Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Non-histone Methylation of SET7/9 and its Biological Functions

Author(s): Lili Gao, Weiping Yu, Peng Song* and Qing Li*

Volume 17, Issue 3, 2022

Published on: 24 January, 2022

Page: [231 - 243] Pages: 13

DOI: 10.2174/1574892816666211202160041

Price: $65

Abstract

Background: (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors.

Objective: This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development.

Methods: PubMed was screened for this information.

Results: SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis.

Conclusion: SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.

Keywords: SET7/9, lysine methyltransferase, non-histone protein, methylation, tumorigenesis, teratoma.

[1]
Guo HB, Guo H. Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity. Proc Natl Acad Sci USA 2007; 104(21): 8797-802.
[http://dx.doi.org/10.1073/pnas.0702981104] [PMID: 17517655]
[2]
Zhang C, Hoang N, Leng F, et al. LSD1 demethylase and the methyl-binding protein PHF20L1 prevent SET7 methyltransferase-dependent proteolysis of the stem-cell protein SOX2. J Biol Chem 2018; 293(10): 3663-74.
[http://dx.doi.org/10.1074/jbc.RA117.000342] [PMID: 29358331]
[3]
Qian C, Zhou MM. SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell Mol Life Sci 2006; 63(23): 2755-63.
[http://dx.doi.org/10.1007/s00018-006-6274-5] [PMID: 17013555]
[4]
Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005; 6(11): 838-49.
[http://dx.doi.org/10.1038/nrm1761] [PMID: 16261189]
[5]
Kim KC, Huang S. Histone methyltransferases in tumor suppression. Cancer Biol Ther 2003; 2(5): 491-9.
[http://dx.doi.org/10.4161/cbt.2.5.629] [PMID: 14614313]
[6]
Jiang GL, Huang S. The yin-yang of PR-domain family genes in tumorigenesis. Histol Histopathol 2000; 15(1): 109-17.
[PMID: 10668202]
[7]
Huang J, Perez-Burgos L, Placek BJ, et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 2006; 444(7119): 629-32.
[http://dx.doi.org/10.1038/nature05287] [PMID: 17108971]
[8]
Sampath SC, Marazzi I, Yap KL, et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 2007; 27(4): 596-608.
[http://dx.doi.org/10.1016/j.molcel.2007.06.026] [PMID: 17707231]
[9]
Zhao M, Liang G, Wu X, et al. Abnormal epigenetic modifications in peripheral blood mononuclear cells from patients with alopecia areata. Br J Dermatol 2012; 166(2): 226-73.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10646.x] [PMID: 21936853]
[10]
Subramanian K, Jia D, Kapoor-Vazirani P, et al. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 2008; 30(3): 336-47.
[http://dx.doi.org/10.1016/j.molcel.2008.03.022] [PMID: 18471979]
[11]
Song Y, Zhang J, Tian T, et al. SET7/9 inhibits oncogenic activities through regulation of Gli-1 expression in breast cancer. Tumour Biol 2016; 37(7): 9311-22.
[http://dx.doi.org/10.1007/s13277-016-4822-7] [PMID: 26779630]
[12]
Chen Y, Yang S, Hu J, Yu C, He M, Cai Z. Increased expression of SETD7 promotes cell proliferation by regulating cell cycle and indicates poor prognosis in hepatocellular carcinoma. PLoS One 2016; 11(5): e0154939.
[http://dx.doi.org/10.1371/journal.pone.0154939] [PMID: 27183310]
[13]
Adachi Y, Takeuchi T, Nagayama T, Furihata M. T-cadherin modulates tumor-associated molecules in gallbladder cancer cells. Cancer Invest 2010; 28(2): 120-6.
[http://dx.doi.org/10.3109/07357900903124472] [PMID: 20121546]
[14]
Akiyama Y, Koda Y, Byeon SJ, et al. Reduced expression of SET7/9, a histone mono-methyltransferase, is associated with gastric cancer progression. Oncotarget 2016; 7(4): 3966-83.
[http://dx.doi.org/10.18632/oncotarget.6681] [PMID: 26701885]
[15]
Kim Y, Nam HJ, Lee J, et al. Methylation-dependent regulation of HIF-1alpha stability restricts retinal and tumour angiogenesis. Nat Commun 2016; 7: 10347.
[16]
Lezina L, Aksenova V, Fedorova O, et al. KMT Set7/9 affects genotoxic stress response via the Mdm2 axis. Oncotarget 2015; 6(28): 25843-55.
[http://dx.doi.org/10.18632/oncotarget.4584] [PMID: 26317544]
[17]
Shen C, Wang D, Liu X, et al. SET7/9 regulates cancer cell proliferation by influencing β-catenin stability. FASEB J 2015; 29(10): 4313-23.
[http://dx.doi.org/10.1096/fj.15-273540] [PMID: 26116705]
[18]
Greißel A, Culmes M, Burgkart R, et al. Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol 2016; 25(2): 79-86.
[http://dx.doi.org/10.1016/j.carpath.2015.11.001] [PMID: 26764138]
[19]
Han P, Gao D, Zhang W, et al. Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells. Life Sci 2015; 130: 103-7.
[20]
Yuan H, Reddy MA, Deshpande S, et al. Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. Antioxid Redox Signal 2016; 24(7): 361-75.
[http://dx.doi.org/10.1089/ars.2015.6372] [PMID: 26492974]
[21]
Paneni F, Costantino S, Battista R, et al. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet 2015; 8(1): 150-8.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000671] [PMID: 25472959]
[22]
Okabe J, Orlowski C, Balcerczyk A, et al. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res 2012; 110(8): 1067-76.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.266171] [PMID: 22403242]
[23]
Goru SK, Kadakol A, Pandey A, Malek V, Sharma N, Gaikwad AB. Histone H2AK119 and H2BK120 mono-ubiquitination modulate SET7/9 and SUV39H1 in type 1 diabetes-induced renal fibrosis. Biochem J 2016; 473(21): 3937-49.
[http://dx.doi.org/10.1042/BCJ20160595] [PMID: 27582499]
[24]
Ciccarelli M, Vastolo V, Albano L, et al. Glucose-induced expression of the homeotic transcription factor Prep1 is associated with histone post-translational modifications in skeletal muscle. Diabetologia 2016; 59(1): 176-86.
[http://dx.doi.org/10.1007/s00125-015-3774-6] [PMID: 26453063]
[25]
Al-Haddad R, Karnib N, Assaad R A, et al. Epigenetic changes in diabetes. Neurosci Lett 2016; 625: 64-9.
[http://dx.doi.org/10.1016/j.neulet.2016.04.046] [PMID: 27130819]
[26]
Costantino S, Paneni F, Virdis A, et al. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J 2019; 40(4): 383-91.
[http://dx.doi.org/10.1093/eurheartj/ehx615] [PMID: 29077881]
[27]
Son M J, Kim W K, Park A, et al. Set7/9, a methyltransferase, regulates the thermogenic program during brown adipocyte differentiation through the modulation of p53 acetylation. Mol Cell Endocrinol 2016; 431: 46-53.
[http://dx.doi.org/10.1016/j.mce.2016.04.022] [PMID: 27132805]
[28]
Zuo J, Wang D, Shen H, Liu F, Han J, Zhang X. MicroRNA-153 inhibits tumor progression in esophageal squamous cell carcinoma by targeting SNAI1. Tumour Biol 2016.
[http://dx.doi.org/10.1007/s13277-016-5427-x] [PMID: 27739030]
[29]
Han T, Wan Y, Wang J, et al. Set7 facilitates hepatitis C virus replication via enzymatic activity-dependent attenuation of the IFN-related pathway. J Immunol 2015; 194(6): 2757-68.
[http://dx.doi.org/10.4049/jimmunol.1400583] [PMID: 25681344]
[30]
Hsu CH, Peng KL, Jhang HC, et al. The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription. Oncogene 2012; 31(18): 2335-49.
[http://dx.doi.org/10.1038/onc.2011.415] [PMID: 21963854]
[31]
Wang H, Cao R, Xia L, et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 2001; 8(6): 1207-17.
[http://dx.doi.org/10.1016/S1097-2765(01)00405-1] [PMID: 11779497]
[32]
Nishioka K, Chuikov S, Sarma K, et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 2002; 16(4): 479-89.
[http://dx.doi.org/10.1101/gad.967202] [PMID: 11850410]
[33]
Wilson JR, Jing C, Walker PA, et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 2002; 111(1): 105-15.
[http://dx.doi.org/10.1016/S0092-8674(02)00964-9] [PMID: 12372304]
[34]
Xiao B, Jing C, Wilson JR, et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 2003; 421(6923): 652-6.
[http://dx.doi.org/10.1038/nature01378] [PMID: 12540855]
[35]
Couture JF, Collazo E, Hauk G, Trievel RC. Structural basis for the methylation site specificity of SET7/9. Nat Struct Mol Biol 2006; 13(2): 140-6.
[http://dx.doi.org/10.1038/nsmb1045] [PMID: 16415881]
[36]
Masatsugu T, Yamamoto K. Multiple lysine methylation of PCAF by Set9 methyltransferase. Biochem Biophys Res Commun 2009; 381(1): 22-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.185] [PMID: 19351588]
[37]
Ea CK, Baltimore D. Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc Natl Acad Sci USA 2009; 106(45): 18972-7.
[http://dx.doi.org/10.1073/pnas.0910439106] [PMID: 19864627]
[38]
Chuikov S, Kurash JK, Wilson JR, et al. Regulation of p53 activity through lysine methylation. Nature 2004; 432(7015): 353-60.
[http://dx.doi.org/10.1038/nature03117] [PMID: 15525938]
[39]
Kurash JK, Lei H, Shen Q, et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol Cell 2008; 29(3): 392-400.
[http://dx.doi.org/10.1016/j.molcel.2007.12.025] [PMID: 18280244]
[40]
Kouskouti A, Scheer E, Staub A, Tora L, Talianidis I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell 2004; 14(2): 175-82.
[http://dx.doi.org/10.1016/S1097-2765(04)00182-0] [PMID: 15099517]
[41]
Li Y, Reddy MA, Miao F, et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 2008; 283(39): 26771-81.
[http://dx.doi.org/10.1074/jbc.M802800200] [PMID: 18650421]
[42]
Yang XD, Huang B, Li M, Lamb A, Kelleher NL, Chen LF. Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 2009; 28(8): 1055-66.
[http://dx.doi.org/10.1038/emboj.2009.55] [PMID: 19262565]
[43]
Jiang SY, Wei CC, Shang TT, Lian Q, Wu CX, Deng JY. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts. Biochem Biophys Res Commun 2012; 427(3): 666-70.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.118] [PMID: 23026048]
[44]
Jansen F, Yang X, Franklin BS, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 2013; 98(1): 94-106.
[http://dx.doi.org/10.1093/cvr/cvt013] [PMID: 23341580]
[45]
Pahwa R, Jialal I. Hyperglycemia induces toll-like receptor activity through increased oxidative stress. Metab Syndr Relat Disord 2016; 14(5): 239-41.
[http://dx.doi.org/10.1089/met.2016.29006.pah] [PMID: 27105077]
[46]
Guha M, Bai W, Nadler JL, Natarajan R. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem 2000; 275(23): 17728-39.
[http://dx.doi.org/10.1074/jbc.275.23.17728] [PMID: 10837498]
[47]
El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205(10): 2409-17.
[http://dx.doi.org/10.1084/jem.20081188] [PMID: 18809715]
[48]
Estève PO, Chin HG, Benner J, et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA 2009; 106(13): 5076-81.
[http://dx.doi.org/10.1073/pnas.0810362106] [PMID: 19282482]
[49]
Montenegro MF, Sánchez-Del-Campo L, González-Guerrero R, et al. Tumor suppressor SET9 guides the epigenetic plasticity of breast cancer cells and serves as an early-stage biomarker for predicting metastasis. Oncogene 2016; 35(47): 6143-52.
[http://dx.doi.org/10.1038/onc.2016.154] [PMID: 27132511]
[50]
Chang HW, Wang HC, Chen CY, et al. 5-azacytidine induces anoikis, inhibits mammosphere formation and reduces metalloproteinase 9 activity in MCF-7 human breast cancer cells. Molecules 2014; 19(3): 3149-59.
[http://dx.doi.org/10.3390/molecules19033149] [PMID: 24633350]
[51]
Munro S, Khaire N, Inche A, Carr S, La Thangue NB. Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 2010; 29(16): 2357-67.
[http://dx.doi.org/10.1038/onc.2009.511] [PMID: 20140018]
[52]
Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001; 412(6846): 561-5.
[http://dx.doi.org/10.1038/35087620] [PMID: 11484059]
[53]
Scoumanne A, Chen X. Protein methylation: A new mechanism of p53 tumor suppressor regulation. Histol Histopathol 2008; 23(9): 1143-9.
[http://dx.doi.org/10.14670/HH-23.1143] [PMID: 18581285]
[54]
Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003; 425(6957): 475-9.
[http://dx.doi.org/10.1038/nature02017] [PMID: 14523437]
[55]
Hediger F, Gasser SM. Heterochromatin protein 1: don’t judge the book by its cover! Curr Opin Genet Dev 2006; 16(2): 143-50.
[http://dx.doi.org/10.1016/j.gde.2006.02.013] [PMID: 16503133]
[56]
Markham D, Munro S, Soloway J, O’Connor DP, La Thangue NB. DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep 2006; 7(2): 192-8.
[http://dx.doi.org/10.1038/sj.embor.7400591] [PMID: 16374512]
[57]
Kontaki H, Talianidis I. Lysine methylation regulates E2F1-induced cell death. Mol Cell 2010; 39(1): 152-60.
[http://dx.doi.org/10.1016/j.molcel.2010.06.006] [PMID: 20603083]
[58]
Alla V, Engelmann D, Niemetz A, et al. E2F1 in melanoma progression and metastasis. J Natl Cancer Inst 2010; 102(2): 127-33.
[http://dx.doi.org/10.1093/jnci/djp458] [PMID: 20026813]
[59]
Gaughan L, Stockley J, Wang N, et al. Regulation of the androgen receptor by SET9-mediated methylation. Nucleic Acids Res 2011; 39(4): 1266-79.
[http://dx.doi.org/10.1093/nar/gkq861] [PMID: 20959290]
[60]
Lieber MR. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. BioEssays 1997; 19(3): 233-40.
[http://dx.doi.org/10.1002/bies.950190309] [PMID: 9080773]
[61]
Liu Y, Kao HI, Bambara RA. Flap endonuclease 1: A central component of DNA metabolism. Annu Rev Biochem 2004; 73: 589-615.
[http://dx.doi.org/10.1146/annurev.biochem.73.012803.092453] [PMID: 15189154]
[62]
Zheng L, Jia J, Finger LD, Guo Z, Zer C, Shen B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res 2011; 39(3): 781-94.
[http://dx.doi.org/10.1093/nar/gkq884] [PMID: 20929870]
[63]
Thandapani P, Couturier AM, Yu Z, et al. Lysine methylation of FEN1 by SET7 is essential for its cellular response to replicative stress. Oncotarget 2017; 8(39): 64918-31.
[http://dx.doi.org/10.18632/oncotarget.18070] [PMID: 29029401]
[64]
Balakrishnan L, Bambara RA. Flap endonuclease 1. Annu Rev Biochem 2013; 82: 119-38.
[http://dx.doi.org/10.1146/annurev-biochem-072511-122603] [PMID: 23451868]
[65]
Barsyte-Lovejoy D, Li F, Oudhoff MJ, et al. (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proc Natl Acad Sci USA 2014; 111(35): 12853-8.
[http://dx.doi.org/10.1073/pnas.1407358111] [PMID: 25136132]
[66]
Hamidi T, Singh AK, Veland N, et al. Identification of Rpl29 as a major substrate of the lysine methyltransferase Set7/9. J Biol Chem 2018; 293(33): 12770-80.
[http://dx.doi.org/10.1074/jbc.RA118.002890] [PMID: 29959229]
[67]
Kirn-Safran CB, Oristian DS, Focht RJ, Parker SG, Vivian JL, Carson DD. Global growth deficiencies in mice lacking the ribosomal protein HIP/RPL29. Dev Dyn 2007; 236(2): 447-60.
[http://dx.doi.org/10.1002/dvdy.21046] [PMID: 17195189]
[68]
Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A. Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol 2011; 18(1): 111-20.
[http://dx.doi.org/10.1016/j.chembiol.2010.11.014] [PMID: 21276944]
[69]
Morgunkova A, Barlev NA. Lysine methylation goes global. Cell Cycle 2006; 5(12): 1308-12.
[http://dx.doi.org/10.4161/cc.5.12.2820] [PMID: 16760670]
[70]
Feracci M, Foot JN, Grellscheid SN, et al. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68. Nat Commun 2016; 7: 10355.
[http://dx.doi.org/10.1038/ncomms10355] [PMID: 26758068]
[71]
Liao WT, Liu JL, Wang ZG, et al. High expression level and nuclear localization of Sam68 are associated with progression and poor prognosis in colorectal cancer. BMC Gastroenterol 2013; 13: 126.
[http://dx.doi.org/10.1186/1471-230X-13-126] [PMID: 23937454]
[72]
Zhang Z, Yu C, Li Y, et al. Utility of SAM68 in the progression and prognosis for bladder cancer. BMC Cancer 2015; 15: 364.
[http://dx.doi.org/10.1186/s12885-015-1367-x] [PMID: 25944080]
[73]
Li Z, Yu CP, Zhong Y, et al. Sam68 expression and cytoplasmic localization is correlated with lymph node metastasis as well as prognosis in patients with early-stage cervical cancer. Ann Oncol 2012; 23(3): 638-46.
[http://dx.doi.org/10.1093/annonc/mdr290] [PMID: 21700735]
[74]
Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Horm Cancer 2012; 3(1-2): 14-25.
[http://dx.doi.org/10.1007/s12672-011-0097-z] [PMID: 22124844]
[75]
Elliott DJ, Rajan P. The role of the RNA-binding protein Sam68 in mammary tumourigenesis. J Pathol 2010; 222(3): 223-6.
[http://dx.doi.org/10.1002/path.2753] [PMID: 20730808]
[76]
Wang Y, Liang L, Zhang J, et al. Sam68 promotes cellular proliferation and predicts poor prognosis in esophageal squamous cell carcinoma. Tumour Biol 2015; 36(11): 8735-45.
[http://dx.doi.org/10.1007/s13277-015-3631-8] [PMID: 26050229]
[77]
Taylor S J, Resnick R J. Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol 2004; 5: 5.
[78]
Liu K, Li L, Nisson PE, Gruber C, Jessee J, Cohen SN. Neoplastic transformation and tumorigenesis associated with sam68 protein deficiency in cultured murine fibroblasts. J Biol Chem 2000; 275(51): 40195-201.
[http://dx.doi.org/10.1074/jbc.M006194200] [PMID: 11032831]
[79]
Lukong KE, Larocque D, Tyner AL, Richard S. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem 2005; 280(46): 38639-47.
[http://dx.doi.org/10.1074/jbc.M505802200] [PMID: 16179349]
[80]
Vasileva E, Shuvalov O, Petukhov A, et al. KMT Set7/9 is a new regulator of Sam68 STAR-protein. Biochem Biophys Res Commun 2020; 525(4): 1018-24.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.017] [PMID: 32178870]
[81]
Mahesh A, Khan MIK, Govindaraju G, et al. SET7/9 interacts and methylates the ribosomal protein, eL42 and regulates protein synthesis. Biochim Biophys Acta Mol Cell Res 2020; 1867(2): 118611.
[http://dx.doi.org/10.1016/j.bbamcr.2019.118611] [PMID: 31751593]
[82]
Fu L, Wu H, Cheng SY, Gao D, Zhang L, Zhao Y. Set7 mediated Gli3 methylation plays a positive role in the activation of sonic hedgehog pathway in mammals. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.15690] [PMID: 27146893]
[83]
Gu Y, Wang Y, Wang X, Gao L, Yu W, Dong WF. Opposite effects of SET7/9 on apoptosis of human acute myeloid leukemia cells and lung cancer cells. J Cancer 2017; 8(11): 2069-78.
[http://dx.doi.org/10.7150/jca.19143] [PMID: 28819408]
[84]
Gu Y, Wang X, Liu H, Li G, Yu W, Ma Q. SET7/9 promotes hepatocellular carcinoma progression through regulation of E2F1. Oncol Rep 2018; 40(4): 1863-74.
[http://dx.doi.org/10.3892/or.2018.6621] [PMID: 30106440]
[85]
Hahm JY, Kim JY, Park JW, et al. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Nucleic Acids Res 2019; 47(1): 184-96.
[http://dx.doi.org/10.1093/nar/gky975] [PMID: 30357346]
[86]
Ashraf W, Ibrahim A, Alhosin M, et al. The epigenetic integrator UHRF1: On the road to become a universal biomarker for cancer. Oncotarget 2017; 8(31): 51946-62.
[http://dx.doi.org/10.18632/oncotarget.17393] [PMID: 28881702]
[87]
Saidi S, Popov Z, Janevska V, Panov S. Overexpression of UHRF1 gene correlates with the major clinicopathological parameters in urinary bladder cancer. Int Braz J Urol 2017; 43(2): 224-9.
[http://dx.doi.org/10.1590/s1677-5538.ibju.2016.0126] [PMID: 28128913]
[88]
Wan X, Yang S, Huang W, et al. UHRF1 overexpression is involved in cell proliferation and biochemical recurrence in prostate cancer after radical prostatectomy. J Exp Clin Cancer Res 2016; 35: 34.
[http://dx.doi.org/10.1186/s13046-016-0308-0] [PMID: 26884069]
[89]
Yan F, Wang X, Shao L, Ge M, Hu X. Analysis of UHRF1 expression in human ovarian cancer tissues and its regulation in cancer cell growth. Tumour Biol 2015; 36(11): 8887-93.
[http://dx.doi.org/10.1007/s13277-015-3638-1] [PMID: 26070868]
[90]
Ke YW, Dou Z, Zhang J, Yao XB. Function and regulation of Aurora/Ipl1p kinase family in cell division. Cell Res 2003; 13(2): 69-81.
[http://dx.doi.org/10.1038/sj.cr.7290152] [PMID: 12737516]
[91]
Yang Y, Wu F, Ward T, et al. Phosphorylation of HsMis13 by Aurora B kinase is essential for assembly of functional kinetochore. J Biol Chem 2008; 283(39): 26726-36.
[http://dx.doi.org/10.1074/jbc.M804207200] [PMID: 18640974]
[92]
Zhang L, Shao H, Huang Y, et al. PLK1 phosphorylates mitotic centromere-associated kinesin and promotes its depolymerase activity. J Biol Chem 2011; 286(4): 3033-46.
[http://dx.doi.org/10.1074/jbc.M110.165340] [PMID: 21078677]
[93]
Duan H, Wang C, Wang M, et al. Phosphorylation of PP1 regulator Sds22 by PLK1 ensures accurate chromosome segregation. J Biol Chem 2016; 291(50): 26239.
[http://dx.doi.org/10.1074/jbc.A116.745372] [PMID: 27941070]
[94]
Golsteyn RM, Mundt KE, Fry AM, Nigg EA. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol 1995; 129(6): 1617-28.
[http://dx.doi.org/10.1083/jcb.129.6.1617] [PMID: 7790358]
[95]
Yu R, Wu H, Ismail H, et al. Methylation of PLK1 by SET7/9 ensures accurate kinetochore-microtubule dynamics. J Mol Cell Biol 2020; 12(6): 462-76.
[http://dx.doi.org/10.1093/jmcb/mjz107] [PMID: 31863092]
[96]
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140(20): 4129-44.
[http://dx.doi.org/10.1242/dev.091793] [PMID: 24086078]
[97]
Sarkar A, Hochedlinger K. The sox family of transcription factors: Versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013; 12(1): 15-30.
[http://dx.doi.org/10.1016/j.stem.2012.12.007] [PMID: 23290134]
[98]
Bass AJ, Watanabe H, Mermel CH, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 2009; 41(11): 1238-42.
[http://dx.doi.org/10.1038/ng.465] [PMID: 19801978]
[99]
Hussenet T, Dali S, Exinger J, et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One 2010; 5(1): e8960.
[http://dx.doi.org/10.1371/journal.pone.0008960] [PMID: 20126410]
[100]
Hussenet T, du Manoir S. SOX2 in squamous cell carcinoma: Amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle 2010; 9(8): 1480-6.
[http://dx.doi.org/10.4161/cc.9.8.11203] [PMID: 20372069]
[101]
Maier S, Wilbertz T, Braun M, et al. SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Hum Pathol 2011; 42(8): 1078-88.
[http://dx.doi.org/10.1016/j.humpath.2010.11.010] [PMID: 21334718]
[102]
Weina K, Utikal J. SOX2 and cancer: Current research and its implications in the clinic. Clin Transl Med 2014; 3: 19.
[http://dx.doi.org/10.1186/2001-1326-3-19] [PMID: 25114775]
[103]
Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 2012; 44(10): 1111-6.
[http://dx.doi.org/10.1038/ng.2405] [PMID: 22941189]
[104]
Alonso MM, Diez-Valle R, Manterola L, et al. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 2011; 6(11): e26740.
[http://dx.doi.org/10.1371/journal.pone.0026740] [PMID: 22069467]
[105]
Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40(5): 499-507.
[http://dx.doi.org/10.1038/ng.127] [PMID: 18443585]
[106]
Sholl LM, Long KB, Hornick JL. Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol 2010; 18(1): 55-61.
[http://dx.doi.org/10.1097/PAI.0b013e3181b16b88] [PMID: 19661786]
[107]
Peng S, Maihle NJ, Huang Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 2010; 29(14): 2153-9.
[http://dx.doi.org/10.1038/onc.2009.500] [PMID: 20101213]
[108]
Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem 2010; 285(53): 41961-71.
[http://dx.doi.org/10.1074/jbc.M110.169607] [PMID: 20947512]
[109]
Neumann J, Bahr F, Horst D, et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer 2011; 11: 518.
[http://dx.doi.org/10.1186/1471-2407-11-518] [PMID: 22168803]
[110]
Kim JB, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell 2009; 136(3): 411-9.
[http://dx.doi.org/10.1016/j.cell.2009.01.023] [PMID: 19203577]
[111]
Leis O, Eguiara A, Lopez-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31(11): 1354-65.
[http://dx.doi.org/10.1038/onc.2011.338] [PMID: 21822303]
[112]
Matsuoka J, Yashiro M, Sakurai K, et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma. J Surg Res 2012; 174(1): 130-5.
[http://dx.doi.org/10.1016/j.jss.2010.11.903] [PMID: 21227461]
[113]
Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100(14): 8418-23.
[http://dx.doi.org/10.1073/pnas.0932692100] [PMID: 12829800]
[114]
Tsukamoto T, Mizoshita T, Mihara M, et al. Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes. Histopathology 2005; 46(6): 649-58.
[http://dx.doi.org/10.1111/j.1365-2559.2005.02170.x] [PMID: 15910596]
[115]
Sholl LM, Barletta JA, Yeap BY, Chirieac LR, Hornick JL. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma. Am J Surg Pathol 2010; 34(8): 1193-8.
[http://dx.doi.org/10.1097/PAS.0b013e3181e5e024] [PMID: 20631605]
[116]
Pagans S, Kauder SE, Kaehlcke K, et al. The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 2010; 7(3): 234-44.
[http://dx.doi.org/10.1016/j.chom.2010.02.005] [PMID: 20227666]
[117]
Mori S, Iwase K, Iwanami N, Tanaka Y, Kagechika H, Hirano T. Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9. Bioorg Med Chem 2010; 18(23): 8158-66.
[http://dx.doi.org/10.1016/j.bmc.2010.10.022] [PMID: 21036620]
[118]
Niwa H, Handa N, Tomabechi Y, et al. Structures of histone methyltransferase SET7/9 in complexes with adenosylmethionine derivatives. Acta Crystallogr D Biol Crystallogr 2013; 69(Pt 4): 595-602.
[http://dx.doi.org/10.1107/S0907444912052092] [PMID: 23519668]
[119]
Francis NJ, Rowlands M, Workman P, Jones K, Aherne W. Small-molecule inhibitors of the protein methyltransferase SET7/9 identified in a high-throughput screen. J Biomol Screen 2012; 17(8): 1102-9.
[http://dx.doi.org/10.1177/1087057112452137] [PMID: 22772057]
[120]
Meng F, Cheng S, Ding H, et al. Discovery and optimization of novel, selective histone methyltransferase SET7 inhibitors by pharmacophore- and docking-based virtual screening. J Med Chem 2015; 58(20): 8166-81.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01154] [PMID: 26390175]
[121]
Chi H, Takemoto Y, Nsiama TK, et al. Design and synthesis of peptide-MCA substrates for a novel assay of histone methyltransferases and their inhibitors. Bioorg Med Chem 2014; 22(4): 1268-75.
[http://dx.doi.org/10.1016/j.bmc.2014.01.011] [PMID: 24486204]
[122]
Takemoto Y, Ito A, Niwa H, et al. Identification of cyproheptadine as an inhibitor of SET domain containing lysine methyltransferase 7/9 (Set7/9) that regulates estrogen-dependent transcription. J Med Chem 2016; 59(8): 3650-60.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01732] [PMID: 27088648]
[123]
Hirano T, Fujiwara T, Niwa H, et al. Development of novel inhibitors for histone methyltransferase SET7/9 based on cyproheptadine. ChemMedChem 2018; 13(15): 1530-40.
[http://dx.doi.org/10.1002/cmdc.201800233] [PMID: 29882380]
[124]
Ding H, Lu WC, Hu JC, et al. Identification and characterizations of novel, selective histone methyltransferase SET7 inhibitors by Scaffold hopping- and 2D-molecular fingerprint-based similarity search. Molecules 2018; 23(3): 567.
[http://dx.doi.org/10.3390/molecules23030567] [PMID: 29498708]
[125]
Hou Z, Min W, Zhang R, et al. Lead discovery, chemical optimization, and biological evaluation studies of novel histone methyltransferase SET7 small-molecule inhibitors. Bioorg Med Chem Lett 2020; 30(9): 127061.
[http://dx.doi.org/10.1016/j.bmcl.2020.127061] [PMID: 32173197]
[126]
Daeyoup L, Seung-Kyoon K, Hosuk L. Composition for controlling stem cells pluripotency, containing LIN28A methylation inhibitor, and method for screening for LIN28A methylation inhibitor. US20160053258, 2016.
[127]
El-Osta A. Methods for identifying compounds capable of treating or preventing a diabetic comolication via SET7 or SUV39 methyl transferases. WO2009092133, 2009.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy