Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Advancement of Traditional Chinese Medicine in Regulation of Intestinal Flora: Mechanism-based Role in Disease Management

Author(s): Zezhen Wu, Yongru Chen, Dan Zhu, Yingmiao Zheng, Khan Barkat Ali and Kaijian Hou*

Volume 17, Issue 2, 2022

Published on: 15 December, 2021

Page: [136 - 144] Pages: 9

DOI: 10.2174/1574892816666210929164930

Price: $65

Abstract

Intestinal microecology is the largest and most complex human microecology. The intestinal microflora plays an important role in human health. Imbalance of intestinal microflora contributes to the occurrence and development of many diseases. Recently, the treatment of human diseases by regulating intestinal microflora has become a research topic of interest. Traditional Chinese medicine considers the whole human body as the central concept in disease treatment strategies. It advocates maintaining the coordination and balance of the functions of various organs and systems of the human body, including the intestinal microflora. Traditional Chinese medicine improves the metabolism and immune function of the human body by regulating the intestinal microflora. The intestinal microflora could trigger pharmacological activity or reduce toxicity of drugs through regulating metabolism, which enables traditional Chinese medicine formulations to exert their best therapeutic effects. This review summarized the relationship between the intestinal microflora and digestive system, tumors, and other diseases. Furthermore, the role of traditional Chinese medicine in the treatment of tumors, and other diseases is discussed. The relationship among traditional Chinese medicine and the common intestinal microflora, pathogenesis of human diseases, and effective intervention methods were elaborated. In addition, we explored the research progress of traditional Chinese medicine in the treatment of various human diseases by regulating intestinal microflora to provide new treatment concepts. There is a close relationship between traditional Chinese medicine and the intestinal microflora. Traditional Chinese medicine formulations contribute to maintain the natural balance of the intestinal tract and the intestinal microflora to achieve treatment effects. This paper summarizes the mechanism of action of traditional Chinese medicine formulations in regulating the intestinal microflora in the prevention and treatment of various diseases. Furthermore, it summarizes information on the application of the interaction between traditional Chinese medicine preparations and the regulation of intestinal microflora in the treatment of common human diseases. Intestinal microflora plays a key role in traditional Chinese medicine in maintaining the natural balance of physiology and metabolism of human body. It will provide a theoretical basis for the traditional Chinese medicine preparations in the prevention and treatment of common human diseases, and simulate future research on this aspect.

Keywords: Intestinal microflora, traditional chinese medicine, research progress, common human disease, treatment strategy, cancer.

[1]
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635-8.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[2]
Liu S, Pan J, Meng X, Zhu J, Zhou J, Zhu X. Trichinella spiralis infection decreases the diversity of the intestinal flora in the infected mouse. J Microbiol Immunol Infect 2021; 54(3): 490-500.
[http://dx.doi.org/10.1016/j.jmii.2019.09.009] [PMID: 31708483]
[3]
Maruvada P, Leone V, Kaplan LM, Chang EB. The human microbiome and obesity: Moving beyond associations. Cell Host Microbe 2017; 22(5): 589-99.
[http://dx.doi.org/10.1016/j.chom.2017.10.005] [PMID: 29120742]
[4]
Orji FA, Ugbogu OC, Ugbogu EA, et al. Pathogenic flora composition and overview of the trends used for bacterial pathogenicity identifications. Microb Pathog 2018; 121: 139-46.
[http://dx.doi.org/10.1016/j.micpath.2018.05.006] [PMID: 29738815]
[5]
Tkachenko EI, Uspenskiĭ IuP, Zakharchenko MM, et al. People and their symbiotic microflora: General biological aspects of the problem. Eksp Klin Gastroenterol 2006; (3): 38-42, 71.
[PMID: 17203841]
[6]
Elgin TG, Kern SL, McElroy SJ. Development of the neonatal intestinal microbiome and its association with necrotizing enterocolitis. Clin Ther 2016; 38(4): 706-15.
[http://dx.doi.org/10.1016/j.clinthera.2016.01.005] [PMID: 26852144]
[7]
Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer 2019; 7(1): 108.
[http://dx.doi.org/10.1186/s40425-019-0574-4] [PMID: 30995949]
[8]
Vétizou M, Daillère R, Zitvogel L. The role of intestinal microbiota in the response to anti-tumor therapies. Med Sci (Paris) 2016; 32(11): 974-82.
[http://dx.doi.org/10.1051/medsci/20163211013] [PMID: 28008838]
[9]
Villéger R, Lopès A, Carrier G, et al. Intestinal microbiota: A novel target to improve anti-tumor treatment? Int J Mol Sci 2019; 20(18): E4584.
[http://dx.doi.org/10.3390/ijms20184584] [PMID: 31533218]
[10]
Chao W. Application of Panax notoginseng saponins combined with tanshinone II a in the preparation of drugs for prevention of colorectal cancer. CN110201017A, 2019.
[11]
Jia ZH, Zhang XF, Wang W. Application of schisandrin A in preparation of antitumor drugs. CN109394739A, 2019.
[12]
Xie Y, Yang ZD, Ye SM. A microecological composition and its preparation for improving constipation by targeting intestinal flora. CN111671791A, 2020.
[13]
Rossen NG, Fuentes S, van der Spek MJ, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 2015; 149(1): 110-118.e4.
[http://dx.doi.org/10.1053/j.gastro.2015.03.045] [PMID: 25836986]
[14]
Alpert C, Sczesny S, Gruhl B, Blaut M. Long-term stability of the human gut microbiota in two different rat strains. Curr Issues Mol Biol 2008; 10(1-2): 17-24.
[PMID: 18525103]
[15]
Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science 2013; 341(6141): 1237439.
[http://dx.doi.org/10.1126/science.1237439] [PMID: 23828941]
[16]
Di S, Wang Y, Han L, et al. The intervention effect of traditional Chinese medicine on the intestinal flora and its metabolites in glycolipid metabolic disorders. Evid Based Complement Alternat Med 2019; 2019: 2958920.
[http://dx.doi.org/10.1155/2019/2958920] [PMID: 31275408]
[17]
Zuo F, Zhou ZM, Yan MZ, et al. Metabolism of constituents in Huangqin-Tang, a prescription in traditional Chinese medicine, by human intestinal flora. Biol Pharm Bull 2002; 25(5): 558-63.
[http://dx.doi.org/10.1248/bpb.25.558] [PMID: 12033492]
[18]
Chen LX, Li Y, Li LF, Zhang T, Wang CC, Han SL. Application of a traditional Chinese medicine composition in the preparation of drugs for the treatment of intestinal dysbacteriosis. CN111184839A, 2020.
[19]
Nie Q, Chen H, Hu J, Fan S, Nie S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit Rev Food Sci Nutr 2019; 59(6): 848-63.
[http://dx.doi.org/10.1080/10408398.2018.1536646] [PMID: 30569745]
[20]
Qu W, Liu S, Zhang W, et al. Impact of traditional Chinese medicine treatment on chronic unpredictable mild stress-induced depression-like behaviors: Intestinal microbiota and gut microbiome function. Food Funct 2019; 10(9): 5886-97.
[http://dx.doi.org/10.1039/C9FO00399A] [PMID: 31464319]
[21]
Chang CJ, Lin CS, Lu CC, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 2015; 6: 7489.
[http://dx.doi.org/10.1038/ncomms8489] [PMID: 26102296]
[22]
Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017; 377(1): 13-27.
[http://dx.doi.org/10.1056/NEJMoa1614362] [PMID: 28604169]
[23]
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761-72.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[24]
Chang CJ, Lin CS, Lu CC, et al. Corrigendum: Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 2017; 8: 16130.
[http://dx.doi.org/10.1038/ncomms16130] [PMID: 28695905]
[25]
Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2016; 12(1): 31-40.
[http://dx.doi.org/10.1517/17425255.2016.1121234] [PMID: 26569070]
[26]
Wu GL, Yu GY, Lu WW. Research status on regulation of Chinese herbal compound on intestinal microecology. Zhongguo Zhongyao Zazhi 2015; 40(18): 3534-7.
[PMID: 26983195]
[27]
Moser G, Fournier C, Peter JJWMW. Intestinal microbiome-gut-brain axis and irritable bowel syndrome. 2018; 168: 62-6.
[http://dx.doi.org/10.1007/s10354-017-0592-0]
[28]
Harris LA, Baffy N. Modulation of the gut microbiota: A focus on treatments for irritable bowel syndrome. Postgrad Med 2017; 129(8): 872-88.
[http://dx.doi.org/10.1080/00325481.2017.1383819] [PMID: 28936910]
[29]
Leventogiannis K, Gkolfakis P, Spithakis G, et al. Effect of a preparation of four probiotics on symptoms of patients with irritable bowel syndrome: Association with intestinal bacterial overgrowth. Probiotics Antimicrob Proteins 2019; 11(2): 627-34.
[http://dx.doi.org/10.1007/s12602-018-9401-3] [PMID: 29508268]
[30]
Tojo R, Suárez A, Clemente MG, et al. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J Gastroenterol 2014; 20(41): 15163-76.
[http://dx.doi.org/10.3748/wjg.v20.i41.15163] [PMID: 25386066]
[31]
Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv Nutr 2017; 8(3): 484-94.
[http://dx.doi.org/10.3945/an.116.014407] [PMID: 28507013]
[32]
Ji L, Fan Y, Li L, Bai H, Weng L, Zhao P. Efficacy and safety of Chinese herbal compound in the treatment of functional constipation: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99(39): e22456.
[http://dx.doi.org/10.1097/MD.0000000000022456] [PMID: 32991483]
[33]
Naito Y, Takagi T, Inoue R. Crucial role of microbiota in the pathogenesis of chronic constipation. Nihon Shokakibyo Gakkai Zasshi 2018; 115(11): 940-9.
[PMID: 30416155]
[34]
Szymańska S, Markiewicz-Kijewska M, Pyzlak M, et al. Pathogenesis of chronic constipation in a Polish group of paediatric patients - an attempt to create the optimal histopathological diagnostic protocol. Prz Gastroenterol 2019; 14(2): 109-11.
[http://dx.doi.org/10.5114/pg.2019.85894] [PMID: 31616524]
[35]
Shafik A. Constipation. pathogenesis and management. Drugs 1993; 45(4): 528-40.
[http://dx.doi.org/10.2165/00003495-199345040-00005] [PMID: 7684673]
[36]
Yang W, He T, Zhang W, Gu L, Tu R, Liu H. Effectiveness and safety of lactobacilli in children with functional constipation: Study protocol for a meta-analysis and systematic review. Medicine (Baltimore) 2019; 98(20): e15675.
[http://dx.doi.org/10.1097/MD.0000000000015675] [PMID: 31096503]
[37]
Gluvic ZM, Sudar-Milovanovic EM, Samardzic VS, et al. Serum nitric oxide levels correlate with quality of life questionnaires scores of hypothyroid females. Med Hypotheses 2019; 131: 109299.
[http://dx.doi.org/10.1016/j.mehy.2019.109299] [PMID: 31443778]
[38]
Khan I, Ullah N, Zha L, et al. Alteration of gut microbiota in Inflammatory Bowel Disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019; 8(3): E126.
[http://dx.doi.org/10.3390/pathogens8030126] [PMID: 31412603]
[39]
Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 2014; 146(6): 1489-99.
[http://dx.doi.org/10.1053/j.gastro.2014.02.009] [PMID: 24560869]
[40]
Guarner F. The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr Opin Gastroenterol 2005; 21(4): 414-8.
[PMID: 15930980]
[41]
Huang G, Ye L, Du G, et al. Effects of curcumin plus Soy oligosaccharides on intestinal flora of rats with ulcerative colitis. Cell Mol Biol 2017; 63(7): 20-5.
[http://dx.doi.org/10.14715/cmb/2017.63.7.3] [PMID: 28838334]
[42]
Jiang XE, Yang SM, Zhou XJ, Zhang Y. Effects of mesalazine combined with bifid triple viable on intestinal flora, immunoglobulin and levels of cal, MMP-9, and MPO in feces of patients with ulcerative colitis. Eur Rev Med Pharmacol Sci 2020; 24(2): 935-42.
[PMID: 32017001]
[43]
Zhong Y, Zheng C, Zheng JH, Xu SC. The relationship between intestinal flora changes and osteoporosis in rats with inflammatory bowel disease and the improvement effect of probiotics. Eur Rev Med Pharmacol Sci 2020; 24(10): 5697-702.
[PMID: 32495905]
[44]
Di Stefano M, Pagani E, Pesatori EV, et al. Polysorbate 80 add-on therapy in the treatment of Helicobacter pylori infection: Polysorbate 80 and HP antibiotic resistance. Clin Nutr ESPEN 2019; 34: 101-3.
[http://dx.doi.org/10.1016/j.clnesp.2019.08.005] [PMID: 31677698]
[45]
Kou FS, Shi L, Li JX, et al. Clinical evaluation of traditional Chinese medicine on mild active ulcerative colitis: A multi-center, randomized, double-blind, controlled trial. Medicine (Baltimore) 2020; 99(35): e21903.
[http://dx.doi.org/10.1097/MD.0000000000021903] [PMID: 32871923]
[46]
Leccese G, Bibi A, Mazza S, et al. Probiotic Lactobacillus and Bifidobacterium strains counteract Adherent-Invasive Escherichia coli (AIEC) virulence and hamper IL-23/Th17 axis in ulcerative colitis, but not in Crohn’s disease. Cells 2020; 9(8): E1824.
[http://dx.doi.org/10.3390/cells9081824] [PMID: 32752244]
[47]
Liu Y, Sheng Y, Pan Q, et al. Identification of the key physiological characteristics of Lactobacillus plantarum strains for ulcerative colitis alleviation. Food Funct 2020; 11(2): 1279-91.
[http://dx.doi.org/10.1039/C9FO02935D] [PMID: 31984399]
[48]
Shen ZF, Wu HH, Zhu L, Zhou Q, Shen H. Traditional Chinese medicine for ulcerative colitis: systematic reviews based on PRIO-harms. Zhongguo Zhongyao Zazhi 2020; 45(3): 674-82.
[PMID: 32237528]
[49]
Huang L, Wu L, Qiao Q, Fang L. Correlation between colon polyps and metabolic syndrome and HP infection status. Gastroenterol Res Pract 2019; 2019: 3916154.
[http://dx.doi.org/10.1155/2019/3916154] [PMID: 31281348]
[50]
Wang N, Wang CJ, Li YF. Efficacy of Chinese medicine combined with fixed quadruple therapy on Hp positive chronic gastritis. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2017; 37(4): 406-9.
[PMID: 30650494]
[51]
Zhang JZ, Feng QL, Hu YL, Yang T, Zhang Y. Correlation Study on Chinese medical syndrome types of chronic atrophic gastritis patients, Hp, and IL-1β polymorphism. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2015; 35(12): 1433-6.
[PMID: 26882603]
[52]
Cai S, Kandasamy M, Rahmat JN, et al. Lactobacillus rhamnosus GG Activation of Dendritic Cells and Neutrophils Depends on the Dose and Time of Exposure. J Immunol Res 2016; 2016: 7402760.
[http://dx.doi.org/10.1155/2016/7402760] [PMID: 27525288]
[53]
Garrett WJS. Cancer and the microbiota. 2015; 348: pp. (6230)80-6.
[http://dx.doi.org/10.1126/science.aaa4972]
[54]
Hu J, Wang C, Ye L, et al. Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci 2015; 40(2): 269-79.
[http://dx.doi.org/10.1007/s12038-015-9518-4] [PMID: 25963256]
[55]
Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 2010; 107(25): 11537-42.
[http://dx.doi.org/10.1073/pnas.1001261107] [PMID: 20534522]
[56]
Klimesova K, Kverka M, Zakostelska Z, et al. Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. Inflamm Bowel Dis 2013; 19(6): 1266-77.
[http://dx.doi.org/10.1097/MIB.0b013e318281330a] [PMID: 23567778]
[57]
McIntosh FM, Maison N, Holtrop G, et al. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol 2012; 14(8): 1876-87.
[http://dx.doi.org/10.1111/j.1462-2920.2012.02711.x] [PMID: 22364273]
[58]
Si H, Yang Q, Hu H, Ding C, Wang H, Lin X. Colorectal cancer occurrence and treatment based on changes in intestinal flora. Semin Cancer Biol 2021; 70: 3-10.
[http://dx.doi.org/10.1016/j.semcancer.2020.05.004] [PMID: 32404293]
[59]
Sears CL, Pardoll DM. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis 2011; 203(3): 306-11.
[http://dx.doi.org/10.1093/jinfdis/jiq061] [PMID: 21208921]
[60]
Geis AL, Fan H, Wu X, et al. Regulatory T-cell response to enterotoxigenic bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov 2015; 5(10): 1098-109.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0447] [PMID: 26201900]
[61]
Thiele Orberg E, Fan H, Tam AJ, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol 2017; 10(2): 421-33.
[http://dx.doi.org/10.1038/mi.2016.53] [PMID: 27301879]
[62]
Mootien S, Kaplan PM. Monoclonal antibodies specific for Bacteroides fragilis enterotoxins BFT1 and BFT2 and their use in immunoassays. PLoS One 2017; 12(3): e0173128.
[http://dx.doi.org/10.1371/journal.pone.0173128] [PMID: 28257448]
[63]
Wang CZ, Yu C, Wen XD, et al. American ginseng attenuates colitis-associated colon carcinogenesis in mice: impact on gut microbiota and metabolomics. Cancer Prev Res (Phila) 2016; 9(10): 803-11.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0372] [PMID: 27443884]
[64]
Wang CZ, Anderson S, Yuan CS. Phytochemistry and anticancer potential of notoginseng. Am J Chin Med 2016; 44(1): 23-34.
[http://dx.doi.org/10.1142/S0192415X16500026] [PMID: 26916912]
[65]
Yu YN, Yu TC, Zhao HJ, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 2015; 6(31): 32013-26.
[http://dx.doi.org/10.18632/oncotarget.5166] [PMID: 26397137]
[66]
Xu C, Liu Y, Yuan G, Guan M. The contribution of side chains to antitumor activity of a polysaccharide from Codonopsis pilosula. Int J Biol Macromol 2012; 50(4): 891-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.01.013] [PMID: 22285989]
[67]
Su J, Su L, Li D, et al. Antitumor activity of extract from the sporoderm-breaking spore of Ganoderma lucidum: restoration on exhausted cytotoxic T-cell with gut microbiota remodeling. Front Immunol 2018; 9: 1765.
[http://dx.doi.org/10.3389/fimmu.2018.01765] [PMID: 30108589]
[68]
Sonis ST. The pathobiology of mucositis. Nat Rev Cancer 2004; 4(4): 277-84.
[http://dx.doi.org/10.1038/nrc1318] [PMID: 15057287]
[69]
Chen J, Mao Y, Xing C, et al. Traditional chinese medicine prescriptions decrease diarrhea rate by relieving colonic inflammation and ameliorating caecum microbiota in piglets. Evid Based Complement Alternat Med 2020; 2020: 3647525.
[PMID: 32351595]
[70]
Chen L, Ding Y, Hou Y, Liu Y, Nie H. Regulation of Cl- electrolyte permeability in epithelia by active traditional chinese medicine monomers for diarrhea. Curr Drug Targets 2020; 21(9): 902-9.
[http://dx.doi.org/10.2174/1389450121666200504073635] [PMID: 32364074]
[71]
Zhou X, Chen C, Zhong YN, et al. Effect and mechanism of vitamin D on the development of colorectal cancer based on intestinal flora disorder. J Gastroenterol Hepatol 2020; 35(6): 1023-31.
[http://dx.doi.org/10.1111/jgh.14949] [PMID: 31788852]
[72]
Liu N, Wu C, Jia R, et al. Traditional chinese medicine combined with chemotherapy and cetuximab or bevacizumab for metastatic colorectal cancer: a randomized, double-blind, placebo-controlled clinical trial. Front Pharmacol 2020; 11: 478.
[http://dx.doi.org/10.3389/fphar.2020.00478] [PMID: 32372960]
[73]
Tan KY, Liu CB, Chen AH, Ding YJ, Jin HY, Seow-Choen F. The role of traditional Chinese medicine in colorectal cancer treatment. Tech Coloproctol 2008; 12(1): 1-6.
[http://dx.doi.org/10.1007/s10151-008-0392-z] [PMID: 18512006]
[74]
Li Z, Lu C, Qiu J, et al. Correlation of serum adipocytokine levels with glycolipid metabolism and inflammatory factors in obese patients with periodontal disease. Int J Clin Exp Pathol 2018; 11(3): 1620-8.
[PMID: 31938261]
[75]
Zhang P, Jingxian Li, Mengli Li, Yuan Sui, Yuhao Zhou, Yongye Sun. Effects of lycopene on metabolism of glycolipid and inflammation in non-alcoholic fatty liver disease rats. Wei Sheng Yan Jiu 2020; 49(2): 254-71.
[http://dx.doi.org/10.19813/j.cnki.weishengyanjiu.2020.02.015] [PMID: 32290942]
[76]
Marteau P. Role of the intestinal flora in gastrointestinal diseases. Lancet 2000; 356(Suppl.): s28.
[http://dx.doi.org/10.1016/S0140-6736(00)92014-2] [PMID: 11191484]
[77]
Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 2011; 31: 15-31.
[http://dx.doi.org/10.1146/annurev-nutr-072610-145146] [PMID: 21568707]
[78]
Chehri M, Christensen AH, Halkjær SI, Günther S, Petersen AM, Helms M. Case series of successful treatment with fecal microbiota transplant (FMT) oral capsules mixed from multiple donors even in patients previously treated with FMT enemas for recurrent Clostridium difficile infection. Medicine (Baltimore) 2018; 97(31): e11706.
[http://dx.doi.org/10.1097/MD.0000000000011706] [PMID: 30075573]
[79]
Thoma C. Bile salt hydrolases involved in the effectiveness of FMT for Clostridium difficile infection. Nat Rev Gastroenterol Hepatol 2019; 16(4): 198.
[http://dx.doi.org/10.1038/s41575-019-0128-8] [PMID: 30837698]
[80]
Koren D, Taveras EM. Association of sleep disturbances with obesity, insulin resistance and the metabolic syndrome. Metabolism 2018; 84: 67-75.
[http://dx.doi.org/10.1016/j.metabol.2018.04.001] [PMID: 29630921]
[81]
Singh MK, Leslie SM, Packer MM, et al. Brain and behavioral correlates of insulin resistance in youth with depression and obesity. Horm Behav 2019; 108: 73-83.
[http://dx.doi.org/10.1016/j.yhbeh.2018.03.009] [PMID: 29596854]
[82]
Alba DL, Farooq JA, Lin MYC, Schafer AL, Shepherd J, Koliwad SK. Subcutaneous fat fibrosis links obesity to insulin resistance in chinese americans. J Clin Endocrinol Metab 2018; 103(9): 3194-204.
[http://dx.doi.org/10.1210/jc.2017-02301] [PMID: 29846621]
[83]
Al-Sulaiti H, Diboun I, Agha MV, et al. Metabolic signature of obesity-associated insulin resistance and type 2 diabetes. J Transl Med 2019; 17(1): 348.
[http://dx.doi.org/10.1186/s12967-019-2096-8] [PMID: 31640727]
[84]
Amor M, Itariu B K, Moreno-Viedma V, et al. Serum myostatin is upregulated in obesity and correlates with insulin resistance in humans. Exp Clin Endocrinol Diabetes 2019; 127(8): 550-6.
[http://dx.doi.org/10.1055/a-0641-5546] [PMID: 30075479]
[85]
Banerjee A, Sharma D, Trivedi R, Singh J. Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy. Int J Pharm 2020; 583: 119357.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119357] [PMID: 32334065]
[86]
Cui H, Zhang X. Occurrence and clinical management of nonalcoholic fatty liver disease in obesity patients: a literature review. J Pediatr Endocrinol Metab 2020; 33(5): 579-84.
[http://dx.doi.org/10.1515/jpem-2019-0595] [PMID: 32187014]
[87]
Sun XY, He ZQ, Wang LQ, Wang ZZ, Bai FH, You YJ. Interaction effects of gene polymorphisms and obesity on nonalcoholic fatty liver disease. Biomed Environ Sci 2019; 32(10): 793-6.
[PMID: 31843050]
[88]
Ma MJ, Wu J. Association between intestinal flora imbalance and nonalcoholic fatty liver disease. Chung Hua Kan Tsang Ping Tsa Chih 2017; 25(10): 789-93.
[PMID: 29108214]
[89]
Duarte SMB, Stefano JT, Oliveira CP. Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Ann Hepatol 2019; 18(3): 416-21.
[http://dx.doi.org/10.1016/j.aohep.2019.04.006] [PMID: 31036494]
[90]
Ekstedt M, Nasr P, Kechagias S. Natural History of NAFLD/NASH. Curr Hepatol Rep 2017; 16(4): 391-7.
[http://dx.doi.org/10.1007/s11901-017-0378-2] [PMID: 29984130]
[91]
Ikeuchi T, Nakamura T, Fukumoto S, Takada H. A vitamin D3 analog augmented interleukin-8 production by human monocytic cells in response to various microbe-related synthetic ligands, especially NOD2 agonistic muramyldipeptide. Int Immunopharmacol 2013; 15(1): 15-22.
[http://dx.doi.org/10.1016/j.intimp.2012.10.027] [PMID: 23159604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy