Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Cell Penetrating Peptide Delivery of Splice Directing Oligonucleotides as a Treatment for Duchenne Muscular Dystrophy

Author(s): Corinne A. Betts and Matthew J.A. Wood

Volume 19, Issue 16, 2013

Page: [2948 - 2962] Pages: 15

DOI: 10.2174/1381612811319160009

Price: $65

Abstract

Duchenne muscular dystrophy is a severe, X-linked muscle wasting disorder caused by the absence of an integral structural protein called dystrophin. This is caused by mutations or deletions in the dystrophin gene which disrupt the reading frame, thereby halting the production of a functional protein. A number of potential therapies have been investigated for the treatment of this disease including utrophin upregulation, ‘stop-codon read through’ aminoglycosides and adeno-associated virus gene replacement as well as stem cell therapy. However, the most promising treatment to date is the use of antisense oligonucleotides which cause exon skipping by binding to a specific mRNA sequence, skipping the desired exon, thereby restoring the reading frame and producing a truncated yet functional protein. The results from recent 2’OMePS and morpholino clinical trials have renewed hope for Duchenne patients; however in vivo studies in a mouse model, mdx, have revealed low systemic distribution and poor delivery of oligonucleotides to affected tissues such as the brain and heart. However a variety of cell penetrating peptides directly conjugated to antisense oligonucleotides have been shown to enhance delivery in Duchenne model systems with improved systemic distribution and greater efficacy compared to ‘naked’ antisense oligonucleotides. These cell penetrating peptides, combined with an optimised dose and dosing regimen, as well as thorough toxicity profile have the potential to be developed into a promising treatment which may be progressed to clinical trial.

Keywords: Duchenne muscular dystrophy, dystrophin, antisense oligonucleotide, cell penetrating peptide, exon-skipping, delivery


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy