem 2016; 203: 536-9.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.049]
[116]
Luo Z, Chen C, Xie J. Effect of salicylic acid treatment on alleviating postharvest chilling injury of ‘ Qingnai ’ plum fruit. Postharvest Biol Technol 2011; 62(2): 115-20.
[http://dx.doi.org/10.1016/j.postharvbio.2011.05.012]
[117]
Wang L, Baldwin EA, Bai J. Recent advance in aromatic volatile research in tomato fruit: the metabolisms and regulations. Food Bioprocess Technol 2016; 9(2): 203-16.
[http://dx.doi.org/10.1007/s11947-015-1638-1]
[118]
Li DP, Xu YF, Sun LP, et al. Salicylic acid, ethephon, and methyl jasmonate enhance ester regeneration in 1-MCP-treated apple fruit after long-term cold storage. J Agric Food Chem 2006; 54(11): 3887-95.
[http://dx.doi.org/10.1021/jf060240j]
[119]
Reyes-Díaz M, Lobos T, Cardemil L, et al. Methyl jasmonate: An alternative for improving the quality and health properties of fresh fruits. Molecules 2016; 21(6): 1-18.
[http://dx.doi.org/10.3390/molecules21060567]
[120]
Wasternack C, Song S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 2017; 68(6): 1303-21.
[http://dx.doi.org/10.1093/jxb/erw443]
[121]
Patt JM, Robbins PS, Niedz R, Mccollum G, Alessandro R. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing. PLoS One 2018; 13(3): 1-25.
[http://dx.doi.org/10.1371/journal.pone.0193724]
[122]
Concha CM, Figueroa NE, Poblete LA, Oñate FA, Schwab W, Figueroa CR. Plant physiology and biochemistry methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiol Biochem 2013; 70: 433-44.
[http://dx.doi.org/10.1016/j.plaphy.2013.06.008]
[123]
Ziosi V, Bonghi C, Bregoli AM, et al. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. J Exp Bot 2008; 59(3): 563-73.
[http://dx.doi.org/10.1093/jxb/erm331]
[124]
Wang SY, Zheng W. Original article Preharvest application of methyl jasmonate increases fruit quality and antioxidant capacity in raspberries. Int J Food Sci Technol 2005; 40(2): 187-95.
[http://dx.doi.org/10.1111/j.1365-2621.2004.00930.x]
[125]
Wang S Y, Bowman L, Ding M. Food Chemistry Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. 2008; 107: 1261-9.
[http://dx.doi.org/10.1016/j.foodchem.2007.09.065]
[126]
Mustafa MA, Ali A, Seymour G, Tucker G. Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage. Sci Hortic 2018; 231: 89-96.
[http://dx.doi.org/10.1016/j.scienta.2017.09.041]
[127]
Han Y, Chen C, Yan Z, Li J, Wang Y. The methyl jasmonate accelerates the strawberry fruits ripening process. Sci Hortic 2019; 249(2): 250-6.
[http://dx.doi.org/10.1016/j.scienta.2019.01.061]
[128]
Lv J, Zhang M, Zhang J, et al. Effects of methyl jasmonate on expression of genes involved in ethylene biosynthesis and signaling pathway during postharvest ripening of apple fruit. Sci Hortic 2018; 229: 157-66.
[http://dx.doi.org/10.1016/j.scienta.2017.11.007]
[129]
Kondo S, Yamada H, Setha S. Effect of jasmonates differed at fruit ripening stages on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in pears. J Am Soc Hortic Sci 2007; 132(1): 120-5.
[http://dx.doi.org/10.21273/JASHS.132.1.120]
[130]
Yu M, Shen L, Fan B, Zhao D, Zheng Y, Sheng J. The effect of MeJA on ethylene biosynthesis and induced disease resistance to Botrytis cinerea in tomato. Postharvest Biol Technol 2009; 54(3): 153-8.
[http://dx.doi.org/10.1016/j.postharvbio.2009.07.001]
[131]
Mukkun L, Singh Z. Methyl jasmonate plays a role in fruit ripening of ‘Pajaro’ strawberry through stimulation of ethylene biosynthesis. Sci Hortic (Amsterdam) 2009; 123(1): 5-10.
[http://dx.doi.org/10.1016/j.scienta.2009.07.006]
[132]
Moreno F de la P, Blanch GP, Flores G, Luisa M. Development of a method based on on-line reversed phase liquid chromatography and gas chromatography coupled by means of an adsorption - desorption interface for the analysis of selected chiral volatile compounds in methyl jasmonate treated strawberries. J Chromatograp 2010; 1217: 1083-8.
[http://dx.doi.org/10.1016/j.chroma.2009.10.037]
[133]
Kausch KD, Sobolev AP, Goyal RK, et al. Methyl jasmonate deficiency alters cellular metabolome, including the aminome of tomato (Solanum lycopersicum L.) fruit. Amino Acids 2012; 42(2-3): 843-56.
[http://dx.doi.org/10.1007/s00726-011-1000-5]
[134]
Yan C, Xie D. Jasmonate in plant defence: Sentinel or double agent? Plant Biotechnol J 2015; 13(9): 1233-40.
[http://dx.doi.org/10.1111/pbi.12417]
[135]
Yan Z, Chen J, Li X. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 2013; 98: 203-9.
[http://dx.doi.org/10.1016/j.ecoenv.2013.08.019]
[136]
Blanch GP, Flores G, del Castillo MLR. Influence of methyl jasmonate in conjunction with ethanol on the formation of volatile compounds in berries belonging to the Rosaceae. Postharvest Biol Technol 2011; 62(2): 168-78.
[http://dx.doi.org/10.1016/j.postharvbio.2011.05.003]
[137]
Gutiérrez-Gamboa G, Pérez-Álvarez EP, Rubio-Bretón P, Garde-Cerdán T. Changes on grape volatile composition through elicitation with methyl jasmonate, chitosan, and a yeast extract in Tempranillo (Vitis vinifera L.) grapevines. Sci Hortic 2019; 244: 257-62.
[http://dx.doi.org/10.1016/j.scienta.2018.09.063]
[138]
Trainotti L, Tadiello A, Casadoro G. The involvement of auxin in the ripening of climacteric fruits comes of age: The hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 2007; 58(12): 3299-308.
[http://dx.doi.org/10.1093/jxb/erm178]
[139]
Wu Q, Tao X, Ai X, et al. Effect of exogenous auxin on aroma volatiles of cherry tomato (Solanum lycopersicum L.) fruit during postharvest ripening. Postharvest Biol Technol 2018; 146: 108-16.
[http://dx.doi.org/10.1016/j.postharvbio.2018.08.010]
[140]
El-Sharkawy I, Sherif S, Sullivan AJ, Jayasankar S. Stimulated auxin levels enhance plum fruit ripening, but limit shelf-life characteristics. Postharvest Biol Technol 2016; 112: 215-23.
[http://dx.doi.org/10.1016/j.postharvbio.2015.09.012]
[141]
Liu X, Barkawi L, Gardner G, Cohen JD. Transport of indole-3-butyric acid and indole-3-acetic acid in arabidopsis hypocotyls using stable. Plant Physiol 2012; 158(4): 1988-2000.
[http://dx.doi.org/10.1104/pp.111.191288]
[142]
Purgatto E, Lajolo FM, Nascimento JRO, Cordenunsi BR. Inhibition of β-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta 2001; 212: 823-8.
[143]
Moro L, Hassimotto NMA, Purgatto E. Postharvest auxin and methyl jasmonate effect on anthocyanin biosynthesis in red raspberry (Rubus idaeus L.). J Plant Growth Regul 2017; 36(3): 773-82.
[http://dx.doi.org/10.1007/s00344-017-9682-x]
[144]
Padmanabhan P, Mizran A, Sullivan JA, Paliyath G. Strawberries. Encyclop Food Health 2016; pp. 193-8.
[145]
Kondo S, Settsu K, Jitratham A. How Application Times of 2,4-DP influence the ripening capacity of ‘La Franceʼ Pears. HortScience 2004; 39: 101-4.
[146]
Li J, Yuan R. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ Apples. J Plant Growth Regul 2008; 27(3): 283-95.
[http://dx.doi.org/10.1007/s00344-008-9055-6]
[147]
Wu Q, Tao X, Ai X, et al. Contribution of abscisic acid to aromatic volatiles in cherry tomato (Solanum lycopersicum L.) fruit during postharvest ripening. Plant Physiol Biochem 2018; 130(5): 205-14.
[http://dx.doi.org/10.1016/j.plaphy.2018.06.039]
[148]
Leng P, Yuan B, Guo Y. The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 2014; 65(16): 4577-88.
[http://dx.doi.org/10.1093/jxb/eru204]
[149]
Soto A, Ruiz KB, Ravaglia D, Costa G, Torrigiani P. Plant Physiology and Biochemistry ABA may promote or delay peach fruit ripening through modulation of ripening- and hormone-related gene expression depending on the developmental stage. Plant Physiol Biochem 2013; 64: 11-24.
[http://dx.doi.org/10.1016/j.plaphy.2012.12.011]
[150]
Wang S, Saito T, Ohkawa K, et al. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata). J Plant Physiol 2016; 192: 90-7.
[http://dx.doi.org/10.1016/j.jplph.2016.01.009]
[151]
Perin EC, Messias S, Borowski JM, et al. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 2019; 271: 516-26.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.213]
[152]
Morales-Quintana L, Ramos P. Chilean strawberry (Fragaria chiloensis): An integrative and comprehensive review. Food Res Int 2019; 119: 769-76.
[http://dx.doi.org/10.1016/j.foodres.2018.10.059]
[153]
Zeng W, Tan B, Deng L, et al. Identification and expression analysis of abscisic acid signal transduction genes during peach fruit ripening. Sci Hortic (Amsterdam) 2020; 270: 109402.
[http://dx.doi.org/10.1016/j.scienta.2020.109402]
[154]
Zhang M, Yuan B, Leng P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 2009; 60(6): 1579-88.
[http://dx.doi.org/10.1093/jxb/erp026]
[155]
Wang S, Saito T, Ohkawa K, et al. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. J Plant Physiol 2018; 221: 85-93.
[http://dx.doi.org/10.1016/j.jplph.2017.12.007]
[156]
Damodaram KJP, Aurade RM, Kempraj V, Roy TK, Shivashankara KS, Verghese A. Salicylic acid induces changes in mango fruit that affect oviposition behavior salicylic acid induces changes in mango fruit that affect oviposition behavior and development of the oriental fruit fly, Bactrocera dorsalis. PLoS One 2015; 10(10): 1-18.
[http://dx.doi.org/10.1371/journal.pone.0139124]
[157]
Wang Y, Li B, Qin G, Li L, Tian S. Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Sci Hortic 2011; 129: 183-8.
[http://dx.doi.org/10.1016/j.scienta.2011.03.021]
[158]
Zhou Y, Ma J, Xie J, Deng L, Yao S, Zeng K. Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid, Pichia membranaefaciens and oligochitosan. Postharvest Biol Technol 2018; 142(2): 81-92.
[http://dx.doi.org/10.1016/j.postharvbio.2018.01.021]
[159]
Jiao W, Li X, Wang X, Cao J, Jiang W. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway. Food Chem 2018; 260: 274-82.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.010]
[160]
Siboza XI, Bertling I, Odindo AO. Enzymatic antioxidants in response to methyl jasmonate and salicylic acid and their e ff ect on chilling tolerance in lemon fruit. Sci Hortic (Amsterdam) 2017; 225: 659-67. [Citrus limon (L.) Burm. F.]
[http://dx.doi.org/10.1016/j.scienta.2017.07.023]
[161]
Ainalidou A, Karamanoli K, Menkissoglu-Spiroudi U, Diamantidisa G, Matsi T. CPPU treatment and pollination: Their combined effect on kiwifruit growth and quality. Sci Hortic 2015; 193: 147-54.
[http://dx.doi.org/10.1016/j.scienta.2015.07.011]
[162]
Luo J, Guo L, Huang Y, et al. Transcriptome analysis reveals the effect of pre-harvest CPPU treatment on the volatile compounds emitted by kiwifruit stored at room temperature. Food Res Int 2017; 102(9): 666-73.
[http://dx.doi.org/10.1016/j.foodres.2017.09.051]
[163]
Honda I, Matsunaga H, Kikuchi K, Matuo S, Fukuda M, Imanishi S. Involvement of cytokinins, 3-indoleacetic acid, and gibberellins in early fruit growth in pepper (Capsicum annuum L.). Hortic J 2017; 86(1): 52-60.
[http://dx.doi.org/10.2503/hortj.MI-120]
[164]
Watanabe M, Segawa H, Murakami M, Sagawa S, Komori S. Effects of plant growth regulators on fruit set and fruit shape of parthenocarpic apple fruits. J Jpn Soc Hortic Sci 2008; 77(4): 350-7.
[http://dx.doi.org/10.2503/jjshs1.77.350]
[165]
Kim JG, Takami Y, Mizugami T, Beppu K, Fukuda T, Kataoka I. Short communication CPPU application on size and quality of hardy kiwifruit. Sci Hortic (Amsterdam) 2006; 110(2): 219-22.
[http://dx.doi.org/10.1016/j.scienta.2006.06.017]
[166]
Qian C, Ren N, Wang J, Xu Q, Chen X, Qi X. Effects of exogenous application of CPPU, NAA and GA 4 + 7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chem 2018; 243: 410-3.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.150]
[167]
Wang W. Khalil-ur-rehman M, Feng J, Tao J. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds. J Plant Physiol 2017; 218(5): 155-66.
[http://dx.doi.org/10.1016/j.jplph.2017.08.004]
[168]
Cai H, An X, Han S, et al. Effect of 1-MCP on the production of volatiles and biosynthesis-related gene expression in peach fruit during cold storage. Postharvest Biol Technol 2018; 141: 50-7.
[http://dx.doi.org/10.1016/j.postharvbio.2018.03.003]
[169]
Morales-Sillero A, Pérez AG, Casanova L, García JM. Cold storage of ‘Manzanilla de Sevilla’ and ‘Manzanilla Cacereña’ mill olives from super-high density orchards. Food Chem 2017; 237: 1216-25.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.073]
[170]
Gomes BL, Fabi JP, Purgatto E. Cold storage affects the volatile pro fi le and expression of a putative linalool synthase of papaya fruit. Food Res Int 2016; 89: 654-60.
[http://dx.doi.org/10.1016/j.foodres.2016.09.025]
[171]
Yahaya S, Mardiyya A. Review of post-harvest losses of fruits and vegetables. J Sci Tech Res 2019; 10192-200.
[http://dx.doi.org/10.26717/BJSTR.2019.13.002448]
[172]
Gonzalez C, Zanor MI, Ré MD, et al. Chilling tolerance of Micro-Tom fruit involves changes in the primary metabolite levels and in the stress response. Postharvest Biol Technol 2019; 148: 58-67.
[http://dx.doi.org/10.1016/j.postharvbio.2018.10.010]
[173]
Souza MC. de, Teixeira LJQ, Rocha CT, da, Mataveli GA. Employment in the cold food storage: Review. Encicl Biosf 2013; 9: 1027-46.
[174]
Bai J, Baldwin EA, Imahori Y, Kostenyuk I, Burns J, Brecht JK. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit. Postharvest Biol Technol 2011; 60(2): 111-20.
[http://dx.doi.org/10.1016/j.postharvbio.2010.12.002]
[175]
Aubert C, Bony P, Chalot G, Hero V. Changes in physicochemical characteristics and volatile compounds of apricot (Prunus armeniaca L. cv. Bergeron) during storage and post-harvest maturation. Food Chem 2010; 119(4): 1386-98.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.018]
[176]
Facundo HV, Garruti D, Dias CTS, Cordenunsi BR, Lajolo FM. Influence of different banana cultivars on volatile compounds during ripening in cold storage. Food Res Int 2012; 49(2): 626-33.
[http://dx.doi.org/10.1016/j.foodres.2012.08.013]
[177]
Günther CS, Matich AJ, Marsh KB, Nicolau L. Phytochemistry (Methylsulfanyl) alkanoate ester biosynthesis in Actinidia chinensis kiwifruit and changes during cold storage. Phytochemistry 2010; 71(7): 742-50.
[http://dx.doi.org/10.1016/j.phytochem.2010.01.016]
[178]
Wang L, Baldwin EA, Plotto A, et al. Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature. Postharvest Biol Technol 2015; 108: 28-38.
[http://dx.doi.org/10.1016/j.postharvbio.2015.05.005]
[179]
Oliveira M, Abadias M, Usall J, Torres R, Teixidó N, Viña I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables - A review. Trends Food Sci Technol 2015; 46(1): 13-26.
[http://dx.doi.org/10.1016/j.tifs.2015.07.017]
[180]
Thompson AK, Mongkut K. Controlled atmosphere technology Reference Module in Food Science. Elsevier 2016.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21136-0]
[181]
Mditshwa A, Amos O, Linus U. Recent developments on dynamic controlled atmosphere storage of apples - A review. Food Packag Shelf Life 2018; 16(2): 59-68.
[http://dx.doi.org/10.1016/j.fpsl.2018.01.011]
[182]
Fragoso A, Mújica-Paz H. Controlled atmosphere storage: Effect on fruit and vegetables. Encyclopedia of Food and Health. 2016; pp. 308-11.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00197-5]
[183]
Teixeira GH de A, Santos LO. Durigan LCCJ, Durigan JF. Effect of carbon dioxide (CO2) and oxygen (O2) levels on quality of ‘Palmer’ mangoes under controlled atmosphere storage. J Food Sci Technol 2018; 55(1): 145-56.
[http://dx.doi.org/10.1007/s13197-017-2873-4]
[184]
Thewes F, Brackmann A, Anese R, Bronzatto E, Schultz E, Wagner R. Dynamic controlled atmosphere storage suppresses metabolism and enhances volatile concentrations of ‘Galaxy’ apple harvested at three maturity stages. Postharvest Biol Technol 2017; 127: 1-13.
[http://dx.doi.org/10.1016/j.postharvbio.2017.01.002]
[185]
Stanger MC, Steffensa CA, Soethea C, et al. Phenolic compounds content and antioxidant activity of ‘Galaxy’ apples stored in dynamic controlled atmosphere and ultralow oxygen conditions. Postharvest Biol Technol 2018; 144(5): 70-6.
[http://dx.doi.org/10.1016/j.postharvbio.2018.05.014]
[186]
Hendges M, Neuwald D, Steffens C, Vidrih R, Zlatic E, Amarante TCV. 1-MCP and storage conditions on the ripening and production of aromatic compounds in Conference and Alexander Lucas pears harvested at different maturity stages. Postharvest Biol Technol 2018; 146(6): 18-25.
[http://dx.doi.org/10.1016/j.postharvbio.2018.08.006]
[187]
Lumpkin C, Fellman JK, Rudell DR, Mattheis JP. Postharvest Biology and Technology ‘ Fuji ’ apple (Malus domestica Borkh.) volatile production during high pCO2 controlled atmosphere storage. Postharvest Biol Technol 2015; 100: 234-43.
[http://dx.doi.org/10.1016/j.postharvbio.2014.10.008]
[188]
Cefola M, Damascelli A, Lippolis V, et al. Relationships among volatile metabolites, quality and sensory parameters of ‘Italia’ table grapes assessed during cold storage in low or high CO2 modified atmospheres. Postharvest Biol Technol 2018; 142: 124-34.
[http://dx.doi.org/10.1016/j.postharvbio.2017.09.002]
[189]
Burdon J, Lallu N, Billing D, et al. Carbon dioxide scrubbing systems alter the ripe fruit volatile profiles in controlled-atmosphere stored ‘Hayward’ kiwifruit. Postharvest Biol Technol 2005; 35(2): 133-41.
[http://dx.doi.org/10.1016/j.postharvbio.2004.07.010]
[190]
Belay ZA, Caleb OJ, Mahajan PV, Fröhling A, Opara UL. A simplex lattice design to optimise active modified atmosphere for storing pomegranate (cv. Wonderful) arils: Part II, determining optimum gas for maintaining quality attributes. Biosyst Eng 2018; 8: 322-35.
[http://dx.doi.org/10.1016/j.biosystemseng.2018.11.009]
[191]
Yang D, Balandrán-Quintana R, Ruiz C, Toledo R, Kays S. Effect of hyperbaric, controlled atmosphere, and UV treatments on peach volatiles. Postharvest Biol Technol 2009; 51(3): 334-41.
[http://dx.doi.org/10.1016/j.postharvbio.2008.09.005]
[192]
Bovi GG, Caleb OJ, Ilte K, Rauh C, Mahajan PV. Impact of modified atmosphere and humidity packaging on the quality, off-odour development and volatiles of ‘Elsanta’ strawberries. Food Packag Shelf Life 2018; 16(4): 204-10.
[http://dx.doi.org/10.1016/j.fpsl.2018.04.002]
[193]
Diffey BL. Sources and measurement of ultraviolet radiation. Methods 2002; 28(1): 4-13.
[http://dx.doi.org/10.1016/S1046-2023(02)00204-9]
[194]
Santin M, Lucini L, Castagna A, Chiodelli G, Hauser M, Ranieri A. Postharvest Biology and Technology Post-harvest UV-B radiation modulates metabolite pro fi le in peach fruit. Postharvest Biol Technol 2018; 139: 127-34.
[http://dx.doi.org/10.1016/j.postharvbio.2018.02.001]
[195]
Severo J, Tiecher A, Pirrello J, et al. UV-C radiation modifies the ripening and accumulation of Ethylene Response Factor (ERF) transcripts in tomato fruit. Postharvest Biol Technol 2015; 102: 9-16.
[http://dx.doi.org/10.1016/j.postharvbio.2015.02.001]
[196]
Mariz-Ponte N, Martins S, Gonçalves A, et al. The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Sci Hortic 2019; 246: 777-84.
[http://dx.doi.org/10.1016/j.scienta.2018.11.058]
[197]
Diesler K, Golombek P, Kromm L, et al. UV-C treatment of grape must: Microbial inactivation, toxicological considerations and influence on chemical and sensory properties of white wine. Innov Food Sci Emerg Technol 2019; 52(1): 291-304.
[http://dx.doi.org/10.1016/j.ifset.2019.01.005]
[198]
Xu Y, Charles MT, Luo Z, Roussel D, Rolland D. Potential link between fruit yield, quality parameters and phytohormonal changes in preharvest UV-C treated strawberry. Plant Physiol Biochem 2017; 116: 80-90.
[http://dx.doi.org/10.1016/j.plaphy.2017.05.010]
[199]
Severo J, de Oliveira IR, Bott R, et al. Preharvest UV-C radiation impacts strawberry metabolite content and volatile organic compound production. Lebensm Wiss Technol 2017; 85: 390-3.
[http://dx.doi.org/10.1016/j.lwt.2016.10.032]
[200]
Eichholz I, Huyskens-keil S, Keller A, Ulrich D, Kroh LW, Rohn S. UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem 2011; 126(1): 60-4.
[http://dx.doi.org/10.1016/j.foodchem.2010.10.071]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy