Review Article

点击树突状分子药物传递系统合成中的反应

卷 29, 期 19, 2022

发表于: 14 January, 2022

页: [3445 - 3470] 页: 26

弟呕挨: 10.2174/0929867328666211027124724

价格: $65

摘要

药物传递系统是为药物的靶向传递和控制释放而设计的。在作为药物传递系统的材料中,树状大分子因其特性和结构特性而受到越来越多的关注。树突状分子-纳米载体制剂的使用提高了安全性和生物利用度,增加了在水中的溶解度,提高了稳定性和药代动力学特性,并使目标药物能够有效地递送到特定的部位。然而,通过聚合或发散的方法合成树突状结构存在缺陷和局限性,破坏了与设计和施工相关的方面,从而减缓了从学术界向工业界的转移。从这个意义上说,点击化学的实现在过去几年中受到越来越多的关注,因为它提供了新的获得高产量和高单分散性的有效方法。本文综述了2015年至2021年初使用点击反应构建树突状分子药物传递系统的最新策略。本文综述的树突状结构是基于β-环糊精(β-CD)、聚(酰胺胺)(PAMAM)、树突状聚(赖氨酸)(PLLD)、二甲基丙酸(双MPA)、磷酰胺(PAD)和聚(丙炔醇-4-巯基丁基(PPMA)。

关键词: 树状大分子,点击化学,药物传递系统,生物材料,纳米载体,合成。

[1]
Bhaw-Luximon, A.; Goonoo, N.; Jhurry, D. Nanotherapeutics promises for colorectal cancer and pancreatic ductal adenocarcinoma. In: Nanobiomaterials in Cancer Therapy; William Andrew Publishing: Grumezescu, MA, 2016; pp. 147-201.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00006-2]
[2]
Avgeropoulos, N.G.; Newton, H.B. Clinical pharmacology of brain tumor chemotherapy In: Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy; Academic Press: Newton, HB, 2018; pp. 21-44.
[http://dx.doi.org/10.1016/B978-0-12-812100-9.00002-4]
[3]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[4]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39, 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[5]
Tomalia, D.; Fréchet, J. Dendrimers and other dendritic polymers;; Tomalia, D.; Fréchet, J., Eds.; John Wiley & Sons, Ltd: UK, 2001.
[6]
Vögtle, F.; Richardt, G.; Werner, N. Dendrimer chemistry: concepts, synthesis, properties, applications;; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2009.
[http://dx.doi.org/10.1002/9783527626953]
[7]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[8]
Hawker, C.; Fréchet, J.M.J. A new convergent approach to monodisperse dendritic macromolecules. J. Chem. Soc. Chem. Commun., 1990, 1010-1013.
[http://dx.doi.org/10.1039/C39900001010]
[9]
Arseneault, M.; Wafer, C.; Morin, J.F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules, 2015, 20(5), 9263-9294.
[http://dx.doi.org/10.3390/molecules20059263] [PMID: 26007183]
[10]
Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38, 2168-2203.
[http://dx.doi.org/10.1039/c3nj01239e]
[11]
Tressaud, A. 2 - Fluorine, a key element for the 21st century. In: Fluorine, volume 5 in Progress in Fluoride Science;; Tressaud, A., Ed.; Elsevier, 2019; pp. 77-150.
[http://dx.doi.org/10.1016/B978-0-12-812990-6.00002-7]
[12]
Tang, W.; Becker, M.L. “Click” reactions: A versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev., 2014, 43(20), 7013-7039.
[http://dx.doi.org/10.1039/C4CS00139G] [PMID: 24993161]
[13]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[14]
Sandoval-Yañez, C.; Castro Rodriguez, C. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials (Basel), 2020, 13(3), 570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[15]
Fan, X.; Hu, Z.; Wang, G. Facile synthesis of polyester dendrimer via combining thio-bromo “click” chemistry and ATNRC. J. Polym. Sci. A Polym. Chem., 2015, 53, 1762-1768.
[http://dx.doi.org/10.1002/pola.27618]
[16]
Nichols, A.J.; Roussakis, E.; Klein, O.J.; Evans, C.L. Click-assembled, oxygen-sensing nanoconjugates for depth-resolved, near-infrared imaging in a 3D cancer model. Angew. Chem. Int. Ed. Engl., 2014, 53(14), 3671-3674.
[http://dx.doi.org/10.1002/anie.201311303] [PMID: 24590700]
[17]
Anandkumar, D.; Raja, R.; Rajakumar, P. Synthesis, photophysical properties and anti-cancer activity of micro-environment sensitive amphiphilic bile acid dendrimers. RSC Advances, 2016, 6, 25808-25818.
[http://dx.doi.org/10.1039/C5RA20147K]
[18]
Roeven, E.; Scheres, L.; Smulders, M.M.J.; Zuilhof, H. Design, synthesis, and characterization of fully zwitterionic, functionalized dendrimers. ACS Omega, 2019, 4(2), 3000-3011.
[http://dx.doi.org/10.1021/acsomega.8b03521] [PMID: 30847431]
[19]
Molina, N.; Nájera, F.; Guadix, J.A.; Perez-Pomares, J.M.; Vida, Y.; Perez-Inestrosa, E. Synthesis of amino terminal clicked dendrimers. Approaches to the application as a biomarker. J. Org. Chem., 2019, 84(16), 10197-10208.
[http://dx.doi.org/10.1021/acs.joc.9b01369] [PMID: 31310119]
[20]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[21]
Breugst, M.; Reissig, H.U. The Huisgen reaction: Milestones of the 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(30), 12293-12307.
[http://dx.doi.org/10.1002/anie.202003115] [PMID: 32255543]
[22]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[23]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[24]
Rodionov, V.O.; Presolski, S.I.; Díaz, D.D.; Fokin, V.V.; Finn, M.G. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: A mechanistic report. J. Am. Chem. Soc., 2007, 129(42), 12705-12712.
[http://dx.doi.org/10.1021/ja072679d] [PMID: 17914817]
[25]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[26]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[27]
Ahlquist, M.; Fokin, V.V. Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics, 2007, 26(18), 4389-4391.
[http://dx.doi.org/10.1021/om700669v]
[28]
Dias, H.V.R.; Polach, S.A.; Goh, S.K.; Archibong, E.F.; Marynick, D.S. Copper and silver complexes containing organic azide ligands: Syntheses, structures, and theoretical investigation of [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) and [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN (where Pz = pyrazolyl and 1-Ad = 1-adamantyl). Inorg. Chem., 2000, 39(17), 3894-3901.
[http://dx.doi.org/10.1021/ic0004232] [PMID: 11196786]
[29]
Straub, B.F. mu-Acetylide and mu-alkenylidene ligands in “click” triazole syntheses. Chem. Commun. (Camb.), 2007, (37), 3868-3870.
[http://dx.doi.org/10.1039/b706926j] [PMID: 18219789]
[30]
Nolte, C.; Mayer, P.; Straub, B.F. Isolation of a copper(I) triazolide: A “click” intermediate. Angew. Chem. Int. Ed., 2007, 46(12), 2101-2103.
[http://dx.doi.org/10.1002/anie.200604444] [PMID: 17300119]
[31]
Haldón, E.; Nicasio, M.C.; Pérez, P.J. Copper-catalysed azide-alkyne cycloadditions (CuAAC): An update. Org. Biomol. Chem., 2015, 13(37), 9528-9550.
[http://dx.doi.org/10.1039/C5OB01457C] [PMID: 26284434]
[32]
Ladomenou, K.; Nikolaou, V.; Charalambidis, G.; Coutsolelos, A.G. “Click”-reaction: An alternative tool for new architectures of porphyrin based derivatives. Coord. Chem. Rev., 2016, 306, 1-42.
[http://dx.doi.org/10.1016/j.ccr.2015.06.002]
[33]
Sun, N.; Wang, Y.; Wang, J.; Sun, W.; Yang, J.; Liu, N. Highly efficient peptide-based click chemistry for proteomic profiling of nascent proteins. Anal. Chem., 2020, 92(12), 8292-8297.
[http://dx.doi.org/10.1021/acs.analchem.0c00594] [PMID: 32434323]
[34]
Döhler, D.; Michael, P.; Binder, W.H. CuAAC-based click chemistry in self-healing polymers. Acc. Chem. Res., 2017, 50(10), 2610-2620.
[http://dx.doi.org/10.1021/acs.accounts.7b00371] [PMID: 28891636]
[35]
Gao, P.; Sun, L.; Zhou, J.; Li, X.; Zhan, P.; Liu, X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-Alkyne Cycloaddition (CuAAC) click chemistry-based approach. Expert Opin. Drug Discov., 2016, 11(9), 857-871.
[http://dx.doi.org/10.1080/17460441.2016.1210125] [PMID: 27400283]
[36]
Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, D.; Liu, X.; Zhan, P. Recent applications of click chemistry in drug discovery. Expert Opin. Drug Discov., 2019, 14(8), 779-789.
[http://dx.doi.org/10.1080/17460441.2019.1614910] [PMID: 31094231]
[37]
Delaittre, G.; Guimard, N.K.; Barner-Kowollik, C. Cycloadditions in modern polymer chemistry. Acc. Chem. Res., 2015, 48(5), 1296-1307.
[http://dx.doi.org/10.1021/acs.accounts.5b00075] [PMID: 25871918]
[38]
Zong, H.; Shah, D.; Selwa, K.; Tsuchida, R.E.; Rattan, R.; Mohan, J.; Stein, A.B.; Otis, J.B.; Goonewardena, S.N. Design and evaluation of tumor-specific dendrimer epigenetic therapeutics. ChemistryOpen, 2015, 4(3), 335-341.
[http://dx.doi.org/10.1002/open.201402141] [PMID: 26246996]
[39]
Liu, J.; Ding, X.; Fu, Y.; Xiang, C.; Yuan, Y.; Zhang, Y.; Yu, P. Cyclodextrins based delivery systems for macro biomolecules. Eur. J. Med. Chem., 2021, 212, 113105.
[http://dx.doi.org/10.1016/j.ejmech.2020.113105] [PMID: 33385835]
[40]
Crini, G. Review: A history of cyclodextrins. Chem. Rev., 2014, 114(21), 10940-10975.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[41]
Tian, B.; Liu, Y.; Liu, J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr. Polym., 2021, 251, 116871.
[http://dx.doi.org/10.1016/j.carbpol.2020.116871] [PMID: 33142550]
[42]
Yousef, T.; Hassan, N. Supramolecular encapsulation of doxorubicin with β-cyclodextrin dendrimer: in vitro evaluation of controlled release and cytotoxicity. J. Incl. Phenom. Macrocycl. Chem., 2017, 87, 105-115.
[http://dx.doi.org/10.1007/s10847-016-0682-4]
[43]
Toomari, Y.; Namazi, H.; Akbar, E.A. Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier. Carbohydr. Polym., 2015, 132, 205-213.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.087] [PMID: 26256342]
[44]
Toomari, Y.; Namazi, H.; Entezami, A.A. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent. Int. J. Biol. Macromol., 2015, 79, 883-893.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.010] [PMID: 26056989]
[45]
Toomari, Y.; Namazi, H. Synthesis of supramolecular biodendrimeric β-CD-(spacer-β-CD)21 via click reaction and evaluation of its application as anticancer drug delivery agent. Int. J. Polym. Mater. Polym. Biomat, 2016, 65, 487-496.
[http://dx.doi.org/10.1080/00914037.2015.1129960]
[46]
Abedi-Gaballu, F.; Dehghan, G.; Ghaffari, M.; Yekta, R.; Abbaspour-Ravasjani, S.; Baradaran, B.; Dolatabadi, J.E.N.; Hamblin, M.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today, 2018, 12, 177-190.
[http://dx.doi.org/10.1016/j.apmt.2018.05.002] [PMID: 30511014]
[47]
Otto, D.P.; de Villiers, M.M. Poly(amidoamine) dendrimers as a pharmaceutical excipient. Are we there yet? J. Pharm. Sci., 2018, 107(1), 75-83.
[http://dx.doi.org/10.1016/j.xphs.2017.10.011] [PMID: 29045886]
[48]
Song, Z-L.; Wang, M-J.; Li, L.; Wu, D.; Wang, Y-H.; Yan, L-T.; Morris-Natschke, S.L.; Liu, Y-Q.; Zhao, Y-L.; Wang, C-Y.; Liu, H.; Goto, M.; Liu, H.; Zhu, G-X.; Lee, K-H. Design, synthesis, cytotoxic activity and molecular docking studies of new 20(S)-sulfonylamidine camptothecin derivatives. Eur. J. Med. Chem., 2016, 115, 109-120.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.070] [PMID: 26994847]
[49]
da Silva Júnior, W.F.; de Oliveira Pinheiro, J.; Moreira, C.; de Souza, F.; Adley, A.N. Alternative technologies to improve solubility and stability of poorly water-soluble drugs. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics;; Elsevier: A.M. Grumezescu, 2017; pp. 281-305.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00015-0]
[50]
Chen, H.; Jia, H.; Tham, H.P.; Qu, Q.; Xing, P.; Zhao, J.; Phua, S.Z.F.; Chen, G.; Zhao, Y. Theranostic prodrug vesicles for imaging guided codelivery of camptothecin and siRNA in synergetic cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(28), 23536-23543.
[http://dx.doi.org/10.1021/acsami.7b06936] [PMID: 28657709]
[51]
Zolotarskaya, O.Y.; Xu, L.; Valerie, K.; Yang, H. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug. RSC Adv., 2015, 5(72), 58600-58608.
[http://dx.doi.org/10.1039/C5RA07987J] [PMID: 26640689]
[52]
Hanurry, E.Y.; Mekonnen, T.W.; Andrgie, A.T.; Darge, H.F.; Birhan, Y.S.; Hsu, W.H.; Chou, H.Y.; Cheng, C.C.; Lai, J.Y.; Tsai, H.C. Biotin-decorated PAMAM G4.5 dendrimer nanoparticles to enhance the delivery, anti-proliferative, and apoptotic effects of chemotherapeutic drug in cancer cells. Pharmaceutics, 2020, 12(5), 443.
[http://dx.doi.org/10.3390/pharmaceutics12050443] [PMID: 32403321]
[53]
Khan, J.K.; Rohondia, S.O.; Ahmed, Z.S.; Zalavadiya, N.; Dou, Q.P. Increasing opportunities of drug repurposing for treating breast cancer by the integration of molecular, histological, and systemic approaches. In: Drug Repurposing in Cancer Therapy;; Kenneth, K.W.; Cho, W.C.S., Eds.; s Academic Press, 2020; pp. 121-172.
[http://dx.doi.org/10.1016/B978-0-12-819668-7.00005-1]
[54]
Asadi, A.; Abdi, M.; Kouhsari, E.; Panahi, P.; Sholeh, M.; Sadeghifard, N.; Amiriani, T.; Ahmadi, A.; Maleki, A.; Gholami, M. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J. Glob. Antimicrob. Resist., 2020, 22, 161-174.
[http://dx.doi.org/10.1016/j.jgar.2020.01.022] [PMID: 32061815]
[55]
Sharma, R.; Kim, S.Y.; Sharma, A.; Zhang, Z.; Kambhampati, S.P.; Kannan, S.; Kannan, R.M. Activated microglia targeting dendrimer-minocycline conjugate as therapeutics for neuroinflammation. Bioconjug. Chem., 2017, 28(11), 2874-2886.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00569] [PMID: 29028353]
[56]
Gao, C.; Liu, L.; Zhou, Y.; Bian, Z.; Wang, S.; Wang, Y. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin. Med., 2019, 14, 23.
[http://dx.doi.org/10.1186/s13020-019-0245-x] [PMID: 31236131]
[57]
Tang, J.; Raza, A.; Chen, J.; Xu, H. A systematic review on the sinomenine derivatives. Mini Rev. Med. Chem., 2018, 18(11), 906-917.
[http://dx.doi.org/10.2174/1389557517666171123212557] [PMID: 29173167]
[58]
Sharma, R.; Kambhampati, S.P.; Zhang, Z.; Sharma, A.; Chen, S.; Duh, E.I.; Kannan, S.; Tso, M.O.M.; Kannan, R.M. Dendrimer mediated targeted delivery of sinomenine for the treatment of acute neuroinflammation in traumatic brain injury. J. Control. Release, 2020, 323, 361-375.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.036] [PMID: 32339548]
[59]
Liaw, K.; Sharma, R.; Sharma, A.; Salazar, S.; Appiani La Rosa, S.; Kannan, R.M. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J. Control. Release, 2021, 329, 434-444.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.003] [PMID: 33290796]
[60]
Ouyang, Z.; Li, D.; Shen, M.; Shi, X. Dendrimer-based tumor-targeted systems. In: New Nanomaterials and Techniques for Tumor-targeted Systems; Huang, R.; Wang, Y; Springer, 2020; pp. 337-369.
[http://dx.doi.org/10.1007/978-981-15-5159-8_10]
[61]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[62]
Wang, T.; Zhang, Y.; Wei, L.; Teng, Y.G.; Honda, T.; Ojima, I.; Ojima, I. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega, 2018, 3(4), 3717-3736.
[http://dx.doi.org/10.1021/acsomega.8b00409] [PMID: 29732446]
[63]
Singh, N.; Joshi, A.; Pal Toor, A.; Verma, G. Drug delivery: Advancements and challenges. In: Nanostructures for Drug Delivery. Micro and Nano Technologies; Andronescu, E.; Grumezescu, A.M., Eds.; Elsevier, 2017; pp. 865-886.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00027-0]
[64]
Tabatabaei Mirakabad, F.S.; Khoramgah, M.S.; Keshavarz, F.K.; Tabarzad, M.; Ranjbari, J. Peptide dendrimers as valuable biomaterials in medical sciences. Life Sci., 2019, 233, 116754.
[http://dx.doi.org/10.1016/j.lfs.2019.116754] [PMID: 31415768]
[65]
Sapra, R.; Verma, R.P.; Maurya, G.P.; Dhawan, S.; Babu, J.; Haridas, V. Designer peptide and protein dendrimers: A cross-sectional analysis. Chem. Rev., 2019, 119(21), 11391-11441.
[http://dx.doi.org/10.1021/acs.chemrev.9b00153] [PMID: 31556597]
[66]
Wu, C.; Gao, C.; Lü, S.; Xu, X.; Wen, N.; Zhang, S.; Liu, M. Construction of polylysine dendrimer nanocomposites carrying nattokinase and their application in thrombolysis. J. Biomed. Mater. Res. A, 2018, 106(2), 440-449.
[http://dx.doi.org/10.1002/jbm.a.36232] [PMID: 28891111]
[67]
Zhou, X.; Zheng, Q.; Wang, C.; Xu, J.; Wu, J.P.; Kirk, T.B.; Ma, D.; Xue, W. Star-shaped amphiphilic hyperbranched polyglycerol conjugated with dendritic poly(l-lysine) for the codelivery of docetaxel and MMP-9 siRNA in cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(20), 12609-12619.
[http://dx.doi.org/10.1021/acsami.6b01611] [PMID: 27153187]
[68]
Pugazhendhi, A.; Edison, T.N.J.I.; Velmurugan, B.K.; Jacob, J.A.; Karuppusamy, I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci., 2018, 200, 26-30.
[http://dx.doi.org/10.1016/j.lfs.2018.03.023] [PMID: 29534993]
[69]
Li, N.; Guo, C.; Duan, Z.; Yu, L.; Luo, K.; Lu, J.; Gu, Z. A stimuli-responsive Janus peptide dendron-drug conjugate as a safe and nanoscale drug delivery vehicle for breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(21), 3760-3769.
[http://dx.doi.org/10.1039/C6TB00688D] [PMID: 32263314]
[70]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[71]
Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E.H.E.; Fens, M.H.A.M.; Ehling, J.; Schiffelers, R.M.; Storm, G.; van Nostrum, C.F.; Lammers, T.; Hennink, W.E. Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π-Π stacking stabilized polymeric micelles. ACS Nano, 2015, 9(4), 3740-3752.
[http://dx.doi.org/10.1021/acsnano.5b00929] [PMID: 25831471]
[72]
Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf., 2007, 6(5), 609-621.
[http://dx.doi.org/10.1517/14740338.6.5.609] [PMID: 17877447]
[73]
Li, N.; Cai, H.; Jiang, L.; Hu, J.; Bains, A.; Hu, J.; Gong, Q.; Luo, K.; Gu, Z. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl. Mater. Interfaces, 2017, 9(8), 6865-6877.
[http://dx.doi.org/10.1021/acsami.6b15505] [PMID: 28112512]
[74]
Zhang, C.; Pan, D.; Li, J.; Hu, J.; Bains, A.; Guys, N.; Zhu, H.; Li, X.; Luo, K.; Gong, Q.; Gu, Z. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater., 2017, 55, 153-162.
[http://dx.doi.org/10.1016/j.actbio.2017.02.047] [PMID: 28259838]
[75]
Feliu, N.; Walter, M.V.; Montañez, M.I.; Kunzmann, A.; Hult, A.; Nyström, A.; Malkoch, M.; Fadeel, B. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials, 2012, 33(7), 1970-1981.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.054] [PMID: 22177621]
[76]
Stenström, P.; Andrén, O.C.J.; Malkoch, M. Fluoride-Promoted Esterification (FPE) chemistry: A robust route to Bis-MPA dendrons and their postfunctionalization. Molecules, 2016, 21(3), 366.
[http://dx.doi.org/10.3390/molecules21030366] [PMID: 26999090]
[77]
Zhang, Y.; Lu, Y.; Zhang, Y.; He, X.; Chen, Q.; Liu, L.; Chen, X.; Ruan, C.; Sun, T.; Jiang, C. Tumor-targeting micelles based on linear-dendritic PEG-PTX8 conjugate for triple negative breast cancer therapy. Mol. Pharm., 2017, 14(10), 3409-3421.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00430] [PMID: 28832164]
[78]
López-Méndez, L.J.; González-Méndez, I.; Aguayo-Ortiz, R.; Dominguez, L.; Alcaraz-Estrada, S.L.; Rojas-Aguirre, Y.; Guadarrama, P. Synthesis of a poly(ester) dendritic β-cyclodextrin derivative by “click” chemistry: Combining the best of two worlds for complexation enhancement. Carbohydr. Polym., 2018, 184, 20-29.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.049] [PMID: 29352912]
[79]
Brewer, G.J. Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol., 2010, 23(2), 319-326.
[http://dx.doi.org/10.1021/tx900338d] [PMID: 19968254]
[80]
Kennedy, D.C.; McKay, C.S.; Legault, M.C.B.; Danielson, D.C.; Blake, J.A.; Pegoraro, A.F.; Stolow, A.; Mester, Z.; Pezacki, J.P. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc., 2011, 133(44), 17993-18001.
[http://dx.doi.org/10.1021/ja2083027] [PMID: 21970470]
[81]
Vierling, J.M.; Sussman, N.L. Wilson disease in adults: Clinical presentations, diagnosis, and medical management. In: Clinical and Translational Perspectives on WILSON DISEASE; Kervar, N.; Roberts, E.A; Academic Press: USA, 2019; pp. 165-177.
[http://dx.doi.org/10.1016/B978-0-12-810532-0.00016-1]
[82]
Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health B Crit. Rev., 2001, 4(4), 341-394.
[http://dx.doi.org/10.1080/109374001753146207] [PMID: 11695043]
[83]
Glass, R.S. Sulfur radicals and their application. Top. Curr. Chem. (Cham), 2018, 376(3), 22.
[http://dx.doi.org/10.1007/s41061-018-0197-0] [PMID: 29744596]
[84]
Machado, T.O.; Sayer, C.; Araujo, P.H.H. Thiol-ene polymerisation: A promising technique to obtain novel biomaterials. Eur. Polym. J., 2017, 86, 200-215.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.02.025]
[85]
Guerrero-Corella, A.; María Martinez-Gualda, A.; Ahmadi, F.; Ming, E.; Fraile, A.; Alemán, J. Thiol-ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides. Chem. Commun. (Camb.), 2017, 53(75), 10463-10466.
[http://dx.doi.org/10.1039/C7CC05672A] [PMID: 28890975]
[86]
Ahangarpour, M.; Kavianinia, I.; Harris, P.W.R.; Brimble, M.A. Photo-induced radical thiol-ene chemistry: A versatile toolbox for peptide-based drug design. Chem. Soc. Rev., 2021, 50(2), 898-944.
[http://dx.doi.org/10.1039/D0CS00354A] [PMID: 33404559]
[87]
Kharkar, P.M.; Rehmann, M.S.; Skeens, K.M.; Maverakis, E.; Kloxin, A.M. Thiol-ene click hydrogels for therapeutic delivery. ACS Biomater. Sci. Eng., 2016, 2(2), 165-179.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00420] [PMID: 28361125]
[88]
Lowe, A.B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem., 2017, 1, 17-36.
[http://dx.doi.org/10.1039/B9PY00216B]
[89]
Kaur, S.; Zhao, G.; Busch, E.; Wang, T. Metal-free photocatalytic thiol-ene/thiol-yne reactions. Org. Biomol. Chem., 2019, 17(7), 1955-1961.
[http://dx.doi.org/10.1039/C8OB02313A] [PMID: 30334562]
[90]
Gorges, J.; Kazmaier, U. BEt3-initiated thiol-ene click reactions as a versatile tool to modify sensitive substrates. Eur. J. Org. Chem., 2015, 8011-8017.
[http://dx.doi.org/10.1002/ejoc.201500915]
[91]
Skinner, E.K.; Whiffin, F.M.; Price, G.J. Room temperature sonochemical initiation of thiol-ene reactions. Chem. Commun. (Camb.), 2012, 48(54), 6800-6802.
[http://dx.doi.org/10.1039/c2cc32457a] [PMID: 22647763]
[92]
Nador, F.; Mancebo-Aracil, J.; Zanotto, D.; Ruiz-Molina, D.; Radivoy, G. Thiol-yne click reaction: An interesting way to derive thiol-provided catechols. RSC Adv., 2021, 11, 2074-2082.
[http://dx.doi.org/10.1039/D0RA09687C]
[93]
Lowe, A.B. Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer (Guildf.), 2014, 55, 5517-5549.
[http://dx.doi.org/10.1016/j.polymer.2014.08.015]
[94]
Massi, A.; Nanni, D. Thiol-yne coupling: Revisiting old concepts as a breakthrough for up-to-date applications. Org. Biomol. Chem., 2012, 10(19), 3791-3807.
[http://dx.doi.org/10.1039/c2ob25217a] [PMID: 22491759]
[95]
Li, N.; Tsoi, T.H.; Lo, W-S.; Gu, Y-L.; Wan, H-Y.; Wong, W-T. An efficient approach to synthesize glycerol dendrimers: via thiol-yne ‘click’ chemistry and their application in stabilization of gold nanoparticles with X-ray attenuation properties. Polym. Chem., 2017, 8, 6989-6996.
[http://dx.doi.org/10.1039/C7PY01436H]
[96]
Killops, K.L.; Campos, L.M.; Hawker, C.J. Robust, efficient, and orthogonal synthesis of dendrimers via thiolene “click” chemistry. J. Am. Chem. Soc., 2008, 130(15), 5062-5064.
[http://dx.doi.org/10.1021/ja8006325] [PMID: 18355008]
[97]
Montañez, M.I.; Campos, L.M.; Antoni, P.; Hed, Y.; Walter, M.V.; Krull, B.T.; Khan, A.; Hult, A.; Hawker, C.J.; Malkoch, M. Accelerated growth of dendrimers via thiol−ene and esterification reactions. Macromolecules, 2010, 43(14), 6004-6013.
[http://dx.doi.org/10.1021/ma1009935]
[98]
Zhang, Z.; Zhou, Y.; Zhou, Z.; Piao, Y.; Kalva, N.; Liu, X.; Tang, J.; Shen, Y. Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. Polym. Chem., 2018, 9, 438-449.
[http://dx.doi.org/10.1039/C7PY01492A]
[99]
Rana, V.; Sharma, R. Recent advances in development of nano drug delivery. In: Micro and Nano Technologies, Applications of Targeted Nano Drugs and Delivery Systems; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S., Eds.; Elsevier, 2019; pp. 93-131.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00005-3]
[100]
Schmitz, K.S. Life science. In: Physical Chemistry; Schmitz, K.S., Ed.; Elsevier, 2018; pp. 755-832.
[http://dx.doi.org/10.1016/B978-0-12-800513-2.00004-8]
[101]
Yokoyama, M. Polymeric micelles as drug carriers: Their lights and shadows. J. Drug Target., 2014, 22(7), 576-583.
[http://dx.doi.org/10.3109/1061186X.2014.934688] [PMID: 25012065]
[102]
Fan, X.; Li, Z.; Loh, X.J. Recent development of unimolecular micelles as functional materials and applications. Polym. Chem., 2016, 7, 5898-5919.
[http://dx.doi.org/10.1039/C6PY01006G]
[103]
Ordanini, S.; Cellesi, F. Complex polymeric architectures self-assembling in unimolecular micelles: Preparation, characterization and drug nanoencapsulation. Pharmaceutics, 2018, 10(4), 209.
[http://dx.doi.org/10.3390/pharmaceutics10040209] [PMID: 30388744]
[104]
Kosakowska, K.A.; Casey, B.K.; Albert, J.N.L.; Wang, Y.; Ashbaugh, H.S.; Grayson, S.M. Synthesis and self-assembly of amphiphilic star/linear-dendritic polymers: effect of core versus peripheral branching on reverse micelle aggregation. Biomacromolecules, 2018, 19(8), 3177-3189.
[http://dx.doi.org/10.1021/acs.biomac.8b00679] [PMID: 29986144]
[105]
Fan, X.; Zhang, W.; Hu, Z.; Li, Z. Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(5), 1062-1072.
[http://dx.doi.org/10.1039/C6TB02234K] [PMID: 32263884]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy