Review Article

氧化石墨烯和还原氧化石墨烯在癌症诊断和治疗中的潜力

卷 29, 期 26, 2022

发表于: 10 May, 2022

页: [4529 - 4546] 页: 18

弟呕挨: 10.2174/0929867329666220208092157

价格: $65

摘要

纳米技术是工程智能纳米系统在癌症靶向诊断和治疗中的前沿研究领域。对各种类型的实体肿瘤的有效治疗应该理想地以恶性细胞和组织为目标,同时对体内的健康细胞不产生影响。纳米氧化石墨烯(GO)和还原氧化石墨烯(rGO)具有非凡的化学用途、高比表面积和超自然的物理性能。氧化石墨烯和还原氧化石墨烯表面的良好组装所产生的协同效应不仅产生了必要的光学、机械行为,而且还产生了电子行为。在多模式癌症治疗中,开发具有巨大潜力的新型多功能复合纳米颗粒被广泛考虑。氧化石墨烯和还原氧化石墨烯是注入光子能量的可编程靶向投递系统,可用于光热处理。其显著的特性表明其可作为生物传感器、生物成像用于癌症诊断。本文重点介绍了氧化石墨烯、还原氧化石墨烯在癌症诊断和治疗方面的重要应用,并概述了氧化石墨烯、还原氧化石墨烯在癌症治疗中可能受影响的细胞信号通路。

关键词: 氧化石墨烯/还原氧化石墨烯,癌症诊断,靶向传递,光热,生物传感器,生物成像,细胞信号。

[1]
Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2017, 390(10100), 1345-1422.
[http://dx.doi.org/10.1016/S0140-6736(17)32366-8] [PMID: 28919119]
[2]
Bhardwaj, V.; Kaushik, A. Biomedical applications of nanotechnology and nanomaterials, micromachines. Micromachines, 2017, 8(10), 298.
[http://dx.doi.org/10.3390/mi8100298]
[3]
Pastrana-Martínez, L.M.; Pereira, N.; Lima, R.; Faria, J.L.; Gomes, H.T.; Silva, A.M.T. Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst. Chem. Eng. J., 2015, 261, 45-52.
[http://dx.doi.org/10.1016/j.cej.2014.04.117]
[4]
Wang, C.; Zhao, M.; Li, J.; Yu, J.; Sun, S.; Ge, S.; Guo, X.; Xie, F.; Jiang, B.; Wujcik, E.K.; Huang, Y.; Wang, N.; Guo, Z. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer (Guildf.), 2017, 131, 263-271.
[http://dx.doi.org/10.1016/j.polymer.2017.10.049]
[5]
Liu, M.; Wang, X.; Zhu, D.; Li, L.; Duan, H.; Xu, Z.; Wang, Z.; Gan, L. Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chem. Eng. J., 2017, 308, 240-247.
[http://dx.doi.org/10.1016/j.cej.2016.09.061]
[6]
Lyu, Y.; Pu, K. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv. Sci. (Weinh.), 2017, 4(6), 1600481.
[http://dx.doi.org/10.1002/advs.201600481] [PMID: 28638783]
[7]
Keramat, A.; Zare-Dorabei, R. Ultrasound-assisted dispersive magnetic solid phase extraction for preconcentration and determination of trace amount of Hg (II) ions from food samples and aqueous solution by magnetic graphene oxide (Fe3O4@GO/2-PTSC): Central composite design optimization. Ultrason. Sonochem., 2017, 38, 421-429.
[http://dx.doi.org/10.1016/j.ultsonch.2017.03.039] [PMID: 28633843]
[8]
Theodorakos, I.; Zacharatos, F.; Geremia, R.; Karnakis, D.; Zergioti, I. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci., 2015, 336, 157-162.
[http://dx.doi.org/10.1016/j.apsusc.2014.10.120]
[9]
Pourjavadi, A.; Kohestanian, M.; Shirzad, M. Synthesis and characterization of magnetic hybrid nanomaterials via RAFT polymerization: A pH sensitive drug delivery system. Colloids Surf. B Biointerfaces, 2019, 174, 153-160.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.006] [PMID: 30448712]
[10]
Novoselov, K.S. Electric field effect in atomically thin carbon films Science, 2004, 306, 666-669.
[http://dx.doi.org/10.1126/science.1102896]
[11]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200.
[http://dx.doi.org/10.1038/nature04233] [PMID: 16281030]
[12]
Geim, A.K.; Novoselov, K.S. The rise of graphene. In: Nanoscience Technology; Macmillan Publishers Ltd: UK, 2009; pp. 11-19.
[http://dx.doi.org/10.1142/9789814287005_0002]
[13]
Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater., 2013, 25(2), 168-186.
[http://dx.doi.org/10.1002/adma.201203229] [PMID: 23161646]
[14]
Gonçalves, G.; Vila, M.; Portolés, M.; Vallet-Regi, M.; Gracio, J.; Marques, P.A.A.P. Nano-graphene oxide: A potential multifunctional platform for cancer therapy. Adv. Healthc. Mater., 2014, 3, 956-956.
[http://dx.doi.org/10.1002/adhm.201400329] [PMID: 23526812]
[15]
Shi, J.; Fang, Y. Biomedical applications of graphene. Graphene, 2018, 2(3), 215-232.
[http://dx.doi.org/10.1016/B978-0-12-812651-6.00009-4]
[16]
Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci., 2011, 4, 2826-2830.
[http://dx.doi.org/10.1039/c1ee01198g]
[17]
Song, S.; Shen, H.; Wang, Y.; Chu, X.; Xie, J.; Zhou, N.; Shen, J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf. B Biointerfaces, 2020, 185, 110596.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110596] [PMID: 31707226]
[18]
Chung, C.; Kim, Y-K.; Shin, D.; Ryoo, S-R.; Hong, B.H.; Min, D-H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res., 2013, 46(10), 2211-2224.
[http://dx.doi.org/10.1021/ar300159f] [PMID: 23480658]
[19]
Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure Chem., 2018, 8, 123-137.
[http://dx.doi.org/10.1007/s40097-018-0265-6]
[20]
Gao, W. Graphene Oxide: Reduction recipes, spectroscopy, and applications; Springer: New York, 2015.
[http://dx.doi.org/10.1007/978-3-319-15500-5]
[21]
Dimiev, A.M.; Eigler, S. Graphene oxide: Fundamentals and applications; John Wiley & Sons: New Jersy, USA, 2016.
[http://dx.doi.org/10.1002/9781119069447]
[22]
Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102, 4477-4482.
[http://dx.doi.org/10.1021/jp9731821]
[23]
Robinson, J.T.; Perkins, F.K.; Snow, E.S.; Wei, Z.; Sheehan, P.E. Reduced graphene oxide molecular sensors. Nano Lett., 2008, 8(10), 3137-3140.
[http://dx.doi.org/10.1021/nl8013007] [PMID: 18763832]
[24]
Hummers, W.S., Jr; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80, 1339.
[http://dx.doi.org/10.1021/ja01539a017]
[25]
Curie, M. Sur le poids atomique du Radium. Le Radium., 1907, 4, 349-352.
[http://dx.doi.org/10.1051/radium:01907004010034900]
[26]
Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges., 1899, 32, 1394-1399.
[http://dx.doi.org/10.1002/cber.18990320208]
[27]
Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.W.; Voon, C.H. Synthesis of graphene oxide using modified hummers method: Solvent influence. Elsevier, 2017, pp. 469-477.
[http://dx.doi.org/10.1016/j.proeng.2017.04.118]
[28]
Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient synthesis of Graphene Oxide based on improved hummers method. Sci. Rep., 2016, 6, 36143.
[http://dx.doi.org/10.1038/srep36143] [PMID: 27808164]
[29]
Wei, Z.; Wang, D.; Kim, S.; Kim, S.Y.; Hu, Y.; Yakes, M.K.; Laracuente, A.R.; Dai, Z.; Marder, S.R.; Berger, C.; King, W.P.; De Heer, W.A.; Sheehan, P.E.; Riedo, E. Nanoscale tunable reduction of graphene oxide for graphene electronics Science (80-.), 2010, 328, 1373-1376.
[http://dx.doi.org/10.1126/science.1188119]
[30]
De Silva, K.K.H.; Huang, H-H.; Joshi, R.K.; Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon N.Y., 2017, 119, 190-199.
[http://dx.doi.org/10.1016/j.carbon.2017.04.025]
[31]
Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys., 2018, 204, 1-7.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.020]
[32]
Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by modified hummers method and its thermal reduction to obtain Reduced Graphene Oxide (rGO)*. Graphene., 2017, 06, 1-18.
[http://dx.doi.org/10.4236/graphene.2017.61001]
[33]
Xie, X.; Zhou, Y.; Huang, K. Advances in microwave-assisted production of reduced graphene oxide. Front Chem., 2019, 7, 355.
[http://dx.doi.org/10.3389/fchem.2019.00355] [PMID: 31214562]
[34]
Lazauskas, A.; Marcinauskas, L.; Andrulevicius, M. Photothermal reduction of thick graphene oxide multilayer films via direct laser writing: Morphology, structural and chemical properties. Superlattices Microstruct., 2018, 122, 36-45.
[http://dx.doi.org/10.1016/j.spmi.2018.08.024]
[35]
Xue, B.; Zou, Y.; Yang, Y. A UV-light induced photochemical method for graphene oxide reduction. J. Mater. Sci., 2017, 52, 12742-12750.
[http://dx.doi.org/10.1007/s10853-017-1266-4]
[36]
Wu, J.; Wang, Y.S.; Yang, X.Y.; Liu, Y.Y.; Yang, J.R.; Yang, R.; Zhang, N. Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology, 2012, 23(35), 355101.
[http://dx.doi.org/10.1088/0957-4484/23/35/355101] [PMID: 22875697]
[37]
Nayak, T.R.; Andersen, H.; Makam, V.S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P.L.R.; Ahn, J.H.; Hong, B.H.; Pastorin, G.; Özyilmaz, B. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano, 2011, 5(6), 4670-4678.
[http://dx.doi.org/10.1021/nn200500h] [PMID: 21528849]
[38]
Wang, S.; Yu, J. Bandgap modulation of partially chlorinated graphene (C4 Cl) nanosheets via biaxial strain and external electric field: a computational study. Appl. Phys., A Mater. Sci. Process., 2018, 124, 1-9.
[http://dx.doi.org/10.1007/s00339-018-1906-9]
[39]
Balandin, A.A.; Ghosh, S.; Teweldebrhan, D.; Calizo, I.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics. AIP, 2008, 92, 151911.
[http://dx.doi.org/10.1109/SNW.2008.5418404]
[40]
Wu, Z.S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang, C.; Cheng, H.M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 2009, 3(2), 411-417.
[http://dx.doi.org/10.1021/nn900020u] [PMID: 19236079]
[41]
Mahanta, N.K.; Abramson, A.R. Thermal conductivity of Graphene and Graphene Oxide nanoplatelets. In: 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. 2012 30 May-1 June 2012; San Diego, CA, USA.
[http://dx.doi.org/10.1109/ITHERM.2012.6231405]
[42]
Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem., 2009, 1(5), 403-408.
[http://dx.doi.org/10.1038/nchem.281] [PMID: 21378895]
[43]
Wang, S.K.; Wang, J. Valley precession in graphene superlattices. Phys. Rev. B Condens. Matter Mater. Phys., 2015, 92, 75419.
[http://dx.doi.org/10.1103/PhysRevB.92.075419]
[44]
Wei-Wei, T.; Bo, L.; Qian, D.; Sa-Ke, W. Simulation of electronic total-reflection effect in a graphene junction. Commum. Theor. Phys., 2014, 61, 391.
[http://dx.doi.org/10.1088/0253-6102/61/3/20]
[45]
Zhang, H.; Lee, G.; Fonseca, A.F.; Borders, T.L.; Cho, K. Isotope effect on the thermal conductivity of graphene. J. Nanomater, 2010, 2010, 1-5.
[http://dx.doi.org/10.1155/2010/537657]
[46]
Wang, S.; Chou, J-P.; Ren, C.; Tian, H.; Yu, J.; Sun, C.; Xu, Y.; Sun, M. Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure. Sci. Rep., 2019, 9(1), 5208.
[http://dx.doi.org/10.1038/s41598-019-40877-z] [PMID: 30914666]
[47]
Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi, M. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev., 2013, 113(5), 3407-3424.
[http://dx.doi.org/10.1021/cr300335p] [PMID: 23452512]
[48]
Vila, M.; Portolés, M.T.; Marques, P.A.A.P.; Feito, M.J.; Matesanz, M.C.; Ramírez-Santillán, C.; Gonçalves, G.; Cruz, S.M.A.; Nieto, A.; Vallet-Regi, M. Cell uptake survey of pegylated nanographene oxide. Nanotechnology, 2012, 23(46), 465103.
[http://dx.doi.org/10.1088/0957-4484/23/46/465103] [PMID: 23093209]
[49]
Kim, H.; Lee, D.; Kim, J.; Kim, T.I.; Kim, W.J. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano, 2013, 7(8), 6735-6746.
[http://dx.doi.org/10.1021/nn403096s] [PMID: 23829596]
[50]
Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep., 2018, 8(1), 12009.
[http://dx.doi.org/10.1038/s41598-018-30614-3] [PMID: 30104708]
[51]
Lundie, M.; Šljivančanin, Ž.; Tomić, S. Electronic and optical properties of reduced graphene oxide. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 7632-7641.
[http://dx.doi.org/10.1039/C5TC00437C]
[52]
Kravets, V.G.; Grigorenko, A.N.; Nair, R.R.; Blake, P.; Anissimova, S.; Novoselov, K.S.; Geim, A.K. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B Condens. Matter Mater. Phys., 2010, 81, 155413.
[http://dx.doi.org/10.1103/PhysRevB.81.155413]
[53]
Rana, F.; George, P.A.; Strait, J.H.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Spencer, M.G. Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys. Rev. B Condens. Matter Mater. Phys., 2009, 79, 115447.
[http://dx.doi.org/10.1103/PhysRevB.79.115447]
[54]
Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci., 2019, 1, 31-47.
[http://dx.doi.org/10.1016/j.nanoms.2019.02.004]
[55]
Zhang, J.; Wu, S.; Ma, L.; Wu, P.; Liu, J. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Res., 2020, 13, 455-460.
[http://dx.doi.org/10.1007/s12274-020-2629-8]
[56]
Paranthaman, V.; Sundaramoorthy, K.; Chandra, B.; Muthu, S.P.; Alagarsamy, P.; Perumalsamy, R. Investigation on the performance of reduced graphene oxide as counter electrode in dye sensitized solar cell applications. Phys. Status Solidi, 2018, 215, 1800298.
[http://dx.doi.org/10.1002/pssa.201800298]
[57]
Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24(19), 10560-10564.
[http://dx.doi.org/10.1021/la801744a] [PMID: 18759411]
[58]
Chen, J.T.; Fu, Y.J.; An, Q.F.; Lo, S.C.; Huang, S.H.; Hung, W.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale, 2013, 5(19), 9081-9088.
[http://dx.doi.org/10.1039/c3nr02845c] [PMID: 23900571]
[59]
Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci., 2014, 430, 108-112.
[http://dx.doi.org/10.1016/j.jcis.2014.05.033] [PMID: 24998061]
[60]
Shen, A.-J.; Li, D.-L.; Cai, X.-J.; Dong, C.-Y.; Dong, H.-Q.; Wen, H.-Y.; Dai, G.-H.; Wang, P.-J.; Li, Y.-Y. Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. J. Biomed. Mater. Res. A, 2012, 100(9), 2499-506.
[http://dx.doi.org/10.1002/jbm.a.34148]
[61]
Liao, K.H.; Lin, Y.S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces, 2011, 3(7), 2607-2615.
[http://dx.doi.org/10.1021/am200428v] [PMID: 21650218]
[62]
Wang, J.; Cheng, Y.; Chen, L.; Zhu, T.; Ye, K.; Jia, C.; Wang, H.; Zhu, M.; Fan, C.; Mo, X. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater., 2019, 84, 98-113.
[http://dx.doi.org/10.1016/j.actbio.2018.11.032] [PMID: 30471474]
[63]
Palmieri, V.; Perini, G.; De Spirito, M.; Papi, M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. Nanoscale Horiz., 2019, 4(2), 273-290.
[http://dx.doi.org/10.1039/C8NH00318A] [PMID: 32254085]
[64]
Amrollahi-Sharifabadi, M.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomedicine, 2018, 13, 4757-4769.
[http://dx.doi.org/10.2147/IJN.S168731] [PMID: 30174424]
[65]
Vallabani, N.V.S.; Mittal, S.; Shukla, R.K.; Pandey, A.K.; Dhakate, S.R.; Pasricha, R.; Dhawan, A. Toxicity of graphene in normal human lung cells (BEAS-2B). J. Biomed. Nanotechnol., 2011, 7(1), 106-107.
[http://dx.doi.org/10.1166/jbn.2011.1224] [PMID: 21485826]
[66]
Cao, L.; Lu, C.; Wang, Q.; Li, F. Biocompatibility and fabrication of RGO/chitosan film for cartilage tissue recovery. Environ. Toxicol. Pharmacol., 2017, 54, 199-203.
[http://dx.doi.org/10.1016/j.etap.2017.07.006] [PMID: 28787675]
[67]
Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R.P.; Zuo, Y.Y.; Xia, T.; Liu, S. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano, 2015, 9(10), 10498-10515.
[http://dx.doi.org/10.1021/acsnano.5b04751] [PMID: 26389709]
[68]
Balaji, A.; Zhang, J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol., 2017, 8(1), 10.
[http://dx.doi.org/10.1186/s12645-017-0035-z] [PMID: 29250208]
[69]
Gu, H.; Tang, H.; Xiong, P.; Zhou, Z. Biomarkers-based biosensing and bioimaging with graphene for cancer diagnosis. Nanomaterials (Basel), 2019, 9(1), 130.
[http://dx.doi.org/10.3390/nano9010130] [PMID: 30669634]
[70]
Saeed, A.A.; Sánchez, J.L.A.; O’Sullivan, C.K.; Abbas, M.N. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry, 2017, 118, 91-99.
[http://dx.doi.org/10.1016/j.bioelechem.2017.07.002] [PMID: 28802177]
[71]
Tezerjani, M.D.; Benvidi, A.; Rezaeinasab, M.; Jahanbani, S.; Moshtaghioun, S.M.; Youssefi, M.; Zarrini, K. An impedimeric biosensor based on a composite of graphene nanosheets and polyaniline as a suitable platform for prostate cancer sensing. Anal. Methods, 2016, 8, 7507-7515.
[http://dx.doi.org/10.1039/C6AY01524G]
[72]
Mazloum-Ardakani, M.; Barazesh, B.; Khoshroo, A.; Moshtaghiun, M.; Sheikhha, M.H. A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia. Bioelectrochemistry, 2018, 121, 38-45.
[http://dx.doi.org/10.1016/j.bioelechem.2017.12.010] [PMID: 29367018]
[73]
Tabasi, A.; Noorbakhsh, A.; Sharifi, E. Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens. Bioelectron., 2017, 95, 117-123.
[http://dx.doi.org/10.1016/j.bios.2017.04.020] [PMID: 28433858]
[74]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens. Actuators B Chem., 2015, 220, 1145-1151.
[http://dx.doi.org/10.1016/j.snb.2015.06.094]
[75]
Qian, W.; Miao, Z.; Zhang, X-J.; Yang, X-T.; Tang, Y-Y.; Tang, Y.Y.; Hu, L.Y.; Li, S.; Zhu, D.; Cheng, H. Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim. Acta, 2020, 187(7), 407.
[http://dx.doi.org/10.1007/s00604-020-04402-8] [PMID: 32594259]
[76]
Filippidou, M.K.; Loukas, C.M.; Kaprou, G.; Tegou, E.; Petrou, P.; Kakabakos, S.; Tserepi, A.; Chatzandroulis, S. Detection of BRCA1 gene on partially reduced graphene oxide biosensors. Microelectron. Eng., 2019, 216, 111093.
[http://dx.doi.org/10.1016/j.mee.2019.111093]
[77]
Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Ghayour Mobarhan, M.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J. Nanobiotechnology, 2020, 18(1), 11.
[http://dx.doi.org/10.1186/s12951-020-0577-9] [PMID: 31931815]
[78]
Samadi Pakchin, P.; Fathi, M.; Ghanbari, H.; Saber, R.; Omidi, Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens. Bioelectron., 2020, 153, 112029.
[http://dx.doi.org/10.1016/j.bios.2020.112029] [PMID: 31989938]
[79]
Cheng, S-J.; Chiu, H-Y.; Kumar, P.V.; Hsieh, K.Y.; Yang, J-W.; Lin, Y-R.; Shen, Y-C.; Chen, G-Y. Simultaneous drug delivery and cellular imaging using graphene oxide. Biomater. Sci., 2018, 6(4), 813-819.
[http://dx.doi.org/10.1039/C7BM01192J] [PMID: 29417098]
[80]
Campbell, E.; Hasan, M.T.; Pho, C.; Callaghan, K.; Akkaraju, G.R.; Naumov, A.V. Graphene Oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci. Rep., 2019, 9(1), 416.
[http://dx.doi.org/10.1038/s41598-018-36617-4] [PMID: 30674914]
[81]
Li, Q-R.; Jiao, J-B.; Li, L-L.; He, X-P.; Zang, Y.; James, T.D.; Chen, G-R.; Guo, L.; Li, J. Graphene oxide-enhanced cytoskeleton imaging and mitosis tracking. Chem. Commun. (Camb.), 2017, 53(23), 3373-3376.
[http://dx.doi.org/10.1039/C7CC01019B] [PMID: 28265597]
[82]
Enayati, M.; Nemati, A.; Zarrabi, A.; Shokrgozar, M.A. Reduced graphene oxide: An alternative for Magnetic Resonance Imaging contrast agent. Mater. Lett., 2018, 233, 363-366.
[http://dx.doi.org/10.1016/j.matlet.2018.09.044]
[83]
Shi, S.; Yang, K.; Hong, H.; Valdovinos, H.F.; Nayak, T.R.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12), 3002-3009.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.047] [PMID: 23374706]
[84]
Jiang, J.H.; Pi, J.; Jin, H.; Cai, J.Y. Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), S297-S307.
[http://dx.doi.org/10.1080/21691401.2018.1492418] [PMID: 30183382]
[85]
Saifullah, B.; Buskaran, K.; Shaikh, R.B.; Barahuie, F.; Fakurazi, S.; Mohd Moklas, M.A.; Hussein, M.Z. Graphene oxide–PEG–protocatechuic acid nanocomposite formulation with improved anticancer properties. Nanomaterials (Basel), 2018, 8(10), 820.
[http://dx.doi.org/10.3390/nano8100820] [PMID: 30314340]
[86]
Imani, R.; Shao, W.; Taherkhani, S.; Emami, S.H.; Prakash, S.; Faghihi, S. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 147, 315-325.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.015] [PMID: 27543693]
[87]
Yin, F.; Hu, K.; Chen, Y.; Yu, M.; Wang, D.; Wang, Q.; Yong, K.T.; Lu, F.; Liang, Y.; Li, Z. SiRNA delivery with PEGylated graphene oxide nan osheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics, 2017, 7(5), 1133-1148.
[http://dx.doi.org/10.7150/thno.17841] [PMID: 28435453]
[88]
Liang, C.; Song, J.; Zhang, Y.; Guo, Y.; Deng, M.; Gao, W.; Zhang, J. Facile approach to prepare rGO@Fe3O4 microspheres for the magnetically targeted and NIR-responsive chemo-photothermal combination therapy. Nanoscale Res. Lett., 2020, 15(1), 86.
[http://dx.doi.org/10.1186/s11671-020-03320-1] [PMID: 32303922]
[89]
Malekmohammadi, S.; Hadadzadeh, H.; Farrokhpour, H.; Amirghofran, Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: A new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter, 2018, 14(12), 2400-2410.
[http://dx.doi.org/10.1039/C7SM02248D] [PMID: 29512668]
[90]
Lima-Sousa, R.; de Melo-Diogo, D.; Alves, C.G.; Costa, E.C.; Ferreira, P.; Louro, R.O.; Correia, I.J. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr. Polym., 2018, 200, 93-99.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.066] [PMID: 30177213]
[91]
Hu, Y.; He, L.; Ma, W.; Chen, L. Reduced graphene oxide-based bortezomib delivery system for photothermal chemotherapy with enhanced therapeutic efficacy. Polym. Int., 2018, 67, 1648-1654.
[http://dx.doi.org/10.1002/pi.5689]
[92]
Jiang, W.; Mo, F.; Lin, Y.; Wang, X.; Xu, L.; Fu, F. Tumor targeting dual stimuli responsive controllable release nanoplatform based on DNA-conjugated reduced graphene oxide for chemo-photothermal synergetic cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(26), 4360-4367.
[http://dx.doi.org/10.1039/C8TB00670A] [PMID: 32254511]
[93]
Deng, W.; Qiu, J.; Wang, S.; Yuan, Z.; Jia, Y.; Tan, H.; Lu, J.; Zheng, R. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo. Int. J. Nanomedicine, 2018, 13, 439-453.
[http://dx.doi.org/10.2147/IJN.S150977] [PMID: 29403275]
[94]
Barrera, C.C.; Groot, H.; Vargas, W.L.; Narváez, D.M. Efficacy and molecular effects of a reduced graphene oxide/Fe3O4 nanocomposite in photothermal therapy against cancer. Int. J. Nanomedicine, 2020, 15, 6421-6432.
[http://dx.doi.org/10.2147/IJN.S256760] [PMID: 32922009]
[95]
Liu, X.; Wu, X.; Xing, Y.; Zhang, Y.; Zhang, X.; Pu, Q.; Wu, M.; Zhao, J.X. Reduced graphene oxide/mesoporous silica nanocarriers for pH-triggered drug release and photothermal therapy. ACS Appl. Bio Mater., 2020, 3, 2577-2587.
[http://dx.doi.org/10.1021/acsabm.9b01108]
[96]
Eichelmann, A.K.; Matuszcak, C.; Hummel, R.; Haier, J. Role of miRNAs in cell signaling of cancer associated fibroblasts. Int. J. Biochem. Cell Biol., 2018, 101, 94-102.
[http://dx.doi.org/10.1016/j.biocel.2018.05.015] [PMID: 29807095]
[97]
Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; Chakravarty, D.; Daian, F.; Gao, Q.; Bailey, M.H.; Liang, W.W.; Foltz, S.M.; Shmulevich, I.; Ding, L.; Heins, Z.; Ochoa, A.; Gross, B.; Gao, J.; Zhang, H.; Kundra, R.; Kandoth, C.; Bahceci, I.; Dervishi, L.; Dogrusoz, U.; Zhou, W.; Shen, H.; Laird, P.W.; Way, G.P.; Greene, C.S.; Liang, H.; Xiao, Y.; Wang, C.; Iavarone, A.; Berger, A.H.; Bivona, T.G.; Lazar, A.J.; Hammer, G.D.; Giordano, T.; Kwong, L.N.; McArthur, G.; Huang, C.; Tward, A.D.; Frederick, M.J.; McCormick, F.; Meyerson, M.; Van Allen, E.M.; Cherniack, A.D.; Ciriello, G.; Sander, C.; Schultz, N. Oncogenic signaling pathways in the cancer genome atlas. Cell, 2018, 173(2), 321-337.e10.
[http://dx.doi.org/10.1016/j.cell.2018.03.035] [PMID: 29625050]
[98]
Izadi, S.; Moslehi, A.; Kheiry, H.; Karoon Kiani, F.; Ahmadi, A.; Masjedi, A.; Ghani, S.; Rafiee, B.; Karpisheh, V.; Hajizadeh, F.; Atyabi, F.; Assali, A.; Mirzazadeh Tekie, F.S.; Namdar, A.; Ghalamfarsa, G.; Sojoodi, M.; Jadidi-Niaragh, F. Codelivery of HIF-1α siRNA and dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm. Res., 2020, 37(10), 196.
[http://dx.doi.org/10.1007/s11095-020-02892-y] [PMID: 32944844]
[99]
Chen, G-Y.; Yang, H-J.; Lu, C-H.; Chao, Y-C.; Hwang, S-M.; Chen, C-L.; Lo, K-W.; Sung, L-Y.; Luo, W-Y.; Tuan, H-Y.; Hu, Y-C. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials, 2012, 33(27), 6559-6569.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.064] [PMID: 22704844]
[100]
Dudek, I.; Skoda, M.; Jarosz, A.; Szukiewicz, D. The molecular influence of graphene and graphene oxide on the immune system under in vitro and in vivo conditions. Arch. Immunol. Ther. Exp. (Warsz.), 2016, 64(3), 195-215.
[http://dx.doi.org/10.1007/s00005-015-0369-3] [PMID: 26502273]
[101]
Wang, Y.; Xu, J.; Xu, L.; Tan, X.; Feng, L.; Luo, Y.; Liu, J.; Liu, Z.; Peng, R. Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. Carbon N.Y., 2018, 129, 495-503.
[http://dx.doi.org/10.1016/j.carbon.2017.12.012]
[102]
Szczepaniak, J.; Strojny, B.; Chwalibog, E.S.; Jaworski, S.; Jagiello, J.; Winkowska, M.; Szmidt, M.; Wierzbicki, M.; Sosnowska, M.; Balaban, J.; Winnicka, A.; Lipinska, L.; Pilaszewicz, O.W.; Grodzik, M. Effects of reduced graphene oxides on apoptosis and cell cycle of glioblastoma multiforme. Int. J. Mol. Sci., 2018, 19(12), 3939.
[http://dx.doi.org/10.3390/ijms19123939] [PMID: 30544611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy