Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Therapeutic Options for the Management of Aromatase Inhibitor- Associated Bone Loss

Author(s): Agostino Gaudio*, Anastasia Xourafa, Rosario Rapisarda and Pietro Castellino

Volume 22, Issue 3, 2022

Published on: 03 February, 2022

Page: [259 - 273] Pages: 15

DOI: 10.2174/1871530321666210809153152

Price: $65

Abstract

Background: Breast cancer is the most commonly occurring cancer in women worldwide. Early breast cancer is a kind of invasive neoplasm that has not proliferated beyond the breast or the axillary lymph nodes. Current therapeutic strategies for breast cancer mainly include local therapies such as surgery or radiotherapy and systemic therapies like chemotherapy, endocrine, and targeted therapy. Nowadays, the adjuvant treatment for hormone receptor-positive early breast cancer in postmenopausal women remains the main effective systemic therapy which can improve disease- free survival and overall survival; it involves several endocrine treatment regimens, including Selective Estrogen Receptor Modulators (SERMs), Aromatase Inhibitors (AIs), or a combination of them. AIs have been shown to be more effective in preventing recurrence in postmenopausal women with early breast cancer when compared with tamoxifen, thus representing the standard of care for adjuvant endocrine therapy. Although AIs are usually well-tolerated, they can have some side effects. Apart from the appearance of arthralgias or myalgias and cardiovascular events, AI therapies, reducing already low endogenous postmenopausal estradiol levels, cause increased bone loss and increase fracture risk in postmenopausal women.

Objectives: The objective of this review is to evaluate the therapeutic options in the management of Aromatase Inhibitor-Associated Bone Loss (AIBL).

Methods: We reviewed the current literature dealing with different therapeutic options in the treatment of AIBL.

Results: Clinical practice guidelines recommend a careful evaluation of skeletal health in all women with breast cancer before AI therapy initiation. Adequate calcium and vitamin D intake have also been suggested. Pharmacological attempts to minimize AI-related bone loss have focused on the use of antiresorptive agents, such as bisphosphonates and denosumab to protect bone integrity and reduce the risk of fractures. Furthermore, clinical trials have shown that by making the bone microenvironment less susceptible to breast cancer metastasis, these drugs are able to increase disease- free survival.

Conclusions: AI, that are the pillar of the systemic treatment for patients with hormone receptorpositive breast cancer, are associated with different side effects, and in particular, osteoporosis and fractures. Both bisphosphonates and denosumab are able to prevent this negative effect.

Keywords: Breast cancer, aromatase inhibitors, bisphosphonates, denosumab, bone mineral density, cancer treatment-induced bone loss, aromatase inhibitor-associated bone loss.

Next »
Graphical Abstract

[1]
World Health Organization international agency for research on cancer. The Global Cancer Observatory., 2018. Available from: http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Seow, A.; Duffy, S.W.; McGee, M.A.; Lee, J.; Lee, H.P. Breast cancer in Singapore: trends in incidence 1968-1992. Int. J. Epidemiol., 1996, 25(1), 40-45.
[http://dx.doi.org/10.1093/ije/25.1.40] [PMID: 8666502]
[5]
Kohler, B.A.; Sherman, R.L.; Howlader, N. Annual report to the nation on the status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state published correction appears. J. Natl. Cancer Inst., 2015, 107(5)
[http://dx.doi.org/10.1093/jnci/djv048]
[6]
de Gelder, R.; Heijnsdijk, E.A.; Fracheboud, J.; Draisma, G.; de Koning, H.J. The effects of population-based mammography screening starting between age 40 and 50 in the presence of adjuvant systemic therapy. Int. J. Cancer, 2015, 137(1), 165-172.
[http://dx.doi.org/10.1002/ijc.29364] [PMID: 25430053]
[7]
Munoz, D.; Near, A.M.; van Ravesteyn, N.T.; Lee, S.J.; Schechter, C.B.; Alagoz, O.; Berry, D.A.; Burnside, E.S.; Chang, Y.; Chisholm, G.; de Koning, H.J.; Ali Ergun, M.; Heijnsdijk, E.A.; Huang, H.; Stout, N.K.; Sprague, B.L.; Trentham-Dietz, A.; Mandelblatt, J.S.; Plevritis, S.K. Effects of screening and systemic adjuvant therapy on ER-specific US breast cancer mortality. J. Natl. Cancer Inst., 2014, 106(11), dju289.
[http://dx.doi.org/10.1093/jnci/dju289] [PMID: 25255803]
[8]
Mutebi, M.; Anderson, B.O.; Duggan, C.; Adebamowo, C.; Agarwal, G.; Ali, Z.; Bird, P.; Bourque, J.M.; DeBoer, R.; Gebrim, L.H.; Masetti, R.; Masood, S.; Menon, M.; Nakigudde, G.; Ng’ang’a, A.; Niyonzima, N.; Rositch, A.F.; Unger-Saldaña, K.; Villarreal-Garza, C.; Dvaladze, A.; El Saghir, N.S.; Gralow, J.R.; Eniu, A. Breast cancer treatment: A phased approach to implementation. Cancer, 2020, 126(Suppl. 10), 2365-2378.
[http://dx.doi.org/10.1002/cncr.32910] [PMID: 32348571]
[9]
Colditz, G.A. Epidemiology and prevention of breast cancer. Cancer Epidemiol. Biomarkers Prev., 2005, 14(4), 768-772.
[http://dx.doi.org/10.1158/1055-9965.EPI-04-0157] [PMID: 15824141]
[10]
Colditz, G.A.; Rosner, B. Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health Study. Am. J. Epidemiol., 2000, 152(10), 950-964.
[http://dx.doi.org/10.1093/aje/152.10.950] [PMID: 11092437]
[11]
Colditz, G.A. Breast cancer epidemiology and risk factors. Available from: https://emedicine.medscape.com/article/1697353-overview
[12]
SEER Cancer Statistics Review, 1973-1995; National Cancer Institute: Bethesda, MD, 1998.
[13]
DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[14]
Bernstein, L.; Ross, R.K. Endogenous hormones and breast cancer risk. Epidemiol. Rev., 1993, 15(1), 48-65.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a036116] [PMID: 8405212]
[15]
Lilienfeld, A.M. The relationship of cancer of the female breast to artificial menopause and marital status. Cancer, 1956, 9(5), 927-934.
[http://dx.doi.org/10.1002/1097-0142(195609/10)9:5<927::AID-CNCR2820090510>3.0.CO;2-3] [PMID: 13364877]
[16]
Rosner, B.; Colditz, G.A.; Willett, W.C. Reproductive risk factors in a prospective study of breast cancer: the Nurses’ Health Study. Am. J. Epidemiol., 1994, 139(8), 819-835.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a117079] [PMID: 8178795]
[17]
Islami, F.; Liu, Y.; Jemal, A.; Zhou, J.; Weiderpass, E.; Colditz, G.; Boffetta, P.; Weiss, M. Breastfeeding and breast cancer risk by receptor status--a systematic review and meta-analysis. Ann. Oncol., 2015, 26(12), 2398-2407.
[http://dx.doi.org/10.1093/annonc/mdv379] [PMID: 26504151]
[18]
Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet, 2002, 360(9328), 187-195.
[http://dx.doi.org/10.1016/S0140-6736(02)09454-0] [PMID: 12133652]
[19]
Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; Daly, M.; Wieand, S.; Tan-Chiu, E.; Ford, L.; Wolmark, N. Tamoxifen for prevention of breast cancer: Report of the national surgical adjuvant breast and bowel project P-1 Study. J. Natl. Cancer Inst., 1998, 90(18), 1371-1388.
[http://dx.doi.org/10.1093/jnci/90.18.1371] [PMID: 9747868]
[20]
Martino, S.; Cauley, J.A.; Barrett-Connor, E.; Powles, T.J.; Mershon, J.; Disch, D.; Secrest, R.J.; Cummings, S.R. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J. Natl. Cancer Inst., 2004, 96(23), 1751-1761.
[http://dx.doi.org/10.1093/jnci/djh319] [PMID: 15572757]
[21]
Missmer, S.A.; Eliassen, A.H.; Barbieri, R.L.; Hankinson, S.E. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J. Natl. Cancer Inst., 2004, 96(24), 1856-1865.
[http://dx.doi.org/10.1093/jnci/djh336] [PMID: 15601642]
[22]
Thomas, H.V.; Key, T.J.; Allen, D.S.; Moore, J.W.; Dowsett, M.; Fentiman, I.S.; Wang, D.Y. A prospective study of endogenous serum hormone concentrations and breast cancer risk in post-menopausal women on the island of Guernsey. Br. J. Cancer, 1997, 76(3), 401-405.
[http://dx.doi.org/10.1038/bjc.1997.398] [PMID: 9252211]
[23]
Cauley, J.A.; Lucas, F.L.; Kuller, L.H.; Stone, K.; Browner, W.; Cummings, S.R. Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Ann. Intern. Med., 1999, 130(4 Pt 1), 270-277.
[http://dx.doi.org/10.7326/0003-4819-130-4_Part_1-199902160-00004] [PMID: 10068384]
[24]
Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Lancet, 1996, 347(9017), 1713-1727.
[http://dx.doi.org/10.1016/S0140-6736(96)90806-5] [PMID: 8656904]
[25]
Colditz, G.A. Estrogen, estrogen plus progestin therapy, and risk of breast cancer. Clin. Cancer Res., 2005, 11(2 Pt 2), 909s-917s.
[PMID: 15701886]
[26]
Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; Kotchen, J.M.; Ockene, J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 2002, 288(3), 321-333.
[http://dx.doi.org/10.1001/jama.288.3.321] [PMID: 12117397]
[27]
Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet, 1997, 350(9084), 1047-1059.
[http://dx.doi.org/10.1016/S0140-6736(97)08233-0] [PMID: 10213546]
[28]
Prentice, R.L.; Caan, B.; Chlebowski, R.T.; Patterson, R.; Kuller, L.H.; Ockene, J.K.; Margolis, K.L.; Limacher, M.C.; Manson, J.E.; Parker, L.M.; Paskett, E.; Phillips, L.; Robbins, J.; Rossouw, J.E.; Sarto, G.E.; Shikany, J.M.; Stefanick, M.L.; Thomson, C.A.; Van Horn, L.; Vitolins, M.Z.; Wactawski-Wende, J.; Wallace, R.B.; Wassertheil-Smoller, S.; Whitlock, E.; Yano, K.; Adams-Campbell, L.; Anderson, G.L.; Assaf, A.R.; Beresford, S.A.; Black, H.R.; Brunner, R.L.; Brzyski, R.G.; Ford, L.; Gass, M.; Hays, J.; Heber, D.; Heiss, G.; Hendrix, S.L.; Hsia, J.; Hubbell, F.A.; Jackson, R.D.; Johnson, K.C.; Kotchen, J.M.; LaCroix, A.Z.; Lane, D.S.; Langer, R.D.; Lasser, N.L.; Henderson, M.M. Low-fat dietary pattern and risk of invasive breast cancer: the women’s health initiative randomized controlled dietary modification trial. JAMA, 2006, 295(6), 629-642.
[http://dx.doi.org/10.1001/jama.295.6.629] [PMID: 16467232]
[29]
Hunter, D.J.; Spiegelman, D.; Adami, H.O.; Beeson, L.; van den Brandt, P.A.; Folsom, A.R.; Fraser, G.E.; Goldbohm, R.A.; Graham, S.; Howe, G.R. Cohort studies of fat intake and the risk of breast cancer--a pooled analysis. N. Engl. J. Med., 1996, 334(6), 356-361.
[http://dx.doi.org/10.1056/NEJM199602083340603] [PMID: 8538706]
[30]
Cho, E.; Spiegelman, D.; Hunter, D.J.; Chen, W.Y.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Premenopausal fat intake and risk of breast cancer. J. Natl. Cancer Inst., 2003, 95(14), 1079-1085.
[http://dx.doi.org/10.1093/jnci/95.14.1079] [PMID: 12865454]
[31]
Hamajima, N.; Hirose, K.; Tajima, K.; Rohan, T.; Calle, E.E.; Heath, C.W., Jr; Coates, R.J.; Liff, J.M.; Talamini, R.; Chantarakul, N.; Koetsawang, S.; Rachawat, D.; Morabia, A.; Schuman, L.; Stewart, W.; Szklo, M.; Bain, C.; Schofield, F.; Siskind, V.; Band, P.; Coldman, A.J.; Gallagher, R.P.; Hislop, T.G.; Yang, P.; Kolonel, L.M.; Nomura, A.M.; Hu, J.; Johnson, K.C.; Mao, Y.; De Sanjosé, S.; Lee, N.; Marchbanks, P.; Ory, H.W.; Peterson, H.B.; Wilson, H.G.; Wingo, P.A.; Ebeling, K.; Kunde, D.; Nishan, P.; Hopper, J.L.; Colditz, G.; Gajalanski, V.; Martin, N.; Pardthaisong, T.; Silpisornkosol, S.; Theetranont, C.; Boosiri, B.; Chutivongse, S.; Jimakorn, P.; Virutamasen, P.; Wongsrichanalai, C.; Ewertz, M.; Adami, H.O.; Bergkvist, L.; Magnusson, C.; Persson, I.; Chang-Claude, J.; Paul, C.; Skegg, D.C.; Spears, G.F.; Boyle, P.; Evstifeeva, T.; Daling, J.R.; Hutchinson, W.B.; Malone, K.; Noonan, E.A.; Stanford, J.L.; Thomas, D.B.; Weiss, N.S.; White, E.; Andrieu, N.; Brêmond, A.; Clavel, F.; Gairard, B.; Lansac, J.; Piana, L.; Renaud, R.; Izquierdo, A.; Viladiu, P.; Cuevas, H.R.; Ontiveros, P.; Palet, A.; Salazar, S.B.; Aristizabel, N.; Cuadros, A.; Tryggvadottir, L.; Tulinius, H.; Bachelot, A.; Lê, M.G.; Peto, J.; Franceschi, S.; Lubin, F.; Modan, B.; Ron, E.; Wax, Y.; Friedman, G.D.; Hiatt, R.A.; Levi, F.; Bishop, T.; Kosmelj, K.; Primic-Zakelj, M.; Ravnihar, B.; Stare, J.; Beeson, W.L.; Fraser, G.; Bullbrook, R.D.; Cuzick, J.; Duffy, S.W.; Fentiman, I.S.; Hayward, J.L.; Wang, D.Y.; McMichael, A.J.; McPherson, K.; Hanson, R.L.; Leske, M.C.; Mahoney, M.C.; Nasca, P.C.; Varma, A.O.; Weinstein, A.L.; Moller, T.R.; Olsson, H.; Ranstam, J.; Goldbohm, R.A.; van den Brandt, P.A.; Apelo, R.A.; Baens, J.; de la Cruz, J.R.; Javier, B.; Lacaya, L.B.; Ngelangel, C.A.; La Vecchia, C.; Negri, E.; Marubini, E.; Ferraroni, M.; Gerber, M.; Richardson, S.; Segala, C.; Gatei, D.; Kenya, P.; Kungu, A.; Mati, J.G.; Brinton, L.A.; Hoover, R.; Schairer, C.; Spirtas, R.; Lee, H.P.; Rookus, M.A.; van Leeuwen, F.E.; Schoenberg, J.A.; McCredie, M.; Gammon, M.D.; Clarke, E.A.; Jones, L.; Neil, A.; Vessey, M.; Yeates, D.; Appleby, P.; Banks, E.; Beral, V.; Bull, D.; Crossley, B.; Goodill, A.; Green, J.; Hermon, C.; Key, T.; Langston, N.; Lewis, C.; Reeves, G.; Collins, R.; Doll, R.; Peto, R.; Mabuchi, K.; Preston, D.; Hannaford, P.; Kay, C.; Rosero-Bixby, L.; Gao, Y.T.; Jin, F.; Yuan, J.M.; Wei, H.Y.; Yun, T.; Zhiheng, C.; Berry, G.; Cooper Booth, J.; Jelihovsky, T.; MacLennan, R.; Shearman, R.; Wang, Q.S.; Baines, C.J.; Miller, A.B.; Wall, C.; Lund, E.; Stalsberg, H.; Shu, X.O.; Zheng, W.; Katsouyanni, K.; Trichopoulou, A.; Trichopoulos, D.; Dabancens, A.; Martinez, L.; Molina, R.; Salas, O.; Alexander, F.E.; Anderson, K.; Folsom, A.R.; Hulka, B.S.; Bernstein, L.; Enger, S.; Haile, R.W.; Paganini-Hill, A.; Pike, M.C.; Ross, R.K.; Ursin, G.; Yu, M.C.; Longnecker, M.P.; Newcomb, P.; Bergkvist, L.; Kalache, A.; Farley, T.M.; Holck, S.; Meirik, O. Alcohol, tobacco and breast cancer--collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br. J. Cancer, 2002, 87(11), 1234-1245.
[http://dx.doi.org/10.1038/sj.bjc.6600596] [PMID: 12439712]
[32]
McTiernan, A. Mechanisms linking physical activity with cancer. Nat. Rev. Cancer, 2008, 8(3), 205-211.
[http://dx.doi.org/10.1038/nrc2325] [PMID: 18235448]
[33]
Emaus, A.; Veierød, M.B.; Furberg, A.S.; Espetvedt, S.; Friedenreich, C.; Ellison, P.T.; Jasienska, G.; Andersen, L.B.; Thune, I. Physical activity, heart rate, metabolic profile, and estradiol in premenopausal women. Med. Sci. Sports Exerc., 2008, 40(6), 1022-1030.
[http://dx.doi.org/10.1249/MSS.0b013e318167411f] [PMID: 18461005]
[34]
Guo, W.; Key, T.J.; Reeves, G.K. Adiposity and breast cancer risk in postmenopausal women: Results from the UK Biobank prospective cohort. Int. J. Cancer, 2018, 143(5), 1037-1046.
[http://dx.doi.org/10.1002/ijc.31394] [PMID: 29569713]
[35]
Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.; Dorgan, J.F.; Longcope, C.; Stanczyk, F.Z.; Stephenson, H.E., Jr; Falk, R.T.; Miller, R.; Schatzkin, A.; Allen, D.S.; Fentiman, I.S.; Key, T.J.; Wang, D.Y.; Dowsett, M.; Thomas, H.V.; Hankinson, S.E.; Toniolo, P.; Akhmedkhanov, A.; Koenig, K.; Shore, R.E.; Zeleniuch-Jacquotte, A.; Berrino, F.; Muti, P.; Micheli, A.; Krogh, V.; Sieri, S.; Pala, V.; Venturelli, E.; Secreto, G.; Barrett-Connor, E.; Laughlin, G.A.; Kabuto, M.; Akiba, S.; Stevens, R.G.; Neriishi, K.; Land, C.E.; Cauley, J.A.; Kuller, L.H.; Cummings, S.R.; Helzlsouer, K.J.; Alberg, A.J.; Bush, T.L.; Comstock, G.W.; Gordon, G.B.; Miller, S.R.; Longcope, C. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl. Cancer Inst., 2003, 95(16), 1218-1226.
[http://dx.doi.org/10.1093/jnci/djg022] [PMID: 12928347]
[36]
Seo, B.R.; Bhardwaj, P.; Choi, S.; Gonzalez, J.; Andresen Eguiluz, R.C.; Wang, K.; Mohanan, S.; Morris, P.G.; Du, B.; Zhou, X.K.; Vahdat, L.T.; Verma, A.; Elemento, O.; Hudis, C.A.; Williams, R.M.; Gourdon, D.; Dannenberg, A.J.; Fischbach, C. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Transl. Med., 2015, 7(301), 301ra130.
[http://dx.doi.org/10.1126/scitranslmed.3010467] [PMID: 26290412]
[37]
Rojas, K.; Stuckey, A. Breast cancer epidemiology and risk factors. Clin. Obstet. Gynecol., 2016, 59(4), 651-672.
[http://dx.doi.org/10.1097/GRF.0000000000000239] [PMID: 27681694]
[38]
Bonnie, N.J. Clinical features, diagnosis, and staging of newly diagnosed breast cancer.
[39]
Esserman, L.J.; Shieh, Y.; Rutgers, E.J.; Knauer, M.; Retèl, V.P.; Mook, S.; Glas, A.M.; Moore, D.H.; Linn, S.; van Leeuwen, F.E.; van ’t Veer, L.J. Impact of mammographic screening on the detection of good and poor prognosis breast cancers. Breast Cancer Res. Treat., 2011, 130(3), 725-734.
[http://dx.doi.org/10.1007/s10549-011-1748-z] [PMID: 21892702]
[40]
Stavros, A.T.; Thickman, D.; Rapp, C.L.; Dennis, M.A.; Parker, S.H.; Sisney, G.A. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology, 1995, 196(1), 123-134.
[http://dx.doi.org/10.1148/radiology.196.1.7784555] [PMID: 7784555]
[41]
Macura, K.J.; Ouwerkerk, R.; Jacobs, M.A.; Bluemke, D.A. Patterns of enhancement on breast MR images: interpretation and imaging pitfalls. Radiographics, 2006, 26(6), 1719-1734.
[http://dx.doi.org/10.1148/rg.266065025] [PMID: 17102046]
[42]
Eliyatkın, N.; Yalçın, E.; Zengel, B.; Aktaş, S.; Vardar, E. Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J. Breast Health, 2015, 11(2), 59-66.
[http://dx.doi.org/10.5152/tjbh.2015.1669] [PMID: 28331693]
[43]
Kesson, E.M.; Allardice, G.M.; George, W.D.; Burns, H.J.; Morrison, D.S. Effects of multidisciplinary team working on breast cancer survival: retrospective, comparative, interventional cohort study of 13 722 women. BMJ, 2012, 344, e2718.
[http://dx.doi.org/10.1136/bmj.e2718] [PMID: 22539013]
[44]
Taghian, A.; Merajver, S.D. Overview of the treatment of newly diagnosed, invasive, non-metastatic breast cancer.
[45]
Giuliano, A.E.; Hunt, K.K.; Ballman, K.V.; Beitsch, P.D.; Whitworth, P.W.; Blumencranz, P.W.; Leitch, A.M.; Saha, S.; McCall, L.M.; Morrow, M. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA, 2011, 305(6), 569-575.
[http://dx.doi.org/10.1001/jama.2011.90] [PMID: 21304082]
[46]
Dodwell, D.; Williamson, D. Beyond tamoxifen: extended and late extended endocrine therapy in postmenopausal early breast cancer. Cancer Treat. Rev., 2008, 34(2), 137-144.
[http://dx.doi.org/10.1016/j.ctrv.2007.09.004] [PMID: 18006236]
[47]
Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[48]
Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H.C.; Taylor, C.; Wang, Y.C.; Dowsett, M.; Ingle, J.; Peto, R. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 2011, 378(9793), 771-784.
[http://dx.doi.org/10.1016/S0140-6736(11)60993-8] [PMID: 21802721]
[49]
Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R.; Raina, V.; Abraham, M.; Medeiros Alencar, V.H.; Badran, A.; Bonfill, X.; Bradbury, J.; Clarke, M.; Collins, R.; Davis, S.R.; Delmestri, A.; Forbes, J.F.; Haddad, P.; Hou, M.F.; Inbar, M.; Khaled, H.; Kielanowska, J.; Kwan, W.H.; Mathew, B.S.; Mittra, I.; Müller, B.; Nicolucci, A.; Peralta, O.; Pernas, F.; Petruzelka, L.; Pienkowski, T.; Radhika, R.; Rajan, B.; Rubach, M.T.; Tort, S.; Urrútia, G.; Valentini, M.; Wang, Y.; Peto, R. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet, 2013, 381(9869), 805-816.
[http://dx.doi.org/10.1016/S0140-6736(12)61963-1] [PMID: 23219286]
[50]
Bartlett, J.M.S.; Sgroi, D.C.; Treuner, K.; Zhang, Y.; Ahmed, I.; Piper, T.; Salunga, R.; Brachtel, E.F.; Pirrie, S.J.; Schnabel, C.A.; Rea, D.W. Breast cancer index and prediction of benefit from extended endocrine therapy in breast cancer patients treated in the Adjuvant Tamoxifen-To Offer More? (aTTom) trial. Ann. Oncol., 2019, 30(11), 1776-1783.
[http://dx.doi.org/10.1093/annonc/mdz289] [PMID: 31504126]
[51]
Burstein, H.J.; Lacchetti, C.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.E.; Giordano, S.H.; Hudis, C.A.; Solky, A.J.; Stearns, V.; Winer, E.P.; Griggs, J.J. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline update on ovarian suppression. J. Clin. Oncol., 2016, 34(14), 1689-1701.
[http://dx.doi.org/10.1200/JCO.2015.65.9573] [PMID: 26884586]
[52]
Lasco, A.; Gaudio, A.; Morini, E.; Morabito, N.; Nicita-Mauro, C.; Catalano, A.; Denuzzo, G.; Sansotta, C.; Xourafa, A.; Macrì, I.; Frisina, N. Effect of long-term treatment with raloxifene on mammary density in postmenopausal women. Menopause, 2006, 13(5), 787-792.
[http://dx.doi.org/10.1097/01.gme.0000233493.20712.ad] [PMID: 16912660]
[53]
Boyd, N.F.; Byng, J.W.; Jong, R.A.; Fishell, E.K.; Little, L.E.; Miller, A.B.; Lockwood, G.A.; Tritchler, D.L.; Yaffe, M.J. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J. Natl. Cancer Inst., 1995, 87(9), 670-675.
[http://dx.doi.org/10.1093/jnci/87.9.670] [PMID: 7752271]
[54]
Li, J.J.; Shao, Z.M. Endocrine therapy as adjuvant or neoadjuvant therapy for breast cancer: selecting the best agents, the timing and duration of treatment. Chin. Clin. Oncol., 2016, 5(3), 40.
[http://dx.doi.org/10.21037/cco.2016.03.24] [PMID: 27164856]
[55]
Burstein, H.J.; Griggs, J.J.; Prestrud, A.A.; Temin, S. American society of clinical oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Oncol. Pract., 2010, 6(5), 243-246.
[http://dx.doi.org/10.1200/JOP.000082] [PMID: 21197188]
[56]
Nabholtz, J.M.; Mouret-Reynier, M.A.; Durando, X.; Van Praagh, I.; Al-Sukhun, S.; Ferriere, J.P.; Chollet, P. Comparative review of anastrozole, letrozole and exemestane in the management of early breast cancer. Expert Opin. Pharmacother., 2009, 10(9), 1435-1447.
[http://dx.doi.org/10.1517/14656560902953738] [PMID: 19445563]
[57]
Chumsri, S. Clinical utilities of aromatase inhibitors in breast cancer. Int. J. Womens Health, 2015, 7, 493-499.
[http://dx.doi.org/10.2147/IJWH.S69907] [PMID: 26005359]
[58]
Burstein, H.J.; Prestrud, A.A.; Seidenfeld, J.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.E.; Giordano, S.H.; Hudis, C.A.; Malin, J.; Mamounas, E.P.; Rowden, D.; Solky, A.J.; Sowers, M.R.; Stearns, V.; Winer, E.P.; Somerfield, M.R.; Griggs, J.J. American Society of Clinical Oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J. Clin. Oncol., 2010, 28(23), 3784-3796.
[http://dx.doi.org/10.1200/JCO.2009.26.3756] [PMID: 20625130]
[59]
Meng, J.; Wang, X.; Guan, Y.; Zhang, D. Aromatase inhibitors plus ovarian function suppression versus tamoxifen plus ovarian function suppression for premenopausal women with early stage breast cancer: a systematic review and meta-analysis. Ann. Palliat. Med., 2020, 9(4), 2294-2302.
[http://dx.doi.org/10.21037/apm-20-488A] [PMID: 32434371]
[60]
Xu, X.; Chlebowski, R.T.; Shi, J.; Barac, A.; Haque, R. Aromatase inhibitor and tamoxifen use and the risk of venous thromboembolism in breast cancer survivors. Breast Cancer Res. Treat., 2019, 174(3), 785-794.
[http://dx.doi.org/10.1007/s10549-018-05086-8] [PMID: 30659431]
[61]
Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet, 2015, 386(10001), 1341-1352.
[http://dx.doi.org/10.1016/S0140-6736(15)61074-1] [PMID: 26211827]
[62]
Goss, P.E.; Ingle, J.N.; Pritchard, K.I.; Ellis, M.J.; Sledge, G.W.; Budd, G.T.; Rabaglio, M.; Ansari, R.H.; Johnson, D.B.; Tozer, R.; D’Souza, D.P.; Chalchal, H.; Spadafora, S.; Stearns, V.; Perez, E.A.; Liedke, P.E.; Lang, I.; Elliott, C.; Gelmon, K.A.; Chapman, J.A.; Shepherd, L.E. Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27--a randomized controlled phase III trial. J. Clin. Oncol., 2013, 31(11), 1398-1404.
[http://dx.doi.org/10.1200/JCO.2012.44.7805] [PMID: 23358971]
[63]
De Placido, S.; Gallo, C.; De Laurentiis, M.; Bisagni, G.; Arpino, G.; Sarobba, M.G.; Riccardi, F.; Russo, A.; Del Mastro, L.; Cogoni, A.A.; Cognetti, F.; Gori, S.; Foglietta, J.; Frassoldati, A.; Amoroso, D.; Laudadio, L.; Moscetti, L.; Montemurro, F.; Verusio, C.; Bernardo, A.; Lorusso, V.; Gravina, A.; Moretti, G.; Lauria, R.; Lai, A.; Mocerino, C.; Rizzo, S.; Nuzzo, F.; Carlini, P.; Perrone, F. Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): a randomised, phase 3 trial. Lancet Oncol., 2018, 19(4), 474-485.
[http://dx.doi.org/10.1016/S1470-2045(18)30116-5] [PMID: 29482983]
[64]
Tenti, S.; Correale, P.; Cheleschi, S.; Fioravanti, A.; Pirtoli, L. Aromatase inhibitors-induced musculoskeletal disorders: current knowledge on clinical and molecular aspects. Int. J. Mol. Sci., 2020, 21(16), 5625.
[http://dx.doi.org/10.3390/ijms21165625] [PMID: 32781535]
[65]
Gaillard, S.; Stearns, V. Aromatase inhibitor-associated bone and musculoskeletal effects: new evidence defining etiology and strategies for management. Breast Cancer Res., 2011, 13(2), 205.
[http://dx.doi.org/10.1186/bcr2818] [PMID: 21457526]
[66]
Lintermans, A.; Neven, P. Safety of aromatase inhibitor therapy in breast cancer. Expert Opin. Drug Saf., 2015, 14(8), 1201-1211.
[http://dx.doi.org/10.1517/14740338.2015.1053458] [PMID: 26059833]
[67]
Niravath, P. Aromatase inhibitor-induced arthralgia: a review. Ann. Oncol., 2013, 24(6), 1443-1449.
[http://dx.doi.org/10.1093/annonc/mdt037] [PMID: 23471104]
[68]
Tenti, S.; Giordano, N.; Cutolo, M.; Giannini, F.; Fioravanti, A. Primary antiphospholipid syndrome during aromatase inhibitors therapy: A case report and review of the literature. Medicine (Baltimore), 2019, 98(13), e15052.
[http://dx.doi.org/10.1097/MD.0000000000015052] [PMID: 30921233]
[69]
Wang, J.; Zhang, Q.; Jin, S.; Feng, M.; Kang, X.; Zhao, S.; Liu, S.; Zhao, W. Immoderate inhibition of estrogen by anastrozole enhances the severity of experimental polyarthritis. Exp. Gerontol., 2009, 44(6-7), 398-405.
[http://dx.doi.org/10.1016/j.exger.2009.03.003] [PMID: 19298850]
[70]
Gil, Á.; Plaza-Diaz, J.; Mesa, M.D.; Vitamin, D. Vitamin D: classic and novel actions. Ann. Nutr. Metab., 2018, 72(2), 87-95.
[http://dx.doi.org/10.1159/000486536] [PMID: 29346788]
[71]
Gaudio, A.; Murabito, A.R.; Agodi, A.; Montineri, A.; Castellino, P. Vitamin D levels are reduced at the time of hospital admission in sicilian sars-cov-2-positive patients. Int. J. Environ. Res. Public Health, 2021, 18(7), 3491.
[http://dx.doi.org/10.3390/ijerph18073491] [PMID: 33801759]
[72]
Villaggio, B.; Soldano, S.; Cutolo, M. 1,25-dihydroxyvitamin D3 downregulates aromatase expression and inflammatory cytokines in human macrophages. Clin. Exp. Rheumatol., 2012, 30(6), 934-938.
[PMID: 23253631]
[73]
Taxel, P.; Faircloth, E.; Idrees, S.; Van Poznak, C. Cancer treatment-induced bone loss in women with breast cancer and men with prostate cancer. J. Endocr. Soc., 2018, 2(7), 574-588.
[http://dx.doi.org/10.1210/js.2018-00052] [PMID: 29942922]
[74]
Cepa, M.; Vaz, C. Management of bone loss in postmenopausal breast cancer patients treated with aromatase inhibitors. Acta Reumatol. Port., 2015, 40(4), 323-330.
[PMID: 26922195]
[75]
Milat, F.; Vincent, A.J. Management of bone disease in women after breast cancer. Climacteric, 2015, 18(Suppl. 2), 47-55.
[http://dx.doi.org/10.3109/13697137.2015.1100383] [PMID: 26514370]
[76]
Eastell, R.; Hannon, R.A.; Cuzick, J.; Dowsett, M.; Clack, G.; Adams, J.E. Effect of an aromatase inhibitor on bmd and bone turnover markers: 2-year results of the Anastrozole, Tamoxifen, Alone or in Combination (ATAC) trial (18233230). J. Bone Miner. Res., 2006, 21(8), 1215-1223.
[http://dx.doi.org/10.1359/jbmr.060508] [PMID: 16869719]
[77]
Suskin, J.; Shapiro, C.L. Osteoporosis and musculoskeletal complications related to therapy of breast cancer. Gland Surg., 2018, 7(4), 411-423.
[http://dx.doi.org/10.21037/gs.2018.07.05] [PMID: 30175057]
[78]
Okman-Kilic, T. Estrogen deficiency and osteoporosis. Advances in Osteoporosis; Dionyssiotis, Y., Ed.; Intech Open Limited: London, 2015, pp. 7-18.
[http://dx.doi.org/10.5772/59407]
[79]
Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab., 2012, 23(11), 576-581.
[http://dx.doi.org/10.1016/j.tem.2012.03.008] [PMID: 22595550]
[80]
Gaudio, A.; Pennisi, P.; Bratengeier, C.; Torrisi, V.; Lindner, B.; Mangiafico, R.A.; Pulvirenti, I.; Hawa, G.; Tringali, G.; Fiore, C.E. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J. Clin. Endocrinol. Metab., 2010, 95(5), 2248-2253.
[http://dx.doi.org/10.1210/jc.2010-0067] [PMID: 20305005]
[81]
Dhesy-Thind, S.K. Screening for osteoporosis in postmenopausal women with breast cancer receiving aromatase inhibitors: less is more? J. Clin. Oncol., 2012, 30(13), 1408-1410.
[http://dx.doi.org/10.1200/JCO.2011.40.7015] [PMID: 22370320]
[82]
Hadji, P. Aromatase inhibitor-associated bone loss in breast cancer patients is distinct from postmenopausal osteoporosis. Crit. Rev. Oncol. Hematol., 2009, 69(1), 73-82.
[http://dx.doi.org/10.1016/j.critrevonc.2008.07.013] [PMID: 18757208]
[83]
Kalder, M.; Hans, D.; Kyvernitakis, I.; Lamy, O.; Bauer, M.; Hadji, P. Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer. J. Clin. Densitom., 2014, 17(1), 66-71.
[http://dx.doi.org/10.1016/j.jocd.2013.03.003] [PMID: 23562130]
[84]
Amir, E.; Seruga, B.; Niraula, S.; Carlsson, L.; Ocaña, A. Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis. J. Natl. Cancer Inst., 2011, 103(17), 1299-1309.
[http://dx.doi.org/10.1093/jnci/djr242] [PMID: 21743022]
[85]
Trémollieres, F.A.; Ceausu, I.; Depypere, H.; Lambrinoudaki, I.; Mueck, A.; Pérez-López, F.R.; van der Schouw, Y.T.; Senturk, L.M.; Simoncini, T.; Stevenson, J.C.; Stute, P.; Rees, M. Osteoporosis management in patients with breast cancer: EMAS position statement. Maturitas, 2017, 95, 65-71.
[http://dx.doi.org/10.1016/j.maturitas.2016.10.007] [PMID: 27802892]
[86]
Coleman, R.; Body, J.J.; Aapro, M.; Hadji, P.; Herrstedt, J. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann. Oncol., 2014, 25(Suppl. 3), iii124-iii137.
[http://dx.doi.org/10.1093/annonc/mdu103] [PMID: 24782453]
[87]
Grossmann, M.; Ramchand, S.K.; Milat, F.; Vincent, A.; Lim, E.; Kotowicz, M.A.; Hicks, J.; Teede, H. Assessment and management of bone health in women with oestrogen receptor-positive breast cancer receiving endocrine therapy: Position statement of the Endocrine Society of Australia, the Australian and New Zealand Bone & Mineral Society, the Australasian Menopause Society and the Clinical Oncology Society of Australia. Clin. Endocrinol. (Oxf.), 2018, 89(3), 280-296.
[http://dx.doi.org/10.1111/cen.13735] [PMID: 29741296]
[88]
Hadji, P.; Aapro, M.S.; Body, J.J.; Bundred, N.J.; Brufsky, A.; Coleman, R.E.; Gnant, M.; Guise, T.; Lipton, A. Management of aromatase inhibitor-associated bone loss in postmenopausal women with breast cancer: practical guidance for prevention and treatment. Ann. Oncol., 2011, 22(12), 2546-2555.
[http://dx.doi.org/10.1093/annonc/mdr017] [PMID: 21415233]
[89]
Rachner, T.D.; Coleman, R.; Hadji, P.; Hofbauer, L.C. Bone health during endocrine therapy for cancer. Lancet Diabetes Endocrinol., 2018, 6(11), 901-910.
[http://dx.doi.org/10.1016/S2213-8587(18)30047-0] [PMID: 29572126]
[90]
Hadji, P.; Aapro, M.S.; Body, J.J.; Gnant, M.; Brandi, M.L.; Reginster, J.Y.; Zillikens, M.C.; Glüer, C.C.; de Villiers, T.; Baber, R.; Roodman, G.D.; Cooper, C.; Langdahl, B.; Palacios, S.; Kanis, J.; Al-Daghri, N.; Nogues, X.; Eriksen, E.F.; Kurth, A.; Rizzoli, R.; Coleman, R.E. Management of Aromatase Inhibitor-Associated Bone Loss (AIBL) in postmenopausal women with hormone sensitive breast cancer: Joint position statement of the IOF, CABS, ECTS, IEG, ESCEO IMS, and SIOG. J. Bone Oncol., 2017, 7, 1-12.
[http://dx.doi.org/10.1016/j.jbo.2017.03.001] [PMID: 28413771]
[91]
Pedersini, R.; Amoroso, V.; Maffezzoni, F.; Gallo, F.; Turla, A.; Monteverdi, S.; Ardine, M.; Ravanelli, M.; Vassalli, L.; Rodella, F.; Formenti, A.M.; Dalla, V.A.; Simoncini, E.L.; Giustina, A.; Maroldi, R.; Berruti, A. Association of fat body mass with vertebral fractures in postmenopausal women with early breast cancer undergoing adjuvant aromatase inhibitor therapy. JAMA Netw. Open, 2019, 2(9), e1911080.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.11080] [PMID: 31560383]
[92]
Gibb, F.W.; Dixon, J.M.; Clarke, C.; Homer, N.Z.; Faqehi, A.M.M.; Andrew, R.; Walker, B.R. Higher insulin resistance and adiposity in postmenopausal women with breast cancer treated with aromatase inhibitors. J. Clin. Endocrinol. Metab., 2019, 104(9), 3670-3678.
[http://dx.doi.org/10.1210/jc.2018-02339] [PMID: 30920624]
[93]
Bischoff-Ferrari, H.A.; Willett, W.C.; Wong, J.B.; Stuck, A.E.; Staehelin, H.B.; Orav, E.J.; Thoma, A.; Kiel, D.P.; Henschkowski, J. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch. Intern. Med., 2009, 169(6), 551-561.
[http://dx.doi.org/10.1001/archinternmed.2008.600] [PMID: 19307517]
[94]
Palmieri, C.; MacGregor, T.; Girgis, S.; Vigushin, D. Serum 25-hydroxyvitamin D levels in early and advanced breast cancer. J. Clin. Pathol., 2006, 59(12), 1334-1336.
[http://dx.doi.org/10.1136/jcp.2006.042747] [PMID: 17046848]
[95]
Pandolfi, F.; Franza, L.; Mandolini, C.; Conti, P. Immune modulation by vitamin D: special emphasis on its role in prevention and treatment of cancer. Clin. Ther., 2017, 39(5), 884-893.
[http://dx.doi.org/10.1016/j.clinthera.2017.03.012] [PMID: 28431765]
[96]
Paschou, S.A.; Augoulea, A.; Lambrinoudaki, I. Bone health care in women with breast cancer. Hormones (Athens), 2020, 19(2), 171-178.
[http://dx.doi.org/10.1007/s42000-019-00164-y] [PMID: 31853818]
[97]
Pineda-Moncusí, M.; Garcia-Giralt, N.; Diez-Perez, A.; Servitja, S.; Tusquets, I.; Prieto-Alhambra, D.; Nogués, X. Increased fracture risk in women treated with aromatase inhibitors versus tamoxifen: beneficial effect of bisphosphonates. J. Bone Miner. Res., 2020, 35(2), 291-297.
[http://dx.doi.org/10.1002/jbmr.3886] [PMID: 31596961]
[98]
Chukir, T.; Liu, Y.; Farooki, A. Antiresorptive agents’ bone-protective and adjuvant effects in postmenopausal women with early breast cancer. Br. J. Clin. Pharmacol., 2019, 85(6), 1125-1135.
[http://dx.doi.org/10.1111/bcp.13834] [PMID: 30536446]
[99]
Lomax, A.J.; Yee Yap, S.; White, K.; Beith, J.; Abdi, E.; Broad, A.; Sewak, S.; Lee, C.; Sambrook, P.; Pocock, N.; Henry, M.J.; Yeow, E.G.; Bell, R. Prevention of aromatase inhibitor-induced bone loss with alendronate in postmenopausal women: The BATMAN Trial. J. Bone Oncol., 2013, 2(4), 145-153.
[http://dx.doi.org/10.1016/j.jbo.2013.08.001] [PMID: 26909285]
[100]
Lester, J.E.; Dodwell, D.; Purohit, O.P.; Gutcher, S.A.; Ellis, S.P.; Thorpe, R.; Horsman, J.M.; Brown, J.E.; Hannon, R.A.; Coleman, R.E. Prevention of anastrozole-induced bone loss with monthly oral ibandronate during adjuvant aromatase inhibitor therapy for breast cancer. Clin. Cancer Res., 2008, 14(19), 6336-6342.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5101] [PMID: 18829518]
[101]
Lester, J.E.; Dodwell, D.; Brown, J.E.; Purohit, O.P.; Gutcher, S.A.; Ellis, S.P.; Thorpe, R.; Horsman, J.M.; Coleman, R.E. Prevention of anastrozole induced bone loss with monthly oral ibandronate: Final 5 year results from the ARIBON trial. J. Bone Oncol., 2012, 1(2), 57-62.
[http://dx.doi.org/10.1016/j.jbo.2012.06.002] [PMID: 26909256]
[102]
Van Poznak, C.; Hannon, R.A.; Mackey, J.R.; Campone, M.; Apffelstaedt, J.P.; Clack, G.; Barlow, D.; Makris, A.; Eastell, R. Prevention of aromatase inhibitor-induced bone loss using risedronate: the SABRE trial. J. Clin. Oncol., 2010, 28(6), 967-975.
[http://dx.doi.org/10.1200/JCO.2009.24.5902] [PMID: 20065185]
[103]
Sestak, I.; Singh, S.; Cuzick, J.; Blake, G.M.; Patel, R.; Gossiel, F.; Coleman, R.; Dowsett, M.; Forbes, J.F.; Howell, A.; Eastell, R. Changes in bone mineral density at 3 years in postmenopausal women receiving anastrozole and risedronate in the IBIS-II bone substudy: an international, double-blind, randomised, placebo-controlled trial. Lancet Oncol., 2014, 15(13), 1460-1468.
[http://dx.doi.org/10.1016/S1470-2045(14)71035-6] [PMID: 25456365]
[104]
Brufsky, A.M.; Bosserman, L.D.; Caradonna, R.R.; Haley, B.B.; Jones, C.M.; Moore, H.C.; Jin, L.; Warsi, G.M.; Ericson, S.G.; Perez, E.A. Zoledronic acid effectively prevents aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole: Z-FAST study 36-month follow-up results. Clin. Breast Cancer, 2009, 9(2), 77-85.
[http://dx.doi.org/10.3816/CBC.2009.n.015] [PMID: 19433387]
[105]
Coleman, R.; de Boer, R.; Eidtmann, H.; Llombart, A.; Davidson, N.; Neven, P.; von Minckwitz, G.; Sleeboom, H.P.; Forbes, J.; Barrios, C.; Frassoldati, A.; Campbell, I.; Paija, O.; Martin, N.; Modi, A.; Bundred, N. Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann. Oncol., 2013, 24(2), 398-405.
[http://dx.doi.org/10.1093/annonc/mds277] [PMID: 23047045]
[106]
Llombart, A.; Frassoldati, A.; Paija, O.; Sleeboom, H.P.; Jerusalem, G.; Mebis, J.; Deleu, I.; Miller, J.; Schenk, N.; Neven, P. Immediate administration of zoledronic acid reduces aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer: 12-month analysis of the E-ZO-FAST trial. Clin. Breast Cancer, 2012, 12(1), 40-48.
[http://dx.doi.org/10.1016/j.clbc.2011.08.002] [PMID: 22014381]
[107]
Brufsky, A.M.; Harker, W.G.; Beck, J.T.; Bosserman, L.; Vogel, C.; Seidler, C.; Jin, L.; Warsi, G.; Argonza-Aviles, E.; Hohneker, J.; Ericson, S.G.; Perez, E.A. Final 5-year results of Z-FAST trial: adjuvant zoledronic acid maintains bone mass in postmenopausal breast cancer patients receiving letrozole. Cancer, 2012, 118(5), 1192-1201.
[http://dx.doi.org/10.1002/cncr.26313] [PMID: 21987386]
[108]
Panagiotakou, A.; Yavropoulou, M.; Nasiri-Ansari, N.; Makras, P.; Basdra, E.K.; Papavassiliou, A.G.; Kassi, E.N. Extra-skeletal effects of bisphosphonates. Metabolism, 2020, 110, 154264.
[http://dx.doi.org/10.1016/j.metabol.2020.154264] [PMID: 32445641]
[109]
Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet, 2015, 386(10001), 1353-1361.
[http://dx.doi.org/10.1016/S0140-6736(15)60908-4] [PMID: 26211824]
[110]
Hadji, P.; Coleman, R.E.; Wilson, C.; Powles, T.J.; Clézardin, P.; Aapro, M.; Costa, L.; Body, J.J.; Markopoulos, C.; Santini, D.; Diel, I.; Di Leo, A.; Cameron, D.; Dodwell, D.; Smith, I.; Gnant, M.; Gray, R.; Harbeck, N.; Thurlimann, B.; Untch, M.; Cortes, J.; Martin, M.; Albert, U.S.; Conte, P.F.; Ejlertsen, B.; Bergh, J.; Kaufmann, M.; Holen, I. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel. Ann. Oncol., 2016, 27(3), 379-390.
[http://dx.doi.org/10.1093/annonc/mdv617] [PMID: 26681681]
[111]
Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab., 2021, 39(1), 2-11.
[http://dx.doi.org/10.1007/s00774-020-01175-1] [PMID: 33389131]
[112]
Pennisi, P.; Russo, E.; Gaudio, A.; Veca, R.; D’Amico, F.; Mangiafico, R.A.; Laspina, M.; Tringali, G.; Signorelli, S.S.; Fiore, C.E. The association between carotid or femoral atherosclerosis and low bone mass in postmenopausal women referred for osteoporosis screening. Does osteoprotegerin play a role? Maturitas, 2010, 67(4), 358-362.
[http://dx.doi.org/10.1016/j.maturitas.2010.07.013] [PMID: 20727694]
[113]
Ellis, G.K.; Bone, H.G.; Chlebowski, R.; Paul, D.; Spadafora, S.; Fan, M.; Kim, D. Effect of denosumab on bone mineral density in women receiving adjuvant aromatase inhibitors for non-metastatic breast cancer: subgroup analyses of a phase 3 study. Breast Cancer Res. Treat., 2009, 118(1), 81-87.
[http://dx.doi.org/10.1007/s10549-009-0352-y] [PMID: 19308727]
[114]
Nakatsukasa, K.; Koyama, H.; Ouchi, Y.; Sakaguchi, K.; Fujita, Y.; Matsuda, T.; Kato, M.; Konishi, E.; Taguchi, T. Effects of denosumab on bone mineral density in Japanese women with osteoporosis treated with aromatase inhibitors for breast cancer. J. Bone Miner. Metab., 2019, 37(2), 301-306.
[http://dx.doi.org/10.1007/s00774-018-0917-0] [PMID: 29520506]
[115]
Catalano, A.; Gaudio, A.; Morabito, N.; Basile, G.; Agostino, R.M.; Xourafa, A.; Atteritano, M.; Morini, E.; Natale, G.; Lasco, A. Quantitative ultrasound and DXA measurements in aromatase inhibitor-treated breast cancer women receiving denosumab. J. Endocrinol. Invest., 2017, 40(8), 851-857.
[http://dx.doi.org/10.1007/s40618-016-0606-6] [PMID: 28332172]
[116]
Gnant, M.; Pfeiler, G.; Dubsky, P.C.; Hubalek, M.; Greil, R.; Jakesz, R.; Wette, V.; Balic, M.; Haslbauer, F.; Melbinger, E.; Bjelic-Radisic, V.; Artner-Matuschek, S.; Fitzal, F.; Marth, C.; Sevelda, P.; Mlineritsch, B.; Steger, G.G.; Manfreda, D.; Exner, R.; Egle, D.; Bergh, J.; Kainberger, F.; Talbot, S.; Warner, D.; Fesl, C.; Singer, C.F. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet, 2015, 386(9992), 433-443.
[http://dx.doi.org/10.1016/S0140-6736(15)60995-3] [PMID: 26040499]
[117]
Beaudoin, C.; Jean, S.; Bessette, L.; Ste-Marie, L.G.; Moore, L.; Brown, J.P. Denosumab compared to other treatments to prevent or treat osteoporosis in individuals at risk of fracture: a systematic review and meta-analysis. Osteoporos. Int., 2016, 27(9), 2835-2844.
[http://dx.doi.org/10.1007/s00198-016-3607-6] [PMID: 27120345]
[118]
Choi, N.K.; Solomon, D.H.; Tsacogianis, T.N.; Landon, J.E.; Song, H.J.; Kim, S.C. Comparative safety and effectiveness of denosumab versus zoledronic acid in patients with osteoporosis: A cohort study. J. Bone Miner. Res., 2017, 32(3), 611-617.
[http://dx.doi.org/10.1002/jbmr.3019] [PMID: 27736041]
[119]
Jamal, S.A.; Ljunggren, O.; Stehman-Breen, C.; Cummings, S.R.; McClung, M.R.; Goemaere, S.; Ebeling, P.R.; Franek, E.; Yang, Y.C.; Egbuna, O.I.; Boonen, S.; Miller, P.D. Effects of denosumab on fracture and bone mineral density by level of kidney function. J. Bone Miner. Res., 2011, 26(8), 1829-1835.
[http://dx.doi.org/10.1002/jbmr.403] [PMID: 21491487]
[120]
Passeri, E.; Benedini, S.; Costa, E.; Corbetta, S. A Single 60 mg Dose of denosumab might improve hepatic insulin sensitivity in postmenopausal nondiabetic severe osteoporotic women. Int. J. Endocrinol., 2015, 2015, 352858.
[http://dx.doi.org/10.1155/2015/352858] [PMID: 25873952]
[121]
Lasco, A.; Morabito, N.; Basile, G.; Atteritano, M.; Gaudio, A.; Giorgianni, G.M.; Morini, E.; Faraci, B.; Bellone, F.; Catalano, A. Denosumab inhibition of RANKL and insulin resistance in postmenopausal women with osteoporosis. Calcif. Tissue Int., 2016, 98(2), 123-128.
[http://dx.doi.org/10.1007/s00223-015-0075-5] [PMID: 26498169]
[122]
Bone, H.G.; Bolognese, M.A.; Yuen, C.K.; Kendler, D.L.; Miller, P.D.; Yang, Y.C.; Grazette, L.; San Martin, J.; Gallagher, J.C. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J. Clin. Endocrinol. Metab., 2011, 96(4), 972-980.
[http://dx.doi.org/10.1210/jc.2010-1502] [PMID: 21289258]
[123]
Miller, P.D.; Bolognese, M.A.; Lewiecki, E.M.; McClung, M.R.; Ding, B.; Austin, M.; Liu, Y.; San Martin, J. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone, 2008, 43(2), 222-229.
[http://dx.doi.org/10.1016/j.bone.2008.04.007] [PMID: 18539106]
[124]
Gnant, M.; Pfeiler, G.; Steger, G.G.; Egle, D.; Greil, R.; Fitzal, F.; Wette, V.; Balic, M.; Haslbauer, F.; Melbinger-Zeinitzer, E.; Bjelic-Radisic, V.; Jakesz, R.; Marth, C.; Sevelda, P.; Mlineritsch, B.; Exner, R.; Fesl, C.; Frantal, S.; Singer, C.F. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2019, 20(3), 339-351.
[http://dx.doi.org/10.1016/S1470-2045(18)30862-3] [PMID: 30795951]
[125]
Coleman, R.; Finkelstein, D.M.; Barrios, C.; Martin, M.; Iwata, H.; Hegg, R.; Glaspy, J.; Periañez, A.M.; Tonkin, K.; Deleu, I.; Sohn, J.; Crown, J.; Delaloge, S.; Dai, T.; Zhou, Y.; Jandial, D.; Chan, A. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol., 2020, 21(1), 60-72.
[http://dx.doi.org/10.1016/S1470-2045(19)30687-4] [PMID: 31806543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy