Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Mini-Review Article

Pharmacological Potentials and Nutritional Values of Tropical and Subtropical Fruits of India: Emphasis on their Anticancer Bioactive Components

Author(s): Arunaksharan Narayanankutty*

Volume 17, Issue 2, 2022

Published on: 21 February, 2022

Page: [124 - 135] Pages: 12

DOI: 10.2174/1574892816666211130165200

Price: $65

Abstract

Background: Fruits are an important dietary component, which supply vitamins, minerals, as well as dietary fiber. In addition, they are rich sources of various biological and pharmacologically active compounds. Among these, temperate fruits are well studied for their pharmacological potentials, whereas tropical/subtropical fruits are less explored for their health impacts. In India, most of the consumed fruits are either tropical or subtropical.

Objectives: This mini review aims to provide a health impact of major tropical and sub-tropical fruits of India, emphasizing their anticancer efficacy. In addition, the identified bioactive components from these fruits exhibiting anticancer efficacy are also discussed along with the patent literature published.

Methods: The literature was collected from various repositories, including NCBI, ScienceDirect, Eurekaselect, and Web of Science; literature from predatory journals was omitted during the process. Patent literature was collected from google patents and similar patent databases.

Results: Tropical fruits are rich sources of various nutrients and bioactive components including polyphenols, flavonoids, anthocyanin, etc. By virtue of these biomolecules, tropical fruits have been shown to interfere with various steps in carcinogenesis, metastasis, and drug resistance. Their mode of action is either by activation of apoptosis, regulation of cell cycle, inhibition of cell survival and proliferation pathways, increased lipid trafficking or inhibiting inflammatory pathways. Several molecules and combinations have been patented for their anticancer and chemoprotective properties.

Conclusion: Overall, the present concludes that Indian tropical/ subtropical fruits are nutritionally and pharmacologically active and may serve as a source of novel anticancer agents in the future.

Keywords: tropical fruits, bioactive compounds, antioxidant activity, anti-inflammatory activity, cancer, degenerative diseases.

[1]
Shweta M, Arunaksharan N. Traditional fruits of Kerala: Bioactive compounds and their curative potential in chronic diseases. Curr Nutr Food Sci 2017; 13(4): 279-89.
[http://dx.doi.org/10.2174/1573401313666170206164643]
[2]
Volpe SL. Fruit and vegetable intake and prevention of chronic disease. ACSM’s Health Fit J 2019; 23(3): 30-1.
[http://dx.doi.org/10.1249/FIT.0000000000000474]
[3]
Narayanankutty A. Toll-like receptors as a novel therapeutic target for natural products against chronic diseases. Curr Drug Targets 2019; 20(10): 1068-80.
[http://dx.doi.org/10.2174/1389450120666190222181506] [PMID: 30806312]
[4]
Narayanankutty A. PI3K/ Akt/ mTOR pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Curr Drug Targets 2019; 20(12): 1217-26.
[http://dx.doi.org/10.2174/1389450120666190618123846] [PMID: 31215384]
[5]
Narayanankutty V, Narayanankutty A, Nair A. Heat Shock Proteins (HSPs): A novel target for cancer metastasis prevention. Curr Drug Targets 2019; 20(7): 727-37.
[http://dx.doi.org/10.2174/1389450120666181211111815] [PMID: 30526455]
[6]
Roy N, Davis S, Narayanankutty A, et al. Garlic phytocompounds possess anticancer activity by specifically targeting breast cancer biomarkers - an in silico study. APJCP 2016; 17(6): 2883-8.
[PMID: 27356707]
[7]
Roy N, Narayanankutty A, Nazeem PA, Valsalan R, Babu TD, Mathew D. Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation. APJCP 2016; 17(8): 4019-23.
[PMID: 27644655]
[8]
Roy N, Nazeem PA, Babu TD, et al. EGFR gene regulation in colorectal cancer cells by garlic phytocompounds with special emphasis on S-allyl-L-cysteine sulfoxide. Interdiscip Sci 2017.
[http://dx.doi.org/10.1007/s12539-12017-10227-12536] [PMID: 28349439]
[9]
Gopalan C, Ramasastri B, Balasubramanian S. Nutritive value of Indian foods.Revised and updated by Narasinga India. Hyderabad: National Institute of Nutrition 1991.
[10]
Bhaskar JJ, Salimath PV, Nandini CD. Stimulation of glucose uptake by Musa sp. (cv. elakki bale) flower and pseudostem extracts in Ehrlich ascites tumor cells. J Sci Food Agric 2011; 91(8): 1482-7.
[http://dx.doi.org/10.1002/jsfa.4337] [PMID: 21384381]
[11]
K B A, Madhavan A, T R R, Thomas S, Nisha P. Musa paradisiaca inflorescence induces human colon cancer cell death by modulating cascades of transcriptional events. Food Funct 2018; 9(1): 511-24.
[http://dx.doi.org/10.1039/C7FO01454F] [PMID: 29243757]
[12]
K B A, Madhavan A, T R R, Thomas S, Nisha P. Short chain fatty acids enriched fermentation metabolites of soluble dietary fibre from Musa paradisiaca drives HT29 colon cancer cells to apoptosis. PLoS One 2019; 14(5): e0216604.
[http://dx.doi.org/10.1371/journal.pone.0216604] [PMID: 31095579]
[13]
Garg M, Lata K, Satija S. Cytotoxic potential of few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide assay on HepG2 cells. Indian J Pharmacol 2016; 48(1): 64-8.
[http://dx.doi.org/10.4103/0253-7613.174552] [PMID: 26997725]
[14]
Vikas B, Anil S, Remani P. Cytotoxicity profiling of Annona Squamosa in cancer cell lines. APJCP 2019; 20(9): 2831-40.
[http://dx.doi.org/10.31557/APJCP.2019.20.9.2831] [PMID: 31554384]
[15]
Fadholly A, Proboningrat A, Dewi Iskandar RP, Rantam FA, Sudjarwo SA. In vitro anticancer activity Annona squamosa extract nanoparticle on WiDr cells. J Adv Pharm Technol Res 2019; 10(4): 149-54.
[http://dx.doi.org/10.4103/japtr.JAPTR_10_19] [PMID: 31742114]
[16]
Al-Ghazzawi AM. Anti-cancer activity of new benzyl isoquinoline alkaloid from Saudi plant Annona squamosa. BMC Chem 2019; 13(1): 13.
[http://dx.doi.org/10.1186/s13065-019-0536-4] [PMID: 31384762]
[17]
Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Health effects of Psidium guajava L. Leaves: An overview of the last decade. Int J Mol Sci 2017; 18(4): 897.
[http://dx.doi.org/10.3390/ijms18040897] [PMID: 28441777]
[18]
Qin XJ, Yu Q, Yan H, et al. Meroterpenoids with antitumor activities from guava (Psidium guajava). J Agric Food Chem 2017; 65(24): 4993-9.
[http://dx.doi.org/10.1021/acs.jafc.7b01762] [PMID: 28578580]
[19]
Zheng ZP, Xu Y, Qin C, et al. Characterization of antiproliferative activity constituents from Artocarpus heterophyllus. J Agric Food Chem 2014; 62(24): 5519-27.
[http://dx.doi.org/10.1021/jf500159z] [PMID: 24854862]
[20]
Arung ET, Wicaksono BD, Handoko YA, et al. Cytotoxic effect of artocarpin on T47D cells. J Nat Med 2010; 64(4): 423-9.
[http://dx.doi.org/10.1007/s11418-010-0425-6] [PMID: 20544395]
[21]
Barh D, Viswanathan G. Syzygium cumini inhibits growth and induces apoptosis in cervical cancer cell lines: A primary study. Ecancermedicalscience 2008; 2: 83.
[http://dx.doi.org/10.3332/ecancer.2008.83] [PMID: 22275971]
[22]
Yadav SS, Meshram GA, Shinde D, Patil RC, Manohar SM, Upadhye MV. Antibacterial and anticancer activity of bioactive fraction of Syzygium cumini L. seeds. Hayati J Biosci 2011; 18(3): 118-22.
[http://dx.doi.org/10.4308/hjb.18.3.118]
[23]
Perumal A, AlSalhi MS, Kanakarajan S, Devanesan S, Selvaraj R, Tamizhazhagan V. Phytochemical evaluation and anticancer activity of rambutan (Nephelium lappaceum) fruit endocarp extracts against human hepatocellular carcinoma (HepG-2) cells. Saudi J Biol Sci 2021; 28(3): 1816-25.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.027] [PMID: 33732067]
[24]
Wang X, Yuan S, Wang J, et al. Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol Appl Pharmacol 2006; 215(2): 168-78.
[http://dx.doi.org/10.1016/j.taap.2006.02.004] [PMID: 16563451]
[25]
Ganogpichayagrai A, Palanuvej C, Ruangrungsi N. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves. J Adv Pharm Technol Res 2017; 8(1): 19-24.
[http://dx.doi.org/10.4103/2231-4040.197371] [PMID: 28217550]
[26]
Lauricella M, Lo Galbo V, Cernigliaro C, et al. The anti-cancer effect of Mangifera indica l. Peel extract is associated to γH2AX- mediated apoptosis in colon cancer cells. Antioxidants 2019; 8(10): 422.
[http://dx.doi.org/10.3390/antiox8100422] [PMID: 31546694]
[27]
Noratto GD, Bertoldi MC, Krenek K, Talcott ST, Stringheta PC, Mertens-Talcott SU. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. J Agric Food Chem 2010; 58(7): 4104-12.
[http://dx.doi.org/10.1021/jf903161g] [PMID: 20205391]
[28]
Otsuki N, Dang NH, Kumagai E, Kondo A, Iwata S, Morimoto C. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J Ethnopharmacol 2010; 127(3): 760-7.
[http://dx.doi.org/10.1016/j.jep.2009.11.024] [PMID: 19961915]
[29]
Nguyen TT, Shaw PN, Parat MO, Hewavitharana AK. Anticancer activity of Carica papaya: A review. Mol Nutr Food Res 2013; 57(1): 153-64.
[http://dx.doi.org/10.1002/mnfr.201200388] [PMID: 23212988]
[30]
Romano B, Fasolino I, Pagano E, et al. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects. Mol Nutr Food Res 2014; 58(3): 457-65.
[http://dx.doi.org/10.1002/mnfr.201300345] [PMID: 24123777]
[31]
Chakraborty AJ, Mitra S, Tallei TE, et al. Bromelain a potential bioactive compound: A comprehensive overview from a pharmacological perspective. Life (Basel) 2021; 11(4): 317.
[http://dx.doi.org/10.3390/life11040317] [PMID: 33917319]
[32]
São Paulo Barretto Miranda ÍK, Fontes Suzart Miranda A, Souza FV, et al. The biochemical characterization, stabilization studies and the antiproliferative effect of bromelain against B16F10 murine melanoma cells. Int J Food Sci Nutr 2017; 68(4): 442-54.
[http://dx.doi.org/10.1080/09637486.2016.1254599] [PMID: 27855525]
[33]
Báez R, Lopes MT, Salas CE, Hernández M. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med 2007; 73(13): 1377-83.
[http://dx.doi.org/10.1055/s-2007-990221] [PMID: 17893836]
[34]
Sineh Sepehr K, Baradaran B, Mazandarani M, Khori V, Shahneh FZ. Studies on the cytotoxic activities of Punica granatum L. var. Spinosa (apple punice) extract on prostate cell line by induction of apoptosis. ISRN Pharm 2012; 2012: 547942.
[http://dx.doi.org/10.5402/2012/547942] [PMID: 23320197]
[35]
Panth N, Manandhar B, Paudel KR. Anticancer activity of Punica granatum (pomegranate): A review. Phytother Res 2017; 31(4): 568-78.
[http://dx.doi.org/10.1002/ptr.5784] [PMID: 28185340]
[36]
Tan BL, Norhaizan ME, Chan LC. Manilkara zapota (L.) P. Royen leaf water extract induces apoptosis in human hepatocellular carcinoma (HepG2) cells via ERK1/2/Akt1/JNK1 signaling pathways. Evid Based Complement Alternat Med 2018; 2018: 7826576.
[http://dx.doi.org/10.1155/2018/7826576] [PMID: 30519270]
[37]
Taechakulwanijya N, Weerapreeyakul N, Barusrux S, Siriamornpun S. Apoptosis-inducing effects of jujube (Zǎo) seed extracts on human Jurkat leukemia T cells. Chin Med 2016; 11(1): 15.
[http://dx.doi.org/10.1186/s13020-016-0085-x] [PMID: 27042202]
[38]
Tahergorabi Z, Abedini MR, Mitra M, Fard MH, Beydokhti H. “Ziziphus jujuba”: A red fruit with promising anticancer activities. Pharmacogn Rev 2015; 9(18): 99-106.
[http://dx.doi.org/10.4103/0973-7847.162108] [PMID: 26392706]
[39]
Ma CY, Lu JH, Li X, Liu X, Chen JW. Eight new cytotoxic annonaceous acetogenins from the seeds of Annona squamosa. Chin J Nat Med 2019; 17(4): 291-7.
[http://dx.doi.org/10.1016/S1875-5364(19)30032-9] [PMID: 31076132]
[40]
Jacobo-Herrera N, Pérez-Plasencia C, Castro-Torres VA, Martínez-Vázquez M, González-Esquinca AR, Zentella-Dehesa A. Selective acetogenins and their potential as anticancer agents. Front Pharmacol 2019; 10(783): 783.
[http://dx.doi.org/10.3389/fphar.2019.00783] [PMID: 31379567]
[41]
Liaw CC, Yang YL, Chen M, et al. Mono-tetrahydrofuran annonaceous acetogenins from Annona squamosa as cytotoxic agents and calcium ion chelators. J Nat Prod 2008; 71(5): 764-71.
[http://dx.doi.org/10.1021/np0704957] [PMID: 18419154]
[42]
Pardhasaradhi BV, Reddy M, Ali AM, Kumari AL, Khar A. Differential cytotoxic effects of Annona squamosa seed extracts on human tumour cell lines: role of reactive oxygen species and glutathione. J Biosci 2005; 30(2): 237-44.
[http://dx.doi.org/10.1007/BF02703704] [PMID: 15886460]
[43]
Kuete V, Dzotam JK, Voukeng IK, Fankam AG, Efferth T. Cytotoxicity of methanol extracts of Annona muricata, Passiflora edulis and nine other Cameroonian medicinal plants towards multi-factorial drug-resistant cancer cell lines. Springerplus 2016; 5(1): 1666.
[http://dx.doi.org/10.1186/s40064-016-3361-4] [PMID: 27730025]
[44]
Suresh HM, Shivakumar B, Hemalatha K, Heroor SS, Hugar DS, Rao KR. In vitro antiproliferativeactivity of Annona reticulata roots on human cancer cell lines. Pharmacognosy Res 2011; 3(1): 9-12.
[http://dx.doi.org/10.4103/0974-8490.79109] [PMID: 21731389]
[45]
Chen KC, Hsieh CL, Peng CC, et al. Brain derived metastatic prostate cancer DU-145 cells are effectively inhibited in vitro by guava (Psidium gujava L.) leaf extracts. Nutr Cancer 2007; 58(1): 93-106.
[http://dx.doi.org/10.1080/01635580701308240] [PMID: 17571972]
[46]
Ryu NH, Park KR, Kim SM, et al. A hexane fraction of guava Leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells. J Med Food 2012; 15(3): 231-41.
[http://dx.doi.org/10.1089/jmf.2011.1701] [PMID: 22280146]
[47]
Salib JY, Michael HN. Cytotoxic phenylethanol glycosides from Psidium guaijava seeds. Phytochemistry 2004; 65(14): 2091-3.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.009] [PMID: 15279977]
[48]
Alvarez-Suarez JM, Giampieri F, Gasparrini M, et al. Guava (Psidium guajava L. cv. Red Suprema) crude extract protect human dermal fibroblasts against cytotoxic damage mediated by oxidative stress. Plant Foods Hum Nutr 2018; 73(1): 18-24.
[http://dx.doi.org/10.1007/s11130-018-0657-2] [PMID: 29455277]
[49]
Chen KC, Peng CC, Chiu WT, et al. Action mechanism and signal pathways of Psidium guajava L. aqueous extract in killing prostate cancer LNCaP cells. Nutr Cancer 2010; 62(2): 260-70.
[http://dx.doi.org/10.1080/01635580903407130] [PMID: 20099201]
[50]
Ruiz-Montañez G, Burgos-Hernández A, Calderón-Santoyo M, et al. Screening antimutagenic and antiproliferative properties of extracts isolated from Jackfruit pulp (Artocarpus heterophyllus Lam). Food Chem 2015; 175: 409-16.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.122] [PMID: 25577099]
[51]
Arung ET, Yoshikawa K, Shimizu K, Kondo R. Isoprenoid-substituted flavonoids from wood of Artocarpus heterophyllus on B16 melanoma cells: cytotoxicity and structural criteria. Fitoterapia 2010; 81(2): 120-3.
[http://dx.doi.org/10.1016/j.fitote.2009.08.001] [PMID: 19686821]
[52]
Marangoni VS, Paino IM, Zucolotto V. Synthesis and characterization of jacalin-gold nanoparticles conjugates as specific markers for cancer cells. Colloids Surf B Biointerfaces 2013; 112: 380-6.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.070] [PMID: 24028851]
[53]
Kamal AM, Taha MS, Mousa AM. The radioprotective and anticancer effects of banana peels extract on male mice. J Food Nutr Res 2019; 7(12): 827-35.
[http://dx.doi.org/10.12691/jfnr-7-12-3]
[54]
Chen Y, Chen Y, Shi Y, et al. Antitumor activity of Annona squamosa seed oil. J Ethnopharmacol 2016; 193: 362-7.
[http://dx.doi.org/10.1016/j.jep.2016.08.036] [PMID: 27566205]
[55]
Morrison IJ, Zhang J, Lin J, et al. Potential chemopreventive, anticancer and anti-inflammatory properties of a refined artocarpin-rich wood extract of Artocarpus heterophyllus Lam. Sci Rep 2021; 11(1): 6854.
[http://dx.doi.org/10.1038/s41598-021-86040-5] [PMID: 33767225]
[56]
Goyal PK, Verma P, Sharma P, Parmar J, Agarwal A. Evaluation of anti-cancer and anti-oxidative potential of Syzygium Cumini against benzo[a]pyrene (BaP) induced gastric carcinogenesis in mice. APJCP 2010; 11(3): 753-8.
[PMID: 21039048]
[57]
Parmar J, Sharma P, Verma P, Sharma P, Goyal PK. Elimination of deleterious effects of DMBA-induced skin carcinogenesis in mice by Syzygium cumini seed extract. Integr Cancer Ther 2011; 10(3): 289-97.
[http://dx.doi.org/10.1177/1534735410385112] [PMID: 21147816]
[58]
Wang X, Wei Y, Yuan S, Liu G, Zhang YL, Wang W. Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett 2006; 239(1): 144-50.
[http://dx.doi.org/10.1016/j.canlet.2005.08.011] [PMID: 16300877]
[59]
Gul HF, Ilhan N, Ilhan N, Ozercan IH, Kuloglu T. The combined effect of pomegranate extract and tangeretin on the DMBA-induced breast cancer model. J Nutr Biochem 2021; 89(108566): 108566.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108566] [PMID: 33326843]
[60]
Khodavirdipour A, Zarean R, Safaralizadeh R. Evaluation of the anti-cancer effect of Syzygium cumini ethanolic extract on HT-29 colorectal cell line. J Gastrointest Cancer 2021; 52(2): 575-81.
[http://dx.doi.org/10.1007/s12029-020-00439-3] [PMID: 32506290]
[61]
Arun R, Prakash MV, Abraham SK, Premkumar K. Role of Syzygium cumini seed extract in the chemoprevention of in vivo genomic damage and oxidative stress. J Ethnopharmacol 2011; 134(2): 329-33.
[http://dx.doi.org/10.1016/j.jep.2010.12.014] [PMID: 21182920]
[62]
Chagas VT, França LM, Malik S, Paes AMA. Syzygium cumini (L.) skeels: A prominent source of bioactive molecules against cardiometabolic diseases. Front Pharmacol 2015; 6(259): 259.
[http://dx.doi.org/10.3389/fphar.2015.00259] [PMID: 26578965]
[63]
Parmar J, Sharma P, Verma P, Goyal PK. Chemopreventive action of Syzygium cumini on DMBA-induced skin papillomagenesis in mice. APJCP 2010; 11(1): 261-5.
[PMID: 20593968]
[64]
Jagetia GC, Baliga MSS. Syzygium cumini (Jamun) reduces the radiation-induced DNA damage in the cultured human peripheral blood lymphocytes: A preliminary study. Toxicol Lett 2002; 132(1): 19-25.
[http://dx.doi.org/10.1016/S0378-4274(02)00032-2] [PMID: 12084616]
[65]
Jagetia GC, Shetty PC, Vidyasagar MS. Inhibition of radiation-induced DNA damage by jamun, Syzygium cumini, in the cultured splenocytes of mice exposed to different doses of γ-radiation. Integr Cancer Ther 2012; 11(2): 141-53.
[http://dx.doi.org/10.1177/1534735411413261] [PMID: 21733986]
[66]
Jagetia GC, Baliga MS. Evaluation of the radioprotective effect of the leaf extract of Syzygium cumini (Jamun) in mice exposed to a lethal dose of gamma-irradiation. Nahrung 2003; 47(3): 181-5.
[http://dx.doi.org/10.1002/food.200390042] [PMID: 12866620]
[67]
Jagetia GC, Baliga MS, Venkatesh P. Influence of seed extract of Syzygium Cumini (Jamun) on mice exposed to different doses of gamma-radiation. J Radiat Res (Tokyo) 2005; 46(1): 59-65.
[http://dx.doi.org/10.1269/jrr.46.59] [PMID: 15802860]
[68]
Emanuele S, Notaro A, Palumbo Piccionello A, et al. Sicilian litchi fruit extracts induce autophagy versus apoptosis switch in human colon cancer cells. Nutrients 2018; 10(10): E1490.
[http://dx.doi.org/10.3390/nu10101490] [PMID: 30322062]
[69]
Iqbal MJ, Ali S, Rashid U, et al. Biosynthesis of silver nanoparticles from leaf extract of Litchi chinensis and its dynamic biological impact on microbial cells and human cancer cell lines. Cell Mol Biol 2018; 64(13): 42-7.
[http://dx.doi.org/10.14715/cmb/2018.64.13.9] [PMID: 30403594]
[70]
Ripa FA, Haque M, Bulbul IJ. In vitro antibacterial, cytotoxic and antioxidant activities of plant Nephelium longan. Pak J Biol Sci 2010; 13(1): 22-7.
[http://dx.doi.org/10.3923/pjbs.2010.22.27] [PMID: 20415149]
[71]
Guo H, Luo H, Yuan H, et al. Litchi seed extracts diminish prostate cancer progression via induction of apoptosis and attenuation of EMT through Akt/GSK-3β signaling. Sci Rep 2017; 7: 41656.
[http://dx.doi.org/10.1038/srep41656] [PMID: 28134352]
[72]
García-Rivera D, Delgado R, Bougarne N, Haegeman G, Berghe WV. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett 2011; 305(1): 21-31.
[http://dx.doi.org/10.1016/j.canlet.2011.02.011] [PMID: 21420233]
[73]
Li H, Huang J, Yang B, et al. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway. Toxicol Appl Pharmacol 2013; 272(1): 180-90.
[http://dx.doi.org/10.1016/j.taap.2013.05.011] [PMID: 23707762]
[74]
Imran M, Arshad MS, Butt MS, Kwon J-H, Arshad MU, Sultan MT. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 2017; 16(1): 84.
[http://dx.doi.org/10.1186/s12944-017-0449-y] [PMID: 28464819]
[75]
Nemec MJ, Kim H, Marciante AB, Barnes RC, Talcott ST, Mertens-Talcott SU. Pyrogallol, an absorbable microbial gallotannins-metabolite and mango polyphenols (Mangifera Indica L.) suppress breast cancer ductal carcinoma in situ proliferation in vitro. Food Funct 2016; 7(9): 3825-33.
[http://dx.doi.org/10.1039/C6FO00636A] [PMID: 27491891]
[76]
Cuccioloni M, Bonfili L, Mozzicafreddo M, et al. Mangiferin blocks proliferation and induces apoptosis of breast cancer cells via suppression of the mevalonate pathway and by proteasome inhibition. Food Funct 2016; 7(10): 4299-309.
[http://dx.doi.org/10.1039/C6FO01037G] [PMID: 27722367]
[77]
Gold-Smith F, Fernandez A, Bishop K. Mangiferin and cancer: Mechanisms of action. Nutrients 2016; 8(7): E396.
[http://dx.doi.org/10.3390/nu8070396] [PMID: 27367721]
[78]
Rajendran P, Rengarajan T, Nandakumar N, Divya H, Nishigaki I. Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J Recept Signal Transduct Res 2015; 35(1): 76-84.
[http://dx.doi.org/10.3109/10799893.2014.931431] [PMID: 24984103]
[79]
Núñez Selles AJ, Daglia M, Rastrelli L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors 2016; 42(5): 475-91.
[http://dx.doi.org/10.1002/biof.1299] [PMID: 27219221]
[80]
Banerjee N, Kim H, Krenek K, Talcott ST, Mertens-Talcott SU. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs. Nutr Res 2015; 35(8): 744-51.
[http://dx.doi.org/10.1016/j.nutres.2015.06.002] [PMID: 26194618]
[81]
Zuhrotun Nisa F, Astuti M, Murdiati A, Mubarika Haryana S. Anti-proliferation and apoptosis induction of aqueous leaf extract of Carica papaya L. on human breast cancer cells MCF-7. Pak J Biol Sci 2017; 20(1): 36-41.
[http://dx.doi.org/10.3923/pjbs.2017.36.41] [PMID: 29023013]
[82]
Pandey S, Walpole C, Cabot PJ, Shaw PN, Batra J, Hewavitharana AK. Selective anti-proliferative activities of Carica papaya leaf juice extracts against prostate cancer. Biomed Pharmacother 2017; 89: 515-23.
[http://dx.doi.org/10.1016/j.biopha.2017.02.050] [PMID: 28249253]
[83]
Prado SBRD, Santos GRC, Mourão PAS, Fabi JP. Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. Int J Biol Macromol 2019; 126: 170-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.191] [PMID: 30584930]
[84]
Li ZY, Wang Y, Shen WT, Zhou P. Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product in Carica papaya L. Asian Pac J Trop Med 2012; 5(3): 231-3.
[http://dx.doi.org/10.1016/S1995-7645(12)60030-3] [PMID: 22305790]
[85]
Pathak N, Khan S, Bhargava A, et al. Cancer chemopreventive effects of the flavonoid-rich fraction isolated from papaya seeds. Nutr Cancer 2014; 66(5): 857-71.
[http://dx.doi.org/10.1080/01635581.2014.904912] [PMID: 24820939]
[86]
Dhandayuthapani S, Perez HD, Paroulek A, et al. Bromelain-induced apoptosis in GI-101A breast cancer cells. J Med Food 2012; 15(4): 344-9.
[http://dx.doi.org/10.1089/jmf.2011.0145] [PMID: 22191568]
[87]
Chang TC, Wei PL, Makondi PT, Chen WT, Huang CY, Chang YJ. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One 2019; 14(1): e0210274.
[http://dx.doi.org/10.1371/journal.pone.0210274] [PMID: 30657763]
[88]
Beuth J, Braun JM. Modulation of murine tumor growth and colonization by bromelaine, an extract of the pineapple plant (Ananas comosum L.). In Vivo 2005; 19(2): 483-5.
[PMID: 15796214]
[89]
Amini A, Ehteda A, Masoumi Moghaddam S, Akhter J, Pillai K, Morris DL. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). OncoTargets Ther 2013; 6: 403-9.
[http://dx.doi.org/10.2147/OTT.S43072] [PMID: 23620673]
[90]
Pauzi AZ, Yeap SK, Abu N, et al. Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chin Med 2016; 11: 46.
[http://dx.doi.org/10.1186/s13020-016-0118-5] [PMID: 27891174]
[91]
Raeisi F, Shahbazi-Gahrouei D, Raeisi E, Heidarian E. Evaluation of the radiosensitizing potency of bromelain for radiation therapy of 4T1 breast cancer cells. J Med Signals Sens 2019; 9(1): 68-74.
[http://dx.doi.org/10.4103/jmss.JMSS_25_18] [PMID: 30967992]
[92]
Seifabadi S, Vaseghi G, Ghannadian M, Haghjooy Javanmard S. Standardized Punica Granatum pericarp extract, suppresses tumor proliferation and angiogenesis in a mouse model of melanoma: Possible involvement of PPARalpha and PPARgamma pathways. Iran J Pharm Res 2019; 18(1): 348-57.
[PMID: 31089369]
[93]
Saratale RG, Shin HS, Kumar G, Benelli G, Kim DS, Saratale GD. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 2018; 46(1): 211-22.
[http://dx.doi.org/10.1080/21691401.2017.1337031] [PMID: 28612655]
[94]
Annu AS, Ahmed S, Kaur G, Sharma P, Singh S, Ikram S. Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles. Toxicol Res (Camb) 2018; 7(5): 923-30.
[http://dx.doi.org/10.1039/C8TX00103K] [PMID: 30310669]
[95]
Şahin B, Aygün A, Gündüz H, et al. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B Biointerfaces 2018; 163: 119-24.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.042] [PMID: 29287232]
[96]
Shirode AB, Bharali DJ, Nallanthighal S, Coon JK, Mousa SA, Reliene R. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int J Nanomedicine 2015; 10: 475-84.
[http://dx.doi.org/10.2147/IJN.S65145] [PMID: 25624761]
[97]
Varghese S, Joseph MM, S R A, B S U, Sreelekha TT. The inhibitory effect of anti- tumor polysaccharide from Punica granatum on metastasis. Int J Biol Macromol 2017; 103: 1000-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.137] [PMID: 28552725]
[98]
Meselhy KM, Shams MM, Sherif NH, El-Sonbaty SM. Phytochemical study, potential cytotoxic and antioxidant activities of selected food byproducts (Pomegranate peel, Rice bran, Rice straw & Mulberry bark). Nat Prod Res 2020; 34(4): 530-3.
[http://dx.doi.org/10.1080/14786419.2018.1488708] [PMID: 30080101]
[99]
Bagheri M, Fazli M, Saeednia S, Kor A, Ahmadiankia N. Pomegranate peel extract inhibits expression of β-catenin, epithelial mesenchymal transition, and metastasis in triple negative breast cancer cells. Cell Mol Biol 2018; 64(7): 86-91.
[http://dx.doi.org/10.14715/cmb/2018.64.7.15] [PMID: 29974851]
[100]
Nallanthighal S, Elmaliki KM, Reliene R. Pomegranate extract alters breast cancer stem cell properties in association with inhibition of epithelial-to-mesenchymal transition. Nutr Cancer 2017; 69(7): 1088-98.
[http://dx.doi.org/10.1080/01635581.2017.1359318] [PMID: 28976208]
[101]
González-Sarrías A, Núñez-Sánchez MA, Ávila-Gálvez MA, et al. Consumption of pomegranate decreases plasma lipopolysaccharide-binding protein levels, a marker of metabolic endotoxemia, in patients with newly diagnosed colorectal cancer: A randomized controlled clinical trial. Food Funct 2018; 9(5): 2617-22.
[http://dx.doi.org/10.1039/C8FO00264A] [PMID: 29770393]
[102]
Nuñez-Sánchez MA, González-Sarrías A, García-Villalba R, et al. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: A randomized clinical trial. J Nutr Biochem 2017; 42: 126-33.
[http://dx.doi.org/10.1016/j.jnutbio.2017.01.014] [PMID: 28183047]
[103]
Osman MA, Rashid MM, Aziz MA, Habib MR, Karim MR. Inhibition of Ehrlich ascites carcinoma by Manilkara zapota L. stem bark in Swiss albino mice. Asian Pac J Trop Biomed 2011; 1(6): 448-51.
[http://dx.doi.org/10.1016/S2221-1691(11)60098-1] [PMID: 23569811]
[104]
Srivastava M, Hegde M, Chiruvella KK, et al. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice. Sci Rep 2014; 4: 6147.
[http://dx.doi.org/10.1038/srep06147] [PMID: 25142835]
[105]
Tan BL, Norhaizan ME. Manilkara zapota (L.) P. Royen leaf water extract triggered apoptosis and activated caspase-dependent pathway in HT-29 human colorectal cancer cell line. Biomed Pharmacother 2019; 110: 748-57.
[http://dx.doi.org/10.1016/j.biopha.2018.12.027] [PMID: 30554113]
[106]
Chunhakant S, Chaicharoenpong C. Antityrosinase, Antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. bark. Molecules 2019; 24(15): E2798.
[http://dx.doi.org/10.3390/molecules24152798] [PMID: 31370334]
[107]
Huang X, Kojima-Yuasa A, Norikura T, Kennedy DO, Hasuma T, Matsui-Yuasa I. Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells. Am J Chin Med 2007; 35(3): 517-32.
[http://dx.doi.org/10.1142/S0192415X0700503X] [PMID: 17597510]
[108]
Huang X, Kojima-Yuasa A, Xu S, Kennedy DO, Hasuma T, Matsui-Yuasa I. Combination of Zizyphus jujuba and green tea extracts exerts excellent cytotoxic activity in HepG2 cells via reducing the expression of APRIL. Am J Chin Med 2009; 37(1): 169-79.
[http://dx.doi.org/10.1142/S0192415X09006758] [PMID: 19222120]
[109]
Huang X, Kojima-Yuasa A, Xu S, et al. Green tea extract enhances the selective cytotoxic activity of Zizyphus jujuba extracts in HepG2 cells. Am J Chin Med 2008; 36(4): 729-44.
[http://dx.doi.org/10.1142/S0192415X08006193] [PMID: 18711770]
[110]
Ji X, Hou C, Zhang X, et al. Microbiome-metabolomic analysis of the impact of Zizyphus jujuba cv. Muzao polysaccharides consumption on colorectal cancer mice fecal microbiota and metabolites. Int J Biol Macromol 2019; 131: 1067-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.175] [PMID: 30926487]
[111]
Nattaya O, Supathra L, Kornkanok A, Bumrungpert A, Kanit K. Phenolic acids content and antioxidant capacity of fruit extracts from Thailand. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai 2013; 40(4): 636-42.
[112]
Palafox-Carlos H, Yahia EM, González-Aguilar GA. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC–DAD–MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem 2012; 135(1): 105-11.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.103] [PMID: 23017399]
[113]
Masibo M, He Q. Major mango polyphenols and their potential significance to human health. Compr Rev Food Sci Food Saf 2008; 7(4): 309-19.
[http://dx.doi.org/10.1111/j.1541-4337.2008.00047.x] [PMID: 33467788]
[114]
Shrikanta A, Kumar A, Govindaswamy V. Resveratrol content and antioxidant properties of underutilized fruits. J Food Sci Technol 2015; 52(1): 383-90.
[http://dx.doi.org/10.1007/s13197-013-0993-z] [PMID: 25593373]
[115]
Ahmed R, Tariq M, Hussain M, et al. Phenolic contents-based assessment of therapeutic potential of Syzygium cumini leaves extract. PLoS One 2019; 14(8): e0221318.
[http://dx.doi.org/10.1371/journal.pone.0221318] [PMID: 31465475]
[116]
Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed 2012; 2(3): 240-6.
[http://dx.doi.org/10.1016/S2221-1691(12)60050-1] [PMID: 23569906]
[117]
Sharma A, Gupta P, Verma AK. Preliminary nutritional and biological potential of Artocarpus heterophyllus L. shell powder. J Food Sci Technol 2015; 52(3): 1339-49.
[http://dx.doi.org/10.1007/s13197-013-1130-8] [PMID: 25745202]
[118]
Sreeja Devi PS, Kumar NS, Sabu KK. Phytochemical profiling and antioxidant activities of different parts of Artocarpus heterophyllus Lam. (Moraceae): A review on current status of knowledge. Futur J Pharm Sci 2021; 7(1): 30.
[http://dx.doi.org/10.1186/s43094-021-00178-7]
[119]
Gordon A, Friedrich M, da Matta VM, Herbster Moura CF, Marx F. Changes in phenolic composition, ascorbic acid and antioxidant capacity in cashew apple (Anacardium occidentale L.) during ripening. Fruits 2012; 67(4): 267-76.
[http://dx.doi.org/10.1051/fruits/2012023]
[120]
Hollands A, Corriden R, Gysler G, et al. Natural product anacardic acid from cashew nut shells stimulates neutrophil extracellular trap production and bactericidal activity. J Biol Chem 2016; 291(27): 13964-73.
[http://dx.doi.org/10.1074/jbc.M115.695866] [PMID: 27226531]
[121]
Gomes Júnior AL, Tchekalarova JD, Machado KDC, et al. Anxiolytic effect of anacardic acids from cashew (Anacardium occidentale) nut shell in mice. IUBMB Life 2018; 70(5): 420-31.
[http://dx.doi.org/10.1002/iub.1738] [PMID: 29573147]
[122]
Ribeiro da Silva LM, Teixeira de Figueiredo EA, Silva Ricardo NM, et al. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem 2014; 143: 398-404.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.001] [PMID: 24054258]
[123]
Khor B-K, Chear NJ-Y, Azizi J, Khaw K-Y. Chemical composition, antioxidant and cytoprotective potentials of Carica papaya leaf extracts: A comparison of supercritical fluid and conventional extraction methods. Molecules 2021; 26(5): 1489.
[http://dx.doi.org/10.3390/molecules26051489] [PMID: 33803330]
[124]
Dwivedi MK, Sonter S, Mishra S, Patel DK, Singh PK. Antioxidant, antibacterial activity, and phytochemical characterization of Carica papaya flowers. Beni Suef Univ J Basic Appl Sci 2020; 9(1): 23.
[http://dx.doi.org/10.1186/s43088-020-00048-w]
[125]
Pereira A, Maraschin M. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. J Ethnopharmacol 2015; 160: 149-63.
[http://dx.doi.org/10.1016/j.jep.2014.11.008] [PMID: 25449450]
[126]
Kandasamy S, Baggu C, Javagal MR, Lingamallu JR, Yenamandra V, Aradhya SM. Antioxidant properties of isolated compounds from banana rhizome. J Food Sci 2014; 79(5): H988-H1001.
[http://dx.doi.org/10.1111/1750-3841.12414] [PMID: 24784019]
[127]
Liaw CC, Liou JR, Wu TY, Chang FR, Wu YC. Acetogenins from Annonaceae. Prog Chem Org Nat Prod 2016; 101: 113-230.
[http://dx.doi.org/10.1007/978-3-319-22692-7_2] [PMID: 26659109]
[128]
Dai Y, Harinantenaina L, Brodie PJ, et al. Antiproliferative acetogenins from a Uvaria sp. from the Madagascar dry forest. J Nat Prod 2012; 75(3): 479-83.
[http://dx.doi.org/10.1021/np200697j] [PMID: 22136523]
[129]
Levine RA, Richards KM, Tran K, Luo R, Thomas AL, Smith RE. Determination of Neurotoxic acetogenins in pawpaw (Asimina triloba) fruit by LC-HRMS. J Agric Food Chem 2015; 63(4): 1053-6.
[http://dx.doi.org/10.1021/jf504500g] [PMID: 25594104]
[130]
Mangal M, Khan MI, Agarwal SM. Acetogenins as potential anticancer agents. Anticancer Agents Med Chem 2015; 16(2): 138-59.
[http://dx.doi.org/10.2174/1871520615666150629101827] [PMID: 26118710]
[131]
Septama AW, Panichayupakaranant P. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods. Pharm Biol 2015; 53(11): 1608-13.
[http://dx.doi.org/10.3109/13880209.2014.996819] [PMID: 25856717]
[132]
Kabir S. Jacalin: A jackfruit (Artocarpus heterophyllus) seed-derived lectin of versatile applications in immunobiological research. J Immunol Methods 1998; 212(2): 193-211.
[http://dx.doi.org/10.1016/S0022-1759(98)00021-0] [PMID: 9672207]
[133]
Yao X, Wu D, Dong N, et al. Moracin C, a phenolic compound isolated from Artocarpus heterophyllus, suppresses lipopolysaccharide-activated inflammatory responses in murine Raw264.7 macrophages. Int J Mol Sci 2016; 17(8): E1199.
[http://dx.doi.org/10.3390/ijms17081199] [PMID: 27463712]
[134]
Sawant L, Singh VK, Dethe S, et al. Aldose reductase and protein tyrosine phosphatase 1B inhibitory active compounds from Syzygium cumini seeds. Pharm Biol 2015; 53(8): 1176-82.
[http://dx.doi.org/10.3109/13880209.2014.967784] [PMID: 25853967]
[135]
Faria AF, Marques MC, Mercadante AZ. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chem 2011; 126(4): 1571-8.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.007] [PMID: 25213929]
[136]
Aqil F, Gupta A, Munagala R, et al. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry). Nutr Cancer 2012; 64(3): 428-38.
[http://dx.doi.org/10.1080/01635581.2012.657766] [PMID: 22420901]
[137]
Khan MN, Nizami SS, Khan MA, Ahmed Z. New saponins from Mangifera indica. J Nat Prod 1993; 56(5): 767-70.
[http://dx.doi.org/10.1021/np50095a016] [PMID: 8326325]
[138]
Oliveira BG, Costa HB, Ventura JA, et al. Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS). Food Chem 2016; 204: 37-45.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.117] [PMID: 26988473]
[139]
Carvalho ALN, Annoni R, Torres LH, et al. Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice. Evid Based Complement Alternat Med 2013; 2013: 549879.
[http://dx.doi.org/10.1155/2013/549879] [PMID: 23533495]
[140]
Ma J, Luo XD, Protiva P, et al. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla). J Nat Prod 2003; 66(7): 983-6.
[http://dx.doi.org/10.1021/np020576x] [PMID: 12880319]
[141]
Canini A, Alesiani D, D’Arcangelo G, Tagliatesta P. Gas chromatography–mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J Food Compos Anal 2007; 20(7): 584-90.
[http://dx.doi.org/10.1016/j.jfca.2007.03.009]
[142]
Su H-L, Lin Y-H. Method for treatment of prostatic hyperplasia and/or ameliorating urinary disturbance with banana flower extract. US9968646B2, 2018.
[143]
Su H-L, Lin Y-H. Method for treatment of prostatic hyperplasia with banana flower extract. EP2997972A1, 2018.
[144]
Xu H, Zhang H, Lao Y, et al. Anti-cervical cancer compound and method of use thereof. US9339488B2, 2016.
[145]
Kwon B-M, Han DC, Lee J, Jeon Y-j, Choi SH. Composition for preventing or treating cancer containing extracts of Artocarpus altilis fruits, leaves, or stems, or fractions thereof as active ingredients. US9486490B2, 2016.
[146]
Byoung-Mog K, Dong Cho H, Lee J, Jeon Y-j, Choi SH. Composition for preventing or treating cancer containing extracts of Artocarpus altilis fruits, leaves, or stems, or fractions thereof as active ingredients. US9486490B2, 2013.
[147]
Suhaila M, Farideh N, Chan KK. Anti-cancer nutraceutical composition. WO2010074553A1, 2010.
[148]
Suhaila M, Farideh N, Chan KK. Anti-cancer nutraceutical composition. EP2367560A1, 2008.
[149]
Chen LR, Wu YJ. Composition comprising five kinds of processed fruit or vegetables. US20080260924A1, 2007.
[150]
Su CX, Jensen CJ, Story SP, Wang M-Y. Cancer preventative effect of Morinda citrifolia. WO2002045654A2, 2004.
[151]
Mclaughlin JL, Benson GB. Control of cancer with Annonaceous extracts. WO2004048358A1, 2002.
[152]
Lei W, Heyu L, Dongxing Z. Antitumor composition containing resveratrol and preparation method of antitumor composition. CN105596889A, 2016.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy