Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

DDX39B预测ccRCC患者较差的生存期,并与抗pd - l1治疗的临床益处相关

卷 21, 期 10, 2021

发表于: 11 August, 2021

页: [849 - 859] 页: 11

弟呕挨: 10.2174/1568009621666210811115054

价格: $65

摘要

背景:免疫检查点抑制剂(ICI)已被证明可以提高透明细胞肾细胞癌(ccRCC)患者的总生存期(OS)。然而,仅有不到一半的ccRCC患者对ICI有客观反应。 目的:评估DDX39B在预测ccRCC患者os和ICI治疗反应中的作用。 方法:应用组织芯片免疫组化方法检测305例ccRCC患者的DDX39B。在TCGA组和RECA-EU组中也评估了DDX39B及其与ccRCC预后的关系。在两组接受ICI治疗的ccRCC患者中,我们还分析了DDX39B的表达和患者生存情况。 结果:在SYSU组、TCGA组和RECA-EU组中,DDX39B过表达可预测ccRCC患者的OS较差。DDX39B表达明显阳性,PD-L1等免疫调节剂表达。DDX39B与ccRCC细胞毒性t淋巴细胞和HDAC10外显子3包涵呈负相关。DDX39B基因敲除可降低PD-L1表达,增加HDAC10外显子3在肾癌ACHN细胞中的表达。HDAC10外显子3含量较低的ccRCC患者TNM分期较高,Fuhrman分级较高,OS较差。在ICI治疗的ccRCC患者中,DDX39B高表达患者的OS和PFS较低表达患者有延长的趋势。 结论:DDX39B基因在ccRCC中高表达,与患者OS密切相关。DDX39B可能通过增强HDAC10外显子3跳跃性增加PD-L1的表达,从而促进ICI治疗反应。

关键词: DDX39B,抗pd - l1治疗,透明细胞肾癌,HDAC10,选择性剪接,预后。

图形摘要

[1]
Bedke, J.; Stühler, V.; Stenzl, A.; Brehmer, B. Immunotherapy for kidney cancer: Status quo and the future. Curr. opin. urol., 2018, 28(1), 8-14.
[http://dx.doi.org/10.1097/MOU.0000000000000466] [PMID: 29120911]
[2]
Flippot, R.; Escudier, B.; Albiges, L. Immune checkpoint inhibitors: Toward new paradigms in renal cell carcinoma. Drugs, 2018, 78(14), 1443-1457.
[http://dx.doi.org/10.1007/s40265-018-0970-y] [PMID: 30187355]
[3]
Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; Kohrt, H.E.; Horn, L.; Lawrence, D.P.; Rost, S.; Leabman, M.; Xiao, Y.; Mokatrin, A.; Koeppen, H.; Hegde, P.S.; Mellman, I.; Chen, D.S.; Hodi, F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563-567.
[http://dx.doi.org/10.1038/nature14011] [PMID: 25428504]
[4]
Zhang, X.; Wang, C.; Wang, J.; Hu, Q.; Langworthy, B.; Ye, Y.; Sun, W.; Lin, J.; Wang, T.; Fine, J.; Cheng, H.; Dotti, G.; Huang, P.; Gu, Z. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater., 2018, 30(22), e1707112.
[http://dx.doi.org/10.1002/adma.201707112] [PMID: 29656492]
[5]
Pryor, A.; Tung, L.; Yang, Z.; Kapadia, F.; Chang, T.H.; Johnson, L.F. Growth-regulated expression and G0-specific turnover of the mRNA that encodes URH49, a mammalian DExH/D box protein that is highly related to the mRNA export protein UAP56. Nucleic acids res., 2004, 32(6), 1857-1865.
[http://dx.doi.org/10.1093/nar/gkh347] [PMID: 15047853]
[6]
Shen, H. UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep., 2009, 42(4), 185-188.
[http://dx.doi.org/10.5483/BMBRep.2009.42.4.185] [PMID: 19403039]
[7]
Jurewicz, M.M.; Stern, L.J. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics, 2019, 71(3), 171-187.
[http://dx.doi.org/10.1007/s00251-018-1095-x] [PMID: 30421030]
[8]
Allcock, R.J.; Williams, J.H.; Price, P. The central MHC gene, BAT1, may encode a protein that down-regulates cytokine production. Genes Cells, 2001, 6(5), 487-494.
[http://dx.doi.org/10.1046/j.1365-2443.2001.00435.x] [PMID: 11380625]
[9]
Mendonça, V.R.; Souza, L.C.; Garcia, G.C.; Magalhães, B.M.; Lacerda, M.V.; Andrade, B.B.; Gonçalves, M.S.; Barral-Netto, M. DDX39B (BAT1), TNF and IL6 gene polymorphisms and association with clinical outcomes of patients with Plasmodium vivax malaria. Malar. J., 2014, 13, 278.
[http://dx.doi.org/10.1186/1475-2875-13-278] [PMID: 25038626]
[10]
Wong, A.M.; Allcock, R.J.; Cheong, K.Y.; Christiansen, F.T.; Price, P. Alleles of the proximal promoter of BAT1, a putative anti-inflammatory gene adjacent to the TNF cluster, reduce transcription on a disease-associated MHC haplotype. Genes Cells, 2003, 8(4), 403-412.
[http://dx.doi.org/10.1046/j.1365-2443.2002.00641.x] [PMID: 12653967]
[11]
Ryan, M.; Wong, W.C.; Brown, R.; Akbani, R.; Su, X.; Broom, B.; Melott, J.; Weinstein, J. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. nucleic acids res., 2016, 44(D1), D1018-D1022.
[http://dx.doi.org/10.1093/nar/gkv1288] [PMID: 26602693]
[12]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[13]
Terranova-Barberio, M.; Thomas, S.; Ali, N.; Pawlowska, N.; Park, J.; Krings, G.; Rosenblum, M.D.; Budillon, A.; Munster, P.N. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget, 2017, 8(69), 114156-114172.
[http://dx.doi.org/10.18632/oncotarget.23169] [PMID: 29371976]
[14]
Woods, D.M.; Sodré, A.L.; Villagra, A.; Sarnaik, A.; Sotomayor, E.M.; Weber, J. HDAC Inhibition Upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 Blockade. Cancer Immunol. Res., 2015, 3(12), 1375-1385.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0077-T] [PMID: 26297712]
[15]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[16]
Miao, D.; Margolis, C.A-O.; Gao, W.; Voss, M.H.; Li, W.; Martini, D.J.; Norton, C.; Bossé, D.; Wankowicz, S.M.; Cullen, D.; Horak, C.; Wind-Rotolo, M.; Tracy, A.; Giannakis, M.; Hodi, F.S.; Drake, C.G.; Ball, M.W.; Allaf, M.E.; Snyder, A.; Hellmann, M.D.; Ho, T.; Motzer, R.J.; Signoretti, S.; Kaelin, W.G., Jr; Choueiri, T.K.; Van Allen, E.M. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science, 2018, 359(6377), 801-806.
[http://dx.doi.org/10.1126/science.aan5951] [PMID: 29301960]
[17]
Braun, D.A-O.; Hou, Y.; Bakouny, Z.; Ficial, M.; Sant’ Angelo, M.; Forman, J.; Ross-Macdonald, P.; Berger, A.C.; Jegede, O.A.; Elagina, L.; Steinharter, J.; Sun, M.; Wind-Rotolo, M.; Pignon, J.C.; Cherniack, A.D.; Lichtenstein, L.; Neuberg, D.; Catalano, P.; Freeman, G.J.; Sharpe, A.H.; McDermott, D.F.; Van Allen, E.M.; Signoretti, S.; Wu, C.J.; Shukla, S.A.; Choueiri, T.K. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. med., 2020, 26(6), 909-918.
[http://dx.doi.org/10.1038/s41591-020-0839-y] [PMID: 32472114]
[18]
Walbrecq, G.; Lecha, O.; Gaigneaux, A.; Fougeras, M.R.; Philippidou, D.; Margue, C.; Tetsi Nomigni, M.; Bernardin, F.; Dittmar, G.; Behrmann, I.; Kreis, S. Hypoxia-induced adaptations of mirnomes and proteomes in melanoma cells and their secreted extracellular vesicles. Cancers (Basel), 2020, 12(3), 692.
[http://dx.doi.org/10.3390/cancers12030692] [PMID: 32183388]
[19]
Gu, H.Y.; Zhang, C.; Guo, J.; Yang, M.; Zhong, H.C.; Jin, W.; Liu, Y.; Gao, L.P.; Wei, R.X. Risk score based on expression of five novel genes predicts survival in soft tissue sarcoma. Aging (Albany NY), 2020, 12(4), 3807-3827.
[http://dx.doi.org/10.18632/aging.102847] [PMID: 32084007]
[20]
Meng, T.; Huang, R.; Zeng, Z.; Huang, Z.; Yin, H.; Jiao, C.; Yan, P.; Hu, P.; Zhu, X.; Li, Z.; Song, D.; Zhang, J.; Cheng, L. Identification of prognostic and metastatic alternative splicing signatures in kidney renal clear cell carcinoma. Front. bioeng. biotechnol., 2019, 7, 270.
[http://dx.doi.org/10.3389/fbioe.2019.00270] [PMID: 31681747]
[21]
McDermott, D.F.; Huseni, M.A.; Atkins, M.B.; Motzer, R.J.; Rini, B.I.; Escudier, B.; Fong, L.; Joseph, R.W.; Pal, S.K.; Reeves, J.A.; Sznol, M.; Hainsworth, J.; Rathmell, W.K.; Stadler, W.M.; Hutson, T.; Gore, M.E.; Ravaud, A.; Bracarda, S.; Suárez, C.; Danielli, R.; Gruenwald, V.; Choueiri, T.K.; Nickles, D.; Jhunjhunwala, S.; Piault-Louis, E.; Thobhani, A.; Qiu, J.; Chen, D.S.; Hegde, P.S.; Schiff, C.; Fine, G.D.; Powles, T. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med., 2018, 24(6), 749-757.
[http://dx.doi.org/10.1038/s41591-018-0053-3] [PMID: 29867230]
[22]
Liu, X.D.; Kong, W.; Peterson, C.B.; McGrail, D.J.; Hoang, A.; Zhang, X.; Lam, T.; Pilie, P.G.; Zhu, H.; Beckermann, K.E.; Haake, S.M.; Isgandrova, S.; Martinez-Moczygemba, M.; Sahni, N.; Tannir, N.M.; Lin, S.Y.; Rathmell, W.K.; Jonasch, E. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. commun., 2020, 11(1), 2135.
[http://dx.doi.org/10.1038/s41467-020-15959-6] [PMID: 32358509]
[23]
Braun, D.A.; Ishii, Y.; Walsh, A.M.; Van Allen, E.M.; Wu, C.J.; Shukla, S.A.; Choueiri, T.K. Clinical validation of PBRM1 alterations as a marker of immune checkpoint inhibitor response in renal cell carcinoma. JAMA Oncol., 2019, 5(11), 1631-1633.
[http://dx.doi.org/10.1001/jamaoncol.2019.3158] [PMID: 31486842]
[24]
Yang, Y.; Huang, Y.; Wang, Z.; Wang, H-T.; Duan, B.; Ye, D.; Wang, C.; Jing, R.; Leng, Y.; Xi, J.; Chen, W.; Wang, G.; Jia, W.; Zhu, S.; Kang, J. HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Oncotarget, 2016, 7(37), 59388-59401.
[http://dx.doi.org/10.18632/oncotarget.10673] [PMID: 27449083]
[25]
Nakata, D.; Nakao, S.; Nakayama, K.; Araki, S.; Nakayama, Y.; Aparicio, S.; Hara, T.; Nakanishi, A. The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation. Biochem. biophys. res. commun., 2017, 483(1), 271-276.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.153] [PMID: 28025139]
[26]
Galarza-Muñoz, G.; Briggs, F.B.S.; Evsyukova, I.; Schott-Lerner, G.; Kennedy, E.M.; Nyanhete, T.; Wang, L.; Bergamaschi, L.; Widen, S.G.; Tomaras, G.D.; Ko, D.C.; Bradrick, S.S.; Barcellos, L.F.; Gregory, S.G.; Garcia-Blanco, M.A. Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell, 2017, 169(1), 72-84.e13.
[http://dx.doi.org/10.1016/j.cell.2017.03.007] [PMID: 28340352]
[27]
Wang, L.; Wang, Y.; Su, B.; Yu, P.; He, J.; Meng, L.; Xiao, Q.; Sun, J.; Zhou, K.; Xue, Y.; Tan, J. Transcriptome-wide analysis and modelling of prognostic alternative splicing signatures in invasive breast cancer: A prospective clinical study. Sci. Rep., 2020, 10(1), 16504.
[http://dx.doi.org/10.1038/s41598-020-73700-1] [PMID: 33020551]
[28]
Booth, L.; Roberts, J.L.; Poklepovic, A.; Kirkwood, J.; Dent, P. HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget, 2017, 8(47), 83155-83170.
[http://dx.doi.org/10.18632/oncotarget.17950] [PMID: 29137331]
[29]
Liu, X.; Wang, Y.; Zhang, R.; Jin, T.; Qu, L.; Jin, Q.; Zheng, J.; Sun, J.; Wu, Z.; Wang, L.; Liu, T.; Zhang, Y.; Meng, X.; Wang, Y.; Wei, N. HDAC10 Is positively associated with PD-L1 expression and poor prognosis in patients with NSCLC. Front. oncol., 2020, 10, 485.
[http://dx.doi.org/10.3389/fonc.2020.00485] [PMID: 32373519]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy