Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Click Reaction in the Synthesis of Dendrimer Drug-delivery Systems

Author(s): Fernando García-Álvarez* and Marcos Martínez-García*

Volume 29, Issue 19, 2022

Published on: 14 January, 2022

Page: [3445 - 3470] Pages: 26

DOI: 10.2174/0929867328666211027124724

Price: $65

Abstract

Drug delivery systems are designed for the targeted delivery and controlled release of medicinal agents. Among the materials employed as drug delivery systems, dendrimers have gained increasing interest in recent years because of their properties and structural characteristics. The use of dendrimer-nanocarrier formulations enhances the safety and bioavailability, increases the solubility in water, improves stability and pharmacokinetic profile, and enables efficient delivery of the target drug to a specific site. However, the synthesis of dendritic architectures through convergent or divergent methods has drawbacks and limitations that disrupt aspects related to design and construction, and consequently, slow down the transfer from academia to industry. In that sense, the implementation of click chemistry has received increasing attention in the last years, as it offers new efficient approaches to obtain dendritic species in good yields and higher monodispersity. This review focuses on recent strategies for building dendrimer drug delivery systems using click reactions from 2015 to early 2021. The dendritic structures showed in this review are based on β -cyclodextrins (β-CD), poly(amidoamine) (PAMAM), dendritic poly (lysine) (PLLD), dimethylolpropionic acid (bis-MPA), phosphoramidate (PAD), and poly(propargyl alcohol-4-mercaptobutyric (PPMA).

Keywords: Dendrimers, click chemistry, drug-delivery systems, biomaterials, nanocarriers, synthesis.

[1]
Bhaw-Luximon, A.; Goonoo, N.; Jhurry, D. Nanotherapeutics promises for colorectal cancer and pancreatic ductal adenocarcinoma. In: Nanobiomaterials in Cancer Therapy; William Andrew Publishing: Grumezescu, MA, 2016; pp. 147-201.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00006-2]
[2]
Avgeropoulos, N.G.; Newton, H.B. Clinical pharmacology of brain tumor chemotherapy In: Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy; Academic Press: Newton, HB, 2018; pp. 21-44.
[http://dx.doi.org/10.1016/B978-0-12-812100-9.00002-4]
[3]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[4]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39, 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[5]
Tomalia, D.; Fréchet, J. Dendrimers and other dendritic polymers;; Tomalia, D.; Fréchet, J., Eds.; John Wiley & Sons, Ltd: UK, 2001.
[6]
Vögtle, F.; Richardt, G.; Werner, N. Dendrimer chemistry: concepts, synthesis, properties, applications;; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2009.
[http://dx.doi.org/10.1002/9783527626953]
[7]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[8]
Hawker, C.; Fréchet, J.M.J. A new convergent approach to monodisperse dendritic macromolecules. J. Chem. Soc. Chem. Commun., 1990, 1010-1013.
[http://dx.doi.org/10.1039/C39900001010]
[9]
Arseneault, M.; Wafer, C.; Morin, J.F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules, 2015, 20(5), 9263-9294.
[http://dx.doi.org/10.3390/molecules20059263] [PMID: 26007183]
[10]
Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38, 2168-2203.
[http://dx.doi.org/10.1039/c3nj01239e]
[11]
Tressaud, A. 2 - Fluorine, a key element for the 21st century. In: Fluorine, volume 5 in Progress in Fluoride Science;; Tressaud, A., Ed.; Elsevier, 2019; pp. 77-150.
[http://dx.doi.org/10.1016/B978-0-12-812990-6.00002-7]
[12]
Tang, W.; Becker, M.L. “Click” reactions: A versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev., 2014, 43(20), 7013-7039.
[http://dx.doi.org/10.1039/C4CS00139G] [PMID: 24993161]
[13]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[14]
Sandoval-Yañez, C.; Castro Rodriguez, C. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials (Basel), 2020, 13(3), 570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[15]
Fan, X.; Hu, Z.; Wang, G. Facile synthesis of polyester dendrimer via combining thio-bromo “click” chemistry and ATNRC. J. Polym. Sci. A Polym. Chem., 2015, 53, 1762-1768.
[http://dx.doi.org/10.1002/pola.27618]
[16]
Nichols, A.J.; Roussakis, E.; Klein, O.J.; Evans, C.L. Click-assembled, oxygen-sensing nanoconjugates for depth-resolved, near-infrared imaging in a 3D cancer model. Angew. Chem. Int. Ed. Engl., 2014, 53(14), 3671-3674.
[http://dx.doi.org/10.1002/anie.201311303] [PMID: 24590700]
[17]
Anandkumar, D.; Raja, R.; Rajakumar, P. Synthesis, photophysical properties and anti-cancer activity of micro-environment sensitive amphiphilic bile acid dendrimers. RSC Advances, 2016, 6, 25808-25818.
[http://dx.doi.org/10.1039/C5RA20147K]
[18]
Roeven, E.; Scheres, L.; Smulders, M.M.J.; Zuilhof, H. Design, synthesis, and characterization of fully zwitterionic, functionalized dendrimers. ACS Omega, 2019, 4(2), 3000-3011.
[http://dx.doi.org/10.1021/acsomega.8b03521] [PMID: 30847431]
[19]
Molina, N.; Nájera, F.; Guadix, J.A.; Perez-Pomares, J.M.; Vida, Y.; Perez-Inestrosa, E. Synthesis of amino terminal clicked dendrimers. Approaches to the application as a biomarker. J. Org. Chem., 2019, 84(16), 10197-10208.
[http://dx.doi.org/10.1021/acs.joc.9b01369] [PMID: 31310119]
[20]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[21]
Breugst, M.; Reissig, H.U. The Huisgen reaction: Milestones of the 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(30), 12293-12307.
[http://dx.doi.org/10.1002/anie.202003115] [PMID: 32255543]
[22]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[23]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[24]
Rodionov, V.O.; Presolski, S.I.; Díaz, D.D.; Fokin, V.V.; Finn, M.G. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: A mechanistic report. J. Am. Chem. Soc., 2007, 129(42), 12705-12712.
[http://dx.doi.org/10.1021/ja072679d] [PMID: 17914817]
[25]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[26]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[27]
Ahlquist, M.; Fokin, V.V. Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics, 2007, 26(18), 4389-4391.
[http://dx.doi.org/10.1021/om700669v]
[28]
Dias, H.V.R.; Polach, S.A.; Goh, S.K.; Archibong, E.F.; Marynick, D.S. Copper and silver complexes containing organic azide ligands: Syntheses, structures, and theoretical investigation of [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) and [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN (where Pz = pyrazolyl and 1-Ad = 1-adamantyl). Inorg. Chem., 2000, 39(17), 3894-3901.
[http://dx.doi.org/10.1021/ic0004232] [PMID: 11196786]
[29]
Straub, B.F. mu-Acetylide and mu-alkenylidene ligands in “click” triazole syntheses. Chem. Commun. (Camb.), 2007, (37), 3868-3870.
[http://dx.doi.org/10.1039/b706926j] [PMID: 18219789]
[30]
Nolte, C.; Mayer, P.; Straub, B.F. Isolation of a copper(I) triazolide: A “click” intermediate. Angew. Chem. Int. Ed., 2007, 46(12), 2101-2103.
[http://dx.doi.org/10.1002/anie.200604444] [PMID: 17300119]
[31]
Haldón, E.; Nicasio, M.C.; Pérez, P.J. Copper-catalysed azide-alkyne cycloadditions (CuAAC): An update. Org. Biomol. Chem., 2015, 13(37), 9528-9550.
[http://dx.doi.org/10.1039/C5OB01457C] [PMID: 26284434]
[32]
Ladomenou, K.; Nikolaou, V.; Charalambidis, G.; Coutsolelos, A.G. “Click”-reaction: An alternative tool for new architectures of porphyrin based derivatives. Coord. Chem. Rev., 2016, 306, 1-42.
[http://dx.doi.org/10.1016/j.ccr.2015.06.002]
[33]
Sun, N.; Wang, Y.; Wang, J.; Sun, W.; Yang, J.; Liu, N. Highly efficient peptide-based click chemistry for proteomic profiling of nascent proteins. Anal. Chem., 2020, 92(12), 8292-8297.
[http://dx.doi.org/10.1021/acs.analchem.0c00594] [PMID: 32434323]
[34]
Döhler, D.; Michael, P.; Binder, W.H. CuAAC-based click chemistry in self-healing polymers. Acc. Chem. Res., 2017, 50(10), 2610-2620.
[http://dx.doi.org/10.1021/acs.accounts.7b00371] [PMID: 28891636]
[35]
Gao, P.; Sun, L.; Zhou, J.; Li, X.; Zhan, P.; Liu, X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-Alkyne Cycloaddition (CuAAC) click chemistry-based approach. Expert Opin. Drug Discov., 2016, 11(9), 857-871.
[http://dx.doi.org/10.1080/17460441.2016.1210125] [PMID: 27400283]
[36]
Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, D.; Liu, X.; Zhan, P. Recent applications of click chemistry in drug discovery. Expert Opin. Drug Discov., 2019, 14(8), 779-789.
[http://dx.doi.org/10.1080/17460441.2019.1614910] [PMID: 31094231]
[37]
Delaittre, G.; Guimard, N.K.; Barner-Kowollik, C. Cycloadditions in modern polymer chemistry. Acc. Chem. Res., 2015, 48(5), 1296-1307.
[http://dx.doi.org/10.1021/acs.accounts.5b00075] [PMID: 25871918]
[38]
Zong, H.; Shah, D.; Selwa, K.; Tsuchida, R.E.; Rattan, R.; Mohan, J.; Stein, A.B.; Otis, J.B.; Goonewardena, S.N. Design and evaluation of tumor-specific dendrimer epigenetic therapeutics. ChemistryOpen, 2015, 4(3), 335-341.
[http://dx.doi.org/10.1002/open.201402141] [PMID: 26246996]
[39]
Liu, J.; Ding, X.; Fu, Y.; Xiang, C.; Yuan, Y.; Zhang, Y.; Yu, P. Cyclodextrins based delivery systems for macro biomolecules. Eur. J. Med. Chem., 2021, 212, 113105.
[http://dx.doi.org/10.1016/j.ejmech.2020.113105] [PMID: 33385835]
[40]
Crini, G. Review: A history of cyclodextrins. Chem. Rev., 2014, 114(21), 10940-10975.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[41]
Tian, B.; Liu, Y.; Liu, J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr. Polym., 2021, 251, 116871.
[http://dx.doi.org/10.1016/j.carbpol.2020.116871] [PMID: 33142550]
[42]
Yousef, T.; Hassan, N. Supramolecular encapsulation of doxorubicin with β-cyclodextrin dendrimer: in vitro evaluation of controlled release and cytotoxicity. J. Incl. Phenom. Macrocycl. Chem., 2017, 87, 105-115.
[http://dx.doi.org/10.1007/s10847-016-0682-4]
[43]
Toomari, Y.; Namazi, H.; Akbar, E.A. Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier. Carbohydr. Polym., 2015, 132, 205-213.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.087] [PMID: 26256342]
[44]
Toomari, Y.; Namazi, H.; Entezami, A.A. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent. Int. J. Biol. Macromol., 2015, 79, 883-893.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.010] [PMID: 26056989]
[45]
Toomari, Y.; Namazi, H. Synthesis of supramolecular biodendrimeric β-CD-(spacer-β-CD)21 via click reaction and evaluation of its application as anticancer drug delivery agent. Int. J. Polym. Mater. Polym. Biomat, 2016, 65, 487-496.
[http://dx.doi.org/10.1080/00914037.2015.1129960]
[46]
Abedi-Gaballu, F.; Dehghan, G.; Ghaffari, M.; Yekta, R.; Abbaspour-Ravasjani, S.; Baradaran, B.; Dolatabadi, J.E.N.; Hamblin, M.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today, 2018, 12, 177-190.
[http://dx.doi.org/10.1016/j.apmt.2018.05.002] [PMID: 30511014]
[47]
Otto, D.P.; de Villiers, M.M. Poly(amidoamine) dendrimers as a pharmaceutical excipient. Are we there yet? J. Pharm. Sci., 2018, 107(1), 75-83.
[http://dx.doi.org/10.1016/j.xphs.2017.10.011] [PMID: 29045886]
[48]
Song, Z-L.; Wang, M-J.; Li, L.; Wu, D.; Wang, Y-H.; Yan, L-T.; Morris-Natschke, S.L.; Liu, Y-Q.; Zhao, Y-L.; Wang, C-Y.; Liu, H.; Goto, M.; Liu, H.; Zhu, G-X.; Lee, K-H. Design, synthesis, cytotoxic activity and molecular docking studies of new 20(S)-sulfonylamidine camptothecin derivatives. Eur. J. Med. Chem., 2016, 115, 109-120.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.070] [PMID: 26994847]
[49]
da Silva Júnior, W.F.; de Oliveira Pinheiro, J.; Moreira, C.; de Souza, F.; Adley, A.N. Alternative technologies to improve solubility and stability of poorly water-soluble drugs. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics;; Elsevier: A.M. Grumezescu, 2017; pp. 281-305.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00015-0]
[50]
Chen, H.; Jia, H.; Tham, H.P.; Qu, Q.; Xing, P.; Zhao, J.; Phua, S.Z.F.; Chen, G.; Zhao, Y. Theranostic prodrug vesicles for imaging guided codelivery of camptothecin and siRNA in synergetic cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(28), 23536-23543.
[http://dx.doi.org/10.1021/acsami.7b06936] [PMID: 28657709]
[51]
Zolotarskaya, O.Y.; Xu, L.; Valerie, K.; Yang, H. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug. RSC Adv., 2015, 5(72), 58600-58608.
[http://dx.doi.org/10.1039/C5RA07987J] [PMID: 26640689]
[52]
Hanurry, E.Y.; Mekonnen, T.W.; Andrgie, A.T.; Darge, H.F.; Birhan, Y.S.; Hsu, W.H.; Chou, H.Y.; Cheng, C.C.; Lai, J.Y.; Tsai, H.C. Biotin-decorated PAMAM G4.5 dendrimer nanoparticles to enhance the delivery, anti-proliferative, and apoptotic effects of chemotherapeutic drug in cancer cells. Pharmaceutics, 2020, 12(5), 443.
[http://dx.doi.org/10.3390/pharmaceutics12050443] [PMID: 32403321]
[53]
Khan, J.K.; Rohondia, S.O.; Ahmed, Z.S.; Zalavadiya, N.; Dou, Q.P. Increasing opportunities of drug repurposing for treating breast cancer by the integration of molecular, histological, and systemic approaches. In: Drug Repurposing in Cancer Therapy;; Kenneth, K.W.; Cho, W.C.S., Eds.; s Academic Press, 2020; pp. 121-172.
[http://dx.doi.org/10.1016/B978-0-12-819668-7.00005-1]
[54]
Asadi, A.; Abdi, M.; Kouhsari, E.; Panahi, P.; Sholeh, M.; Sadeghifard, N.; Amiriani, T.; Ahmadi, A.; Maleki, A.; Gholami, M. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J. Glob. Antimicrob. Resist., 2020, 22, 161-174.
[http://dx.doi.org/10.1016/j.jgar.2020.01.022] [PMID: 32061815]
[55]
Sharma, R.; Kim, S.Y.; Sharma, A.; Zhang, Z.; Kambhampati, S.P.; Kannan, S.; Kannan, R.M. Activated microglia targeting dendrimer-minocycline conjugate as therapeutics for neuroinflammation. Bioconjug. Chem., 2017, 28(11), 2874-2886.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00569] [PMID: 29028353]
[56]
Gao, C.; Liu, L.; Zhou, Y.; Bian, Z.; Wang, S.; Wang, Y. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin. Med., 2019, 14, 23.
[http://dx.doi.org/10.1186/s13020-019-0245-x] [PMID: 31236131]
[57]
Tang, J.; Raza, A.; Chen, J.; Xu, H. A systematic review on the sinomenine derivatives. Mini Rev. Med. Chem., 2018, 18(11), 906-917.
[http://dx.doi.org/10.2174/1389557517666171123212557] [PMID: 29173167]
[58]
Sharma, R.; Kambhampati, S.P.; Zhang, Z.; Sharma, A.; Chen, S.; Duh, E.I.; Kannan, S.; Tso, M.O.M.; Kannan, R.M. Dendrimer mediated targeted delivery of sinomenine for the treatment of acute neuroinflammation in traumatic brain injury. J. Control. Release, 2020, 323, 361-375.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.036] [PMID: 32339548]
[59]
Liaw, K.; Sharma, R.; Sharma, A.; Salazar, S.; Appiani La Rosa, S.; Kannan, R.M. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J. Control. Release, 2021, 329, 434-444.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.003] [PMID: 33290796]
[60]
Ouyang, Z.; Li, D.; Shen, M.; Shi, X. Dendrimer-based tumor-targeted systems. In: New Nanomaterials and Techniques for Tumor-targeted Systems; Huang, R.; Wang, Y; Springer, 2020; pp. 337-369.
[http://dx.doi.org/10.1007/978-981-15-5159-8_10]
[61]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[62]
Wang, T.; Zhang, Y.; Wei, L.; Teng, Y.G.; Honda, T.; Ojima, I.; Ojima, I. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega, 2018, 3(4), 3717-3736.
[http://dx.doi.org/10.1021/acsomega.8b00409] [PMID: 29732446]
[63]
Singh, N.; Joshi, A.; Pal Toor, A.; Verma, G. Drug delivery: Advancements and challenges. In: Nanostructures for Drug Delivery. Micro and Nano Technologies; Andronescu, E.; Grumezescu, A.M., Eds.; Elsevier, 2017; pp. 865-886.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00027-0]
[64]
Tabatabaei Mirakabad, F.S.; Khoramgah, M.S.; Keshavarz, F.K.; Tabarzad, M.; Ranjbari, J. Peptide dendrimers as valuable biomaterials in medical sciences. Life Sci., 2019, 233, 116754.
[http://dx.doi.org/10.1016/j.lfs.2019.116754] [PMID: 31415768]
[65]
Sapra, R.; Verma, R.P.; Maurya, G.P.; Dhawan, S.; Babu, J.; Haridas, V. Designer peptide and protein dendrimers: A cross-sectional analysis. Chem. Rev., 2019, 119(21), 11391-11441.
[http://dx.doi.org/10.1021/acs.chemrev.9b00153] [PMID: 31556597]
[66]
Wu, C.; Gao, C.; Lü, S.; Xu, X.; Wen, N.; Zhang, S.; Liu, M. Construction of polylysine dendrimer nanocomposites carrying nattokinase and their application in thrombolysis. J. Biomed. Mater. Res. A, 2018, 106(2), 440-449.
[http://dx.doi.org/10.1002/jbm.a.36232] [PMID: 28891111]
[67]
Zhou, X.; Zheng, Q.; Wang, C.; Xu, J.; Wu, J.P.; Kirk, T.B.; Ma, D.; Xue, W. Star-shaped amphiphilic hyperbranched polyglycerol conjugated with dendritic poly(l-lysine) for the codelivery of docetaxel and MMP-9 siRNA in cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(20), 12609-12619.
[http://dx.doi.org/10.1021/acsami.6b01611] [PMID: 27153187]
[68]
Pugazhendhi, A.; Edison, T.N.J.I.; Velmurugan, B.K.; Jacob, J.A.; Karuppusamy, I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci., 2018, 200, 26-30.
[http://dx.doi.org/10.1016/j.lfs.2018.03.023] [PMID: 29534993]
[69]
Li, N.; Guo, C.; Duan, Z.; Yu, L.; Luo, K.; Lu, J.; Gu, Z. A stimuli-responsive Janus peptide dendron-drug conjugate as a safe and nanoscale drug delivery vehicle for breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(21), 3760-3769.
[http://dx.doi.org/10.1039/C6TB00688D] [PMID: 32263314]
[70]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[71]
Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E.H.E.; Fens, M.H.A.M.; Ehling, J.; Schiffelers, R.M.; Storm, G.; van Nostrum, C.F.; Lammers, T.; Hennink, W.E. Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π-Π stacking stabilized polymeric micelles. ACS Nano, 2015, 9(4), 3740-3752.
[http://dx.doi.org/10.1021/acsnano.5b00929] [PMID: 25831471]
[72]
Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf., 2007, 6(5), 609-621.
[http://dx.doi.org/10.1517/14740338.6.5.609] [PMID: 17877447]
[73]
Li, N.; Cai, H.; Jiang, L.; Hu, J.; Bains, A.; Hu, J.; Gong, Q.; Luo, K.; Gu, Z. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl. Mater. Interfaces, 2017, 9(8), 6865-6877.
[http://dx.doi.org/10.1021/acsami.6b15505] [PMID: 28112512]
[74]
Zhang, C.; Pan, D.; Li, J.; Hu, J.; Bains, A.; Guys, N.; Zhu, H.; Li, X.; Luo, K.; Gong, Q.; Gu, Z. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater., 2017, 55, 153-162.
[http://dx.doi.org/10.1016/j.actbio.2017.02.047] [PMID: 28259838]
[75]
Feliu, N.; Walter, M.V.; Montañez, M.I.; Kunzmann, A.; Hult, A.; Nyström, A.; Malkoch, M.; Fadeel, B. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials, 2012, 33(7), 1970-1981.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.054] [PMID: 22177621]
[76]
Stenström, P.; Andrén, O.C.J.; Malkoch, M. Fluoride-Promoted Esterification (FPE) chemistry: A robust route to Bis-MPA dendrons and their postfunctionalization. Molecules, 2016, 21(3), 366.
[http://dx.doi.org/10.3390/molecules21030366] [PMID: 26999090]
[77]
Zhang, Y.; Lu, Y.; Zhang, Y.; He, X.; Chen, Q.; Liu, L.; Chen, X.; Ruan, C.; Sun, T.; Jiang, C. Tumor-targeting micelles based on linear-dendritic PEG-PTX8 conjugate for triple negative breast cancer therapy. Mol. Pharm., 2017, 14(10), 3409-3421.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00430] [PMID: 28832164]
[78]
López-Méndez, L.J.; González-Méndez, I.; Aguayo-Ortiz, R.; Dominguez, L.; Alcaraz-Estrada, S.L.; Rojas-Aguirre, Y.; Guadarrama, P. Synthesis of a poly(ester) dendritic β-cyclodextrin derivative by “click” chemistry: Combining the best of two worlds for complexation enhancement. Carbohydr. Polym., 2018, 184, 20-29.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.049] [PMID: 29352912]
[79]
Brewer, G.J. Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol., 2010, 23(2), 319-326.
[http://dx.doi.org/10.1021/tx900338d] [PMID: 19968254]
[80]
Kennedy, D.C.; McKay, C.S.; Legault, M.C.B.; Danielson, D.C.; Blake, J.A.; Pegoraro, A.F.; Stolow, A.; Mester, Z.; Pezacki, J.P. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc., 2011, 133(44), 17993-18001.
[http://dx.doi.org/10.1021/ja2083027] [PMID: 21970470]
[81]
Vierling, J.M.; Sussman, N.L. Wilson disease in adults: Clinical presentations, diagnosis, and medical management. In: Clinical and Translational Perspectives on WILSON DISEASE; Kervar, N.; Roberts, E.A; Academic Press: USA, 2019; pp. 165-177.
[http://dx.doi.org/10.1016/B978-0-12-810532-0.00016-1]
[82]
Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health B Crit. Rev., 2001, 4(4), 341-394.
[http://dx.doi.org/10.1080/109374001753146207] [PMID: 11695043]
[83]
Glass, R.S. Sulfur radicals and their application. Top. Curr. Chem. (Cham), 2018, 376(3), 22.
[http://dx.doi.org/10.1007/s41061-018-0197-0] [PMID: 29744596]
[84]
Machado, T.O.; Sayer, C.; Araujo, P.H.H. Thiol-ene polymerisation: A promising technique to obtain novel biomaterials. Eur. Polym. J., 2017, 86, 200-215.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.02.025]
[85]
Guerrero-Corella, A.; María Martinez-Gualda, A.; Ahmadi, F.; Ming, E.; Fraile, A.; Alemán, J. Thiol-ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides. Chem. Commun. (Camb.), 2017, 53(75), 10463-10466.
[http://dx.doi.org/10.1039/C7CC05672A] [PMID: 28890975]
[86]
Ahangarpour, M.; Kavianinia, I.; Harris, P.W.R.; Brimble, M.A. Photo-induced radical thiol-ene chemistry: A versatile toolbox for peptide-based drug design. Chem. Soc. Rev., 2021, 50(2), 898-944.
[http://dx.doi.org/10.1039/D0CS00354A] [PMID: 33404559]
[87]
Kharkar, P.M.; Rehmann, M.S.; Skeens, K.M.; Maverakis, E.; Kloxin, A.M. Thiol-ene click hydrogels for therapeutic delivery. ACS Biomater. Sci. Eng., 2016, 2(2), 165-179.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00420] [PMID: 28361125]
[88]
Lowe, A.B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem., 2017, 1, 17-36.
[http://dx.doi.org/10.1039/B9PY00216B]
[89]
Kaur, S.; Zhao, G.; Busch, E.; Wang, T. Metal-free photocatalytic thiol-ene/thiol-yne reactions. Org. Biomol. Chem., 2019, 17(7), 1955-1961.
[http://dx.doi.org/10.1039/C8OB02313A] [PMID: 30334562]
[90]
Gorges, J.; Kazmaier, U. BEt3-initiated thiol-ene click reactions as a versatile tool to modify sensitive substrates. Eur. J. Org. Chem., 2015, 8011-8017.
[http://dx.doi.org/10.1002/ejoc.201500915]
[91]
Skinner, E.K.; Whiffin, F.M.; Price, G.J. Room temperature sonochemical initiation of thiol-ene reactions. Chem. Commun. (Camb.), 2012, 48(54), 6800-6802.
[http://dx.doi.org/10.1039/c2cc32457a] [PMID: 22647763]
[92]
Nador, F.; Mancebo-Aracil, J.; Zanotto, D.; Ruiz-Molina, D.; Radivoy, G. Thiol-yne click reaction: An interesting way to derive thiol-provided catechols. RSC Adv., 2021, 11, 2074-2082.
[http://dx.doi.org/10.1039/D0RA09687C]
[93]
Lowe, A.B. Thiol-yne ‘click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer (Guildf.), 2014, 55, 5517-5549.
[http://dx.doi.org/10.1016/j.polymer.2014.08.015]
[94]
Massi, A.; Nanni, D. Thiol-yne coupling: Revisiting old concepts as a breakthrough for up-to-date applications. Org. Biomol. Chem., 2012, 10(19), 3791-3807.
[http://dx.doi.org/10.1039/c2ob25217a] [PMID: 22491759]
[95]
Li, N.; Tsoi, T.H.; Lo, W-S.; Gu, Y-L.; Wan, H-Y.; Wong, W-T. An efficient approach to synthesize glycerol dendrimers: via thiol-yne ‘click’ chemistry and their application in stabilization of gold nanoparticles with X-ray attenuation properties. Polym. Chem., 2017, 8, 6989-6996.
[http://dx.doi.org/10.1039/C7PY01436H]
[96]
Killops, K.L.; Campos, L.M.; Hawker, C.J. Robust, efficient, and orthogonal synthesis of dendrimers via thiolene “click” chemistry. J. Am. Chem. Soc., 2008, 130(15), 5062-5064.
[http://dx.doi.org/10.1021/ja8006325] [PMID: 18355008]
[97]
Montañez, M.I.; Campos, L.M.; Antoni, P.; Hed, Y.; Walter, M.V.; Krull, B.T.; Khan, A.; Hult, A.; Hawker, C.J.; Malkoch, M. Accelerated growth of dendrimers via thiol−ene and esterification reactions. Macromolecules, 2010, 43(14), 6004-6013.
[http://dx.doi.org/10.1021/ma1009935]
[98]
Zhang, Z.; Zhou, Y.; Zhou, Z.; Piao, Y.; Kalva, N.; Liu, X.; Tang, J.; Shen, Y. Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. Polym. Chem., 2018, 9, 438-449.
[http://dx.doi.org/10.1039/C7PY01492A]
[99]
Rana, V.; Sharma, R. Recent advances in development of nano drug delivery. In: Micro and Nano Technologies, Applications of Targeted Nano Drugs and Delivery Systems; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S., Eds.; Elsevier, 2019; pp. 93-131.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00005-3]
[100]
Schmitz, K.S. Life science. In: Physical Chemistry; Schmitz, K.S., Ed.; Elsevier, 2018; pp. 755-832.
[http://dx.doi.org/10.1016/B978-0-12-800513-2.00004-8]
[101]
Yokoyama, M. Polymeric micelles as drug carriers: Their lights and shadows. J. Drug Target., 2014, 22(7), 576-583.
[http://dx.doi.org/10.3109/1061186X.2014.934688] [PMID: 25012065]
[102]
Fan, X.; Li, Z.; Loh, X.J. Recent development of unimolecular micelles as functional materials and applications. Polym. Chem., 2016, 7, 5898-5919.
[http://dx.doi.org/10.1039/C6PY01006G]
[103]
Ordanini, S.; Cellesi, F. Complex polymeric architectures self-assembling in unimolecular micelles: Preparation, characterization and drug nanoencapsulation. Pharmaceutics, 2018, 10(4), 209.
[http://dx.doi.org/10.3390/pharmaceutics10040209] [PMID: 30388744]
[104]
Kosakowska, K.A.; Casey, B.K.; Albert, J.N.L.; Wang, Y.; Ashbaugh, H.S.; Grayson, S.M. Synthesis and self-assembly of amphiphilic star/linear-dendritic polymers: effect of core versus peripheral branching on reverse micelle aggregation. Biomacromolecules, 2018, 19(8), 3177-3189.
[http://dx.doi.org/10.1021/acs.biomac.8b00679] [PMID: 29986144]
[105]
Fan, X.; Zhang, W.; Hu, Z.; Li, Z. Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(5), 1062-1072.
[http://dx.doi.org/10.1039/C6TB02234K] [PMID: 32263884]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy