Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Selective Inhibitors of Histone Deacetylase 10 (HDAC-10)

Author(s): Eftiola Pojani* and Daniela Barlocco

Volume 29, Issue 13, 2022

Published on: 01 September, 2021

Page: [2306 - 2321] Pages: 16

DOI: 10.2174/0929867328666210901144658

Price: $65

Abstract

Histone acetylation balance is one epigenetic mechanism controlling gene expression associated with disease progression. It has been observed that histone deacetylase 10 (HDAC-10) isozyme contributes to the chemotherapy resistance; in addition, the poor clinical outcome observed in patients with aggressive solid tumors, such as neuroblastoma, has been associated with its overexpression. Moreover, HDAC-10 selective inhibition suppresses the autophagic response, thus providing an improved risk-benefit profile compared to cytotoxic cancer chemotherapy drugs. On these bases, HDAC-10 is becoming an emerging target for drug design.

Due to the rapid progress in the development of next-generation HDAC inhibitors, this review article aims to provide an overview on novel selective or dual HDAC-8/10 inhibitors, as new leads for cancer chemotherapy, able to avoid the severe side-effects of several actual approved “pan” HDAC inhibitors.

A literature search was conducted in MedLine, PubMed, Caplus, SciFinder Scholar databases from 2015 to the present.

Since the disclosure that the HDAC-6 inhibitor Tubastatin A was able to bind HDAC-10 efficiently, several related analogues were synthesized and tested. Both tricyclic (25-30) and bicyclic (31-42) derivatives were considered. The best pharmacological profile was shown by 36 (HDAC-10 pIC50 = 8.4 and pIC50 towards Class I HDACs from 5.2–6.4). In parallel, based on the evidence that high levels of HDAC-8 are a marker of poor prognosis in neuroblastoma treatment, dual HDAC-8/10 inhibitors were designed. The hydroxamic acid TH34 (HDAC-8 and 10 IC50 = 1.9 μM and 7.7 μM, respectively) and the hybrid derivatives 46d, 46e and 46g were the most promising both in terms of potency and selectivity.

Literature surveys indicate several structural requirements for inhibitory potency and selectivity towards HDAC-10, e.g., electrostatic and/or hydrogen bond interactions with E274 and complementarity to the P(E,A) CE motif helix.

Keywords: HDAC-10, isozyme-selective inhibitors, antineoplastic agents, neuroblastoma, Tubastatin A, PCI-34051.

[1]
Sun, C.F.; Li, Y.Q.; Mao, X.M. Regulation of protein post-translational modifications on metabolism of actinomycetes. Biomolecules, 2020, 10(8), 1122.
[http://dx.doi.org/10.3390/biom10081122] [PMID: 32751230]
[2]
Sadakierska-Chudy, A.; Filip, M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox. Res., 2015, 27(2), 172-197.
[http://dx.doi.org/10.1007/s12640-014-9508-6] [PMID: 25516120]
[3]
Thompson, L.L.; Guppy, B.J.; Sawchuk, L.; Davie, J.R.; McManus, K.J. Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer Metastasis Rev., 2013, 32(3-4), 363-376.
[http://dx.doi.org/10.1007/s10555-013-9434-8] [PMID: 23609752]
[4]
Zhang, C.; Liu, Y. Proteomics in Biology, part B. Methods Enzymol., 2017, 586, 2-515.
[5]
Qausain, S.; Srinivasan, H.; Jamal, Sh.; Nasiruddin, M.M. AlamKhan, K. Phosphorylation and acetylation of proteins as posttranslational modification; Impl. Hum. Health Assoc. Dis, 2019, pp. 69-86.
[http://dx.doi.org/10.1016/B978-0-12-811913-6.00003-5]
[6]
Xia, C.; Tao, Y.; Li, M.; Che, T.; Qu, J. Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Exp. Ther. Med., 2020, 20(4), 2923-2940.
[http://dx.doi.org/10.3892/etm.2020.9073] [PMID: 32855658]
[7]
Pierce, R.J.; Dubois-Abdesselem, F.; Lancelot, J.; Andrade, L.; Oliveira, G. Targeting schistosome histone modifying enzymes for drug development. Curr. Pharm. Des., 2012, 18(24), 3567-3578.
[http://dx.doi.org/10.2174/138161212801327248] [PMID: 22607147]
[8]
Andrews, K.T.; Haque, A.; Jones, M.K. HDAC inhibitors in parasitic diseases. Immunol. Cell Biol., 2012, 90(1), 66-77.
[http://dx.doi.org/10.1038/icb.2011.97] [PMID: 22124373]
[9]
Peserico, A.; Simone, C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J. Biomed. Biotechnol., 2011, 2011371832
[http://dx.doi.org/10.1155/2011/371832] [PMID: 21151613]
[10]
Verza, F.A.; Das, U.; Fachin, A.L.; Dimmock, J.R.; Marins, M. Roles of histone deacetylases and inhibitors in anticancer therapy. Cancers (Basel), 2020, 12(6), 1664.
[http://dx.doi.org/10.3390/cancers12061664] [PMID: 32585896]
[11]
Ververis, K.; Hiong, A.; Karagiannis, T.C.; Licciardi, P.V. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics, 2013, 7(1), 47-60.
[http://dx.doi.org/10.2147/BTT.S29965] [PMID: 23459471]
[12]
Petrella, A.; Fontanella, B.; Carratù, A.; Bizzarro, V.; Rodriquez, M.; Parente, L. Histone deacetylase inhibitors in the treatment of hematological malignancies. Mini Rev. Med. Chem., 2011, 11(6), 519-527.
[http://dx.doi.org/10.2174/138955711795843347] [PMID: 21561404]
[13]
Tambaro, F.P.; Dell’aversana, C.; Carafa, V.; Nebbioso, A.; Radic, B.; Ferrara, F.; Altucci, L. Histone deacetylase inhibitors: clinical implications for hematological malignancies. Clin. Epigenetics, 2010, 1(1-2), 25-44.
[http://dx.doi.org/10.1007/s13148-010-0006-2] [PMID: 22704087]
[14]
Dietz, K.C.; Casaccia, P. HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol. Res., 2010, 62(1), 11-17.
[http://dx.doi.org/10.1016/j.phrs.2010.01.011] [PMID: 20123018]
[15]
Bertrand, P. Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2095-2116.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.030] [PMID: 20223566]
[16]
Katoch, O.; Dwarakanath, B.; Agrawala, P.K. HDAC inhibitors: applications in oncology and beyond. HOAJ Biol., 2013, 2(1), 2.
[http://dx.doi.org/10.7243/2050-0874-2-2]
[17]
Tang, J.; Yan, H.; Zhuang, S. Histone deacetylases as targets for treatment of multiple diseases. Clin. Sci. (Lond.), 2013, 124(11), 651-662.
[http://dx.doi.org/10.1042/CS20120504] [PMID: 23414309]
[18]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[19]
Lu, Y.; Chan, Y.T.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol. Cancer, 2020, 19(1), 79.
[http://dx.doi.org/10.1186/s12943-020-01197-3] [PMID: 32340605]
[20]
Shuttleworth, S.J.; Bailey, S.G.; Townsend, P.A. Histone Deacetylase inhibitors: new promise in the treatment of immune and inflammatory diseases. Curr. Drug Targets, 2010, 11(11), 1430-1438.
[http://dx.doi.org/10.2174/1389450111009011430] [PMID: 20583972]
[21]
Lyu, X.; Hu, M.; Peng, J.; Zhang, X.; Sanders, Y.Y. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther. Adv. Chronic Dis., 2019, 10(7)2040622319862697
[http://dx.doi.org/10.1177/2040622319862697] [PMID: 31367296]
[22]
Hull, E.E.; Montgomery, M.R.; Leyva, K.J. HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Res. Int., 2016, 20168797206
[http://dx.doi.org/10.1155/2016/8797206] [PMID: 27556043]
[23]
Zhang, Q.; Wang, S.; Chen, J.; Yu, Z. Histone Deacetylases (HDACs) Guided Novel Therapies for T-cell lymphomas. Int. J. Med. Sci., 2019, 16(3), 424-442.https://www.medsci.org/v16p0424.htm
[http://dx.doi.org/10.7150/ijms.30154] [PMID: 30911277]
[24]
Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med., 2020, 52(2), 204-212.
[http://dx.doi.org/10.1038/s12276-020-0382-4] [PMID: 32071378]
[25]
Singh, A.K.; Bishayee, A.; Pandey, A.K. Targeting histone deacetylases with natural and synthetic agents: an emerging anticancer strategy. Nutrients, 2018, 10(6), 731.
[http://dx.doi.org/10.3390/nu10060731] [PMID: 29882797]
[26]
Pant, K.; Peixoto, E.; Richard, S.; Gradilone, S.A. Role of histone deacetylases in carcinogenesis: potential role in cholangiocarcinoma. Cells, 2020, 9(3), 780.
[http://dx.doi.org/10.3390/cells9030780] [PMID: 32210140]
[27]
Sanaei, M.; Kavoosi, F. Histone deacetylases and histone deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv. Biomed. Res., 2019, 8(1), 63.
[http://dx.doi.org/10.4103/abr.abr_142_19] [PMID: 31737580]
[28]
Zhao, C.; Dong, H.; Xu, Q.; Zhang, Y. Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin. Ther. Pat., 2020, 30(4), 263-274.
[http://dx.doi.org/10.1080/13543776.2020.1725470] [PMID: 32008402]
[29]
Emmett, M.J.; Lazar, M.A. Integrative regulation of physiology by histone deacetylase 3. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 102-115.
[http://dx.doi.org/10.1038/s41580-018-0076-0] [PMID: 30390028]
[30]
Pojani, E.; Barlocco, D. Romidepsin (FK228), A Histone deacetylase inhibitor and its analogues in cancer chemotherapy. Curr. Med. Chem., 2021, 28(7), 1290-1303.
[http://dx.doi.org/10.2174/0929867327666200203113926] [PMID: 32013816]
[31]
Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes (Basel), 2020, 11(5), 556.
[http://dx.doi.org/10.3390/genes11050556] [PMID: 32429325]
[32]
Beckouët, F.; Hu, B.; Roig, M.B.; Sutani, T.; Komata, M.; Uluocak, P.; Katis, V.L.; Shirahige, K.; Nasmyth, K. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol. Cell, 2010, 39(5), 689-699.
[http://dx.doi.org/10.1016/j.molcel.2010.08.008] [PMID: 20832721]
[33]
Hosoya, N.; Miyagawa, K. Targeting DNA damage response in cancer therapy. Cancer Sci., 2014, 105(4), 370-388.
[http://dx.doi.org/10.1111/cas.12366] [PMID: 24484288]
[34]
Koeneke, E.; Witt, O.; Oehme, I. HDAC Family members intertwined in the regulation of autophagy: a druggable vulnerability in aggressive tumor entities. Cells, 2015, 4(2), 135-168.
[http://dx.doi.org/10.3390/cells4020135] [PMID: 25915736]
[35]
Li, Z.; Zhu, W.G. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int. J. Biol. Sci., 2014, 10(7), 757-770.https://www.ijbs.com/v10p0757.htm
[http://dx.doi.org/10.7150/ijbs.9067] [PMID: 25013383]
[36]
Robert, C.; Nagaria, P.K.; Pawar, N.; Adewuyi, A.; Gojo, I.; Meyers, D.J.; Cole, P.A.; Rassool, F.V. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin. Leuk. Res., 2016, 45(1), 14-23.
[http://dx.doi.org/10.1016/j.leukres.2016.03.007] [PMID: 27064363]
[37]
Vashishta, A.; Hetman, M. Inhibitors of histone deacetylases enhance neurotoxicity of DNA damage. Neuromolecular Med., 2014, 16(4), 727-741.
[http://dx.doi.org/10.1007/s12017-014-8322-x] [PMID: 25063076]
[38]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[39]
Shah, R.R. Safety and tolerability of histone deacetylase (HDAC) inhibitors in oncology. Drug Saf., 2019, 42(2), 235-245.
[http://dx.doi.org/10.1007/s40264-018-0773-9] [PMID: 30649740]
[40]
Ganai, S.A. Different groups of HDAC inhibitors based on various classifications. Histone Deacetylase Inhibitors. Epidrugs for Neurological Disorders; Springer, 2019.
[http://dx.doi.org/10.1007/978-981-13-8019-8_5]
[41]
Yadav, R.; Mishra, P.; Yadav, D. Histone deacetylase inhibitors: a prospect in drug discovery. Tur. J. Pharm. Sci., 2019, 16(1), 101-114.
[http://dx.doi.org/10.4274/tjps.75047] [PMID: 32454703]
[42]
Shirbhate, E.; Patel, P.; Patel, V.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. The combination of histone deacetylase inhibitors and radiotherapy: a promising novel approach for cancer treatment. Future Oncol., 2020, 16(30), 2457-2469.
[http://dx.doi.org/10.2217/fon-2020-0385] [PMID: 32815411]
[43]
Shirbhate, E.; Patel, P.; Patel, V.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Searching for potential HDAC2 inhibitors: structure-activity relationship studies on indole-based hydroxamic acids as an anticancer agent. Lett. Drug Des. Discov., 2020, 17(7), 905-917.
[http://dx.doi.org/10.2174/1570180817666200103125701]
[44]
Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143(1), 1277-1300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[45]
Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40169-017-0181-2] [PMID: 29340951]
[46]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10)a026831
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[47]
Ridinger, J.; Koeneke, E.; Kolbinger, F.R.; Koerholz, K.; Mahboobi, S.; Hellweg, L.; Gunkel, N.; Miller, A.K.; Peterziel, H.; Schmezer, P.; Hamacher-Brady, A.; Witt, O.; Oehme, I. Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Sci. Rep., 2018, 8(1), 10039.
[http://dx.doi.org/10.1038/s41598-018-28265-5] [PMID: 29968769]
[48]
Yelton, C.J.; Ray, S.K. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. Neuroimmunol. Neuroinflamm., 2018, 5, 46.
[http://dx.doi.org/10.20517/2347-8659.2018.58] [PMID: 30701185]
[49]
Islam, M.M.; Banerjee, T.; Packard, C.Z.; Kotian, S.; Selvendiran, K.; Cohn, D.E.; Parvin, J.D. HDAC10 as a potential therapeutic target in ovarian cancer. Gynecol. Oncol., 2017, 144(3), 613-620.
[http://dx.doi.org/10.1016/j.ygyno.2017.01.009] [PMID: 28073598]
[50]
Shinsky, S.A.; Christianson, D.W. Polyamine deacetylase structure and catalysis: prokaryotic acetylpolyamine amidohydrolase and eukaryotic HDAC10. Biochemistry, 2018, 57(22), 3105-3114.
[http://dx.doi.org/10.1021/acs.biochem.8b00079] [PMID: 29533602]
[51]
Baroli, G.; Sanchez, J.R.; Agostinelli, E.; Mariottini, P.; Cervelli, M. Polyamines: The possible missing link between mental disorders and epilepsy (Review). Int. J. Mol. Med., 2020, 45(1), 3-9.
[http://dx.doi.org/10.3892/ijmm.2019.4401] [PMID: 31746386]
[52]
Casero, R.A., Jr; Murray Stewart, T.; Pegg, A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer, 2018, 18(11), 681-695.
[http://dx.doi.org/10.1038/s41568-018-0050-3] [PMID: 30181570]
[53]
Hai, Y.; Christianson, D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol., 2016, 12(9), 741-747.
[http://dx.doi.org/10.1038/nchembio.2134] [PMID: 27454933]
[54]
Moreno-Yruela, C.; Galleano, I.; Madsen, A.S.; Olsen, C.A. Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chem. Biol., 2018, 25(7), 849-856.e8.
[http://dx.doi.org/10.1016/j.chembiol.2018.04.007] [PMID: 29731425]
[55]
Yang, Y.; Huang, Y.; Wang, Z.; Wang, H.T.; Duan, B.; Ye, D.; Wang, C.; Jing, R.; Leng, Y.; Xi, J.; Chen, W.; Wang, G.; Jia, W.; Zhu, S.; Kang, J. HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Oncotarget, 2016, 7(37), 59388-59401.
[http://dx.doi.org/10.18632/oncotarget.10673] [PMID: 27449083]
[56]
Li, T.; Zhang, C.; Hassan, S.; Liu, X.; Song, F.; Chen, K.; Zhang, W.; Yang, J. Histone deacetylase 6 in cancer. J. Hematol. Oncol., 2018, 11(1), 111.
[http://dx.doi.org/10.1186/s13045-018-0654-9] [PMID: 30176876]
[57]
Huang, S.; Gu, S. Targeting autophagy in neuroblastoma. World J. Pediatr. Surg, 2020, 3(3)e000121
[http://dx.doi.org/10.1136/wjps-2020-000121]
[58]
Duan, B.; Ye, D.; Zhu, S.; Jia, W.; Lu, C.; Wang, G.; Guo, X.; Yu, Y.; Wu, C.; Kang, J. HDAC10 promotes angiogenesis in endothelial cells through the PTPN22/ERK axis. Oncotarget, 2017, 8(37), 61338-61349.
[http://dx.doi.org/10.18632/oncotarget.18130] [PMID: 28977867]
[59]
Porter, N.J.; Christianson, D.W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol., 2019, 59(1), 9-18.
[http://dx.doi.org/10.1016/j.sbi.2019.01.004] [PMID: 30743180]
[60]
Seto, E.; Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6(4)a018713
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[61]
Wagner, J.M.; Hackanson, B.; Lübbert, M.; Jung, M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics, 2010, 1(3-4), 117-136.
[http://dx.doi.org/10.1007/s13148-010-0012-4] [PMID: 21258646]
[62]
Parbin, S.; Kar, S.; Shilpi, A.; Sengupta, D.; Deb, M.; Rath, S.K.; Patra, S.K. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J. Histochem. Cytochem., 2014, 62(1), 11-33.
[http://dx.doi.org/10.1369/0022155413506582] [PMID: 24051359]
[63]
Barneda-Zahonero, B.; Parra, M. Histone deacetylases and cancer. Mol. Oncol., 2012, 6(6), 579-589.
[http://dx.doi.org/10.1016/j.molonc.2012.07.003] [PMID: 22963873]
[64]
Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[65]
Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta, 2016, 1864(10), 1372-1401.
[http://dx.doi.org/10.1016/j.bbapap.2016.06.007] [PMID: 27296530]
[66]
Cheng, K.; Li, S.; Liao, C. Progress in the discovery of macrocyclic histone deacetylase inhibitors for the treatment of cancer. Curr. Med. Chem., 2017, 24(37), 4166-4179.
[http://dx.doi.org/10.2174/0929867324666170209105315] [PMID: 28183258]
[67]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[68]
Li, W.; Sun, Z. Mechanism of action for HDAC inhibitors-insights from omics approaches. Int. J. Mol. Sci., 2019, 20(7), 1616.
[http://dx.doi.org/10.3390/ijms20071616] [PMID: 30939743]
[69]
De Souza, C.; Chatterji, B.P. HDAC inhibitors as novel anti-cancer therapeutics. Recent Patents Anticancer Drug Discov., 2015, 10(2), 145-162.
[http://dx.doi.org/10.2174/1574892810666150317144511] [PMID: 25782916]
[70]
Micelli, C.; Rastelli, G. Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov. Today, 2015, 20(6), 718-735.
[http://dx.doi.org/10.1016/j.drudis.2015.01.007] [PMID: 25687212]
[71]
Qin, H.T.; Li, H.Q.; Liu, F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin. Ther. Pat., 2017, 27(5), 621-636.
[http://dx.doi.org/10.1080/13543776.2017.1276565] [PMID: 28033734]
[72]
Mottet, D.; Castronovo, V. Histone deacetylases: anti-angiogenic targets in cancer therapy. Curr. Cancer Drug Targets, 2010, 10(8), 898-913.
[http://dx.doi.org/10.2174/156800910793358014] [PMID: 20718701]
[73]
Li, J.; Meng, Y.; Wu, X.; Sun, Y. Polyamines and related signaling pathways in cancer. Cancer Cell Int., 2020, 20(1), 539.
[http://dx.doi.org/10.1186/s12935-020-01545-9] [PMID: 33292222]
[74]
Li, Y.; Woster, P.M. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. MedChemComm, 2015, 6(4), 613-618.
[http://dx.doi.org/10.1039/C4MD00401A] [PMID: 26005563]
[75]
Herbst-Gervasoni, C.J.; Christianson, D.W. Binding of N8-acetylspermidine analogues to histone deacetylase 10 rveals molecular strategies for blocking polyamine deacetylation. Biochemistry, 2019, 58(49), 4957-4969.
[http://dx.doi.org/10.1021/acs.biochem.9b00906] [PMID: 31746596]
[76]
Hai, Y.; Shinsky, S.A.; Porter, N.J.; Christianson, D.W. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat. Commun., 2017, 8(1), 15368.
[http://dx.doi.org/10.1038/ncomms15368] [PMID: 28516954]
[77]
Osko, J.D.; Roose, B.W.; Shinsky, S.A.; Christianson, D.W. Structure and function of the acetylpolyamine amidohydrolase from the deep earth holophile Marinobacter subterrani. Biochemistry, 2019, 58(36), 3755-3766.
[http://dx.doi.org/10.1021/acs.biochem.9b00582] [PMID: 31436969]
[78]
Géraldy, M.; Morgen, M.; Sehr, P.; Steimbach, R.R.; Moi, D.; Ridinger, J.; Oehme, I.; Witt, O.; Malz, M.; Nogueira, M.S.; Koch, O.; Gunkel, N.; Miller, A.K. Selective inhibitors of histone deacetylase 10: Hydrogen bonding to the gatekeeper residue is implicated. J. Med. Chem., 2019, 62(9), 4426-4443.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01936] [PMID: 30964290]
[79]
Herbst-Gervasoni, C.J.; Steimbach, R.R.; Morgen, M.; Miller, A.K.; Christianson, D.W. Structural basis for the selective inhibition of HDAC10, the cytosolic polyamine deacetylase. ACS Chem. Biol., 2020, 15(8), 2154-2163.
[http://dx.doi.org/10.1021/acschembio.0c00362] [PMID: 32659072]
[80]
Oehme, I.; Deubzer, H.E.; Wegener, D.; Pickert, D.; Linke, J.P.; Hero, B.; Kopp-Schneider, A.; Westermann, F.; Ulrich, S.M.; von Deimling, A.; Fischer, M.; Witt, O. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res., 2009, 15(1), 91-99.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0684] [PMID: 19118036]
[81]
Kolbinger, F.R.; Koeneke, E.; Ridinger, J.; Heimburg, T.; Müller, M.; Bayer, T.; Sippl, W.; Jung, M.; Gunkel, N.; Miller, A.K.; Westermann, F.; Witt, O.; Oehme, I. The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines. Arch. Toxicol., 2018, 92(8), 2649-2664.
[http://dx.doi.org/10.1007/s00204-018-2234-8] [PMID: 29947893]
[82]
Radhakrishnan, R.; Li, Y.; Xiang, S.; Yuan, F.; Yuan, Z.; Telles, E.; Fang, J.; Coppola, D.; Shibata, D.; Lane, W.S.; Zhang, Y.; Zhang, X.; Seto, E. Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2. J. Biol. Chem., 2015, 290(37), 22795-22804.
[http://dx.doi.org/10.1074/jbc.M114.612945] [PMID: 26221039]
[83]
Oehme, I.; Linke, J.P.; Böck, B.C.; Milde, T.; Lodrini, M.; Hartenstein, B.; Wiegand, I.; Eckert, C.; Roth, W.; Kool, M.; Kaden, S.; Gröne, H-J.; Schulte, J.H.; Lindner, S.; Hamacher-Brady, A.; Brady, N.R.; Deubzer, H.E.; Witt, O. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc. Natl. Acad. Sci. USA, 2013, 110(28), E2592-E2601.
[http://dx.doi.org/10.1073/pnas.1300113110] [PMID: 23801752]
[84]
Santo, L.; Hideshima, T.; Kung, A.L.; Tseng, J.C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J.H.; Mazitschek, R.; Ogier, W.C.; Cirstea, D.; Rodig, S.; Eda, H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K.C.; Jones, S.S.; Raje, N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood, 2012, 119(11), 2579-2589.
[http://dx.doi.org/10.1182/blood-2011-10-387365] [PMID: 22262760]
[85]
Vogl, D.T.; Raje, N.; Jagannath, S.; Richardson, P.; Hari, P.; Orlowski, R.; Supko, J.G.; Tamang, D.; Yang, M.; Jones, S.S.; Wheeler, C.; Markelewicz, R.J. lonial, S. Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiplemyeloma. Clin. Cancer Res. Off. J. Am. Chem. Assoc. Cancer Res., 2017, 23(13), 3307-3315.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2526] [PMID: 28053023]
[86]
Yee, A.J.; Bensinger, W.I.; Supko, J.G.; Voorhees, P.M.; Berdeja, J.G.; Richardson, P.G.; Libby, E.N.; Wallace, E.E.; Birrer, N.E.; Burke, J.N.; Tamang, D.L.; Yang, M.; Jones, S.S.; Wheeler, C.A.; Markelewicz, R.J.; Raje, N.S. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial. Lancet Oncol., 2016, 17(11), 1569-1578.
[http://dx.doi.org/10.1016/S1470-2045(16)30375-8] [PMID: 27646843]
[87]
Heimburg, T.; Chakrabarti, A.; Lancelot, J.; Marek, M.; Melesina, J.; Hauser, A-T.; Shaik, T.B.; Duclaud, S.; Robaa, D.; Erdmann, F.; Schmidt, M.; Romier, C.; Pierce, R.J.; Jung, M.; Sippl, W. Structure-based design and synthesis of novel inhibitors targeting HDAC8 from Schistosoma mansoni for the treatment of schistosomiasis. J. Med. Chem., 2016, 59(6), 2423-2435.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01478] [PMID: 26937828]
[88]
Heimburg, T.; Kolbinger, F.R.; Zeyen, P.; Ghazy, E.; Herp, D.; Schmidtkunz, K.; Melesina, J.; Shaik, T.B.; Erdmann, F.; Schmidt, M.; Romier, C.; Robaa, D.; Witt, O.; Oehme, I.; Jung, M.; Sippl, W. Structure-based design and biological characterization of selective histone deacetylase 8 (HDAC8) inhibitors with anti-neuroblastoma activity. J. Med. Chem., 2017, 60(24), 10188-10204.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01447] [PMID: 29190092]
[89]
Robers, M.B.; Dart, M.L.; Woodroofe, C.C.; Zimprich, C.A.; Kirkland, T.A.; Machleidt, T.; Kupcho, K.R.; Levin, S.; Hartnett, J.R.; Zimmerman, K.; Niles, A.L.; Ohana, R.F.; Daniels, D.L.; Slater, M.; Wood, M.G.; Cong, M.; Cheng, Y.Q.; Wood, K.V. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun., 2015, 6(1), 10091.
[http://dx.doi.org/10.1038/ncomms10091] [PMID: 26631872]
[90]
Morgen, M.; Steimbach, R.R.; Géraldy, M.; Hellweg, L.; Sehr, P.; Ridinger, J.; Witt, O.; Oehme, I.; Herbst-Gervasoni, C.J.; Osko, J.D.; Porter, N.J.; Christianson, D.W.; Gunkel, N.; Miller, A.K. Design and synthesis of dihydroxamic aids as HDAC6/8/10 inhibitors. ChemMedChem, 2020, 15(13), 1163-1174.
[http://dx.doi.org/10.1002/cmdc.202000149] [PMID: 32348628]
[91]
Depetter, Y.; Geurs, S.; De Vreese, R.; Goethals, S.; Vandoorn, E.; Laevens, A.; Steenbrugge, J.; Meyer, E.; de Tullio, P.; Bracke, M.; D’hooghe, M.; De Wever, O. Selective pharmacological inhibitors of HDAC6 reveal biochemical activity but functional tolerance in cancer models. Int. J. Cancer, 2019, 145(3), 735-747.
[http://dx.doi.org/10.1002/ijc.32169] [PMID: 30694564]
[92]
Kayode, E.A.; Ahmed, A.I. A computational approach to investigate the HDAC6 and HDAC10 binding properties of Psidium guajava-derived compounds as potential anticancer agents. Drug Discov. Technol, 2021, 18(3), 423-436.
[http://dx.doi.org/10.2174/1568009620666200502013657]
[93]
Ashraf, A.; Sarfraz, R.A.; Rashid, M.A.; Mahmood, A.; Shahid, M.; Noor, N. Chemical composition, antioxidant, antitumor, anticancer and cytotoxic effects of Psidium guajava leaf extracts. Pharm. Biol., 2016, 54(10), 1971-1981.
[http://dx.doi.org/10.3109/13880209.2015.1137604] [PMID: 26841303]
[94]
Ryu, N.H.; Park, K.R.; Kim, S.M.; Yun, H-M.; Nam, D.; Lee, S-G.; Jang, H-J.; Ahn, K.S.; Kim, S-H.; Shim, B.S.; Choi, S-H.; Mosaddik, A.; Cho, S.K.; Ahn, K.S. A hexane fraction of guava Leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells. J. Med. Food, 2012, 15(3), 231-241.
[http://dx.doi.org/10.1089/jmf.2011.1701] [PMID: 22280146]
[95]
Yoon, H.; Liu, R.H. Effect of 2α-hydroxyursolic acid on NF-kappaB activation induced by TNF-α in human breast cancer MCF-7 cells. J. Agric. Food Chem., 2008, 56(18), 8412-8417.
[http://dx.doi.org/10.1021/jf8012844] [PMID: 18700741]
[96]
Hao, Y.; Huang, J.; Ma, Y.; Chen, W.; Fan, Q.; Sun, X.; Shao, M.; Cai, H. Asiatic acid inhibits proliferation, migration and induces apoptosis by regulating Pdcd4 via the PI3K/Akt/mTOR/p70S6K signaling pathway in human colon carcinoma cells. Oncol. Lett., 2018, 15(6), 8223-8230.
[http://dx.doi.org/10.3892/ol.2018.8417] [PMID: 29805556]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy